diff options
Diffstat (limited to 'thirdparty/openssl/crypto/ec/ec2_smpl.c')
-rw-r--r-- | thirdparty/openssl/crypto/ec/ec2_smpl.c | 798 |
1 files changed, 798 insertions, 0 deletions
diff --git a/thirdparty/openssl/crypto/ec/ec2_smpl.c b/thirdparty/openssl/crypto/ec/ec2_smpl.c new file mode 100644 index 0000000000..5b27b91fcc --- /dev/null +++ b/thirdparty/openssl/crypto/ec/ec2_smpl.c @@ -0,0 +1,798 @@ +/* crypto/ec/ec2_smpl.c */ +/* ==================================================================== + * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. + * + * The Elliptic Curve Public-Key Crypto Library (ECC Code) included + * herein is developed by SUN MICROSYSTEMS, INC., and is contributed + * to the OpenSSL project. + * + * The ECC Code is licensed pursuant to the OpenSSL open source + * license provided below. + * + * The software is originally written by Sheueling Chang Shantz and + * Douglas Stebila of Sun Microsystems Laboratories. + * + */ +/* ==================================================================== + * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * 3. All advertising materials mentioning features or use of this + * software must display the following acknowledgment: + * "This product includes software developed by the OpenSSL Project + * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" + * + * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to + * endorse or promote products derived from this software without + * prior written permission. For written permission, please contact + * openssl-core@openssl.org. + * + * 5. Products derived from this software may not be called "OpenSSL" + * nor may "OpenSSL" appear in their names without prior written + * permission of the OpenSSL Project. + * + * 6. Redistributions of any form whatsoever must retain the following + * acknowledgment: + * "This product includes software developed by the OpenSSL Project + * for use in the OpenSSL Toolkit (http://www.openssl.org/)" + * + * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY + * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR + * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED + * OF THE POSSIBILITY OF SUCH DAMAGE. + * ==================================================================== + * + * This product includes cryptographic software written by Eric Young + * (eay@cryptsoft.com). This product includes software written by Tim + * Hudson (tjh@cryptsoft.com). + * + */ + +#include <openssl/err.h> + +#include "ec_lcl.h" + +#ifndef OPENSSL_NO_EC2M + +# ifdef OPENSSL_FIPS +# include <openssl/fips.h> +# endif + +const EC_METHOD *EC_GF2m_simple_method(void) +{ + static const EC_METHOD ret = { + EC_FLAGS_DEFAULT_OCT, + NID_X9_62_characteristic_two_field, + ec_GF2m_simple_group_init, + ec_GF2m_simple_group_finish, + ec_GF2m_simple_group_clear_finish, + ec_GF2m_simple_group_copy, + ec_GF2m_simple_group_set_curve, + ec_GF2m_simple_group_get_curve, + ec_GF2m_simple_group_get_degree, + ec_GF2m_simple_group_check_discriminant, + ec_GF2m_simple_point_init, + ec_GF2m_simple_point_finish, + ec_GF2m_simple_point_clear_finish, + ec_GF2m_simple_point_copy, + ec_GF2m_simple_point_set_to_infinity, + 0 /* set_Jprojective_coordinates_GFp */ , + 0 /* get_Jprojective_coordinates_GFp */ , + ec_GF2m_simple_point_set_affine_coordinates, + ec_GF2m_simple_point_get_affine_coordinates, + 0, 0, 0, + ec_GF2m_simple_add, + ec_GF2m_simple_dbl, + ec_GF2m_simple_invert, + ec_GF2m_simple_is_at_infinity, + ec_GF2m_simple_is_on_curve, + ec_GF2m_simple_cmp, + ec_GF2m_simple_make_affine, + ec_GF2m_simple_points_make_affine, + + /* + * the following three method functions are defined in ec2_mult.c + */ + ec_GF2m_simple_mul, + ec_GF2m_precompute_mult, + ec_GF2m_have_precompute_mult, + + ec_GF2m_simple_field_mul, + ec_GF2m_simple_field_sqr, + ec_GF2m_simple_field_div, + 0 /* field_encode */ , + 0 /* field_decode */ , + 0 /* field_set_to_one */ + }; + +# ifdef OPENSSL_FIPS + if (FIPS_mode()) + return fips_ec_gf2m_simple_method(); +# endif + + return &ret; +} + +/* + * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members + * are handled by EC_GROUP_new. + */ +int ec_GF2m_simple_group_init(EC_GROUP *group) +{ + BN_init(&group->field); + BN_init(&group->a); + BN_init(&group->b); + return 1; +} + +/* + * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are + * handled by EC_GROUP_free. + */ +void ec_GF2m_simple_group_finish(EC_GROUP *group) +{ + BN_free(&group->field); + BN_free(&group->a); + BN_free(&group->b); +} + +/* + * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other + * members are handled by EC_GROUP_clear_free. + */ +void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) +{ + BN_clear_free(&group->field); + BN_clear_free(&group->a); + BN_clear_free(&group->b); + group->poly[0] = 0; + group->poly[1] = 0; + group->poly[2] = 0; + group->poly[3] = 0; + group->poly[4] = 0; + group->poly[5] = -1; +} + +/* + * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are + * handled by EC_GROUP_copy. + */ +int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) +{ + int i; + if (!BN_copy(&dest->field, &src->field)) + return 0; + if (!BN_copy(&dest->a, &src->a)) + return 0; + if (!BN_copy(&dest->b, &src->b)) + return 0; + dest->poly[0] = src->poly[0]; + dest->poly[1] = src->poly[1]; + dest->poly[2] = src->poly[2]; + dest->poly[3] = src->poly[3]; + dest->poly[4] = src->poly[4]; + dest->poly[5] = src->poly[5]; + if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) + == NULL) + return 0; + if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) + == NULL) + return 0; + for (i = dest->a.top; i < dest->a.dmax; i++) + dest->a.d[i] = 0; + for (i = dest->b.top; i < dest->b.dmax; i++) + dest->b.d[i] = 0; + return 1; +} + +/* Set the curve parameters of an EC_GROUP structure. */ +int ec_GF2m_simple_group_set_curve(EC_GROUP *group, + const BIGNUM *p, const BIGNUM *a, + const BIGNUM *b, BN_CTX *ctx) +{ + int ret = 0, i; + + /* group->field */ + if (!BN_copy(&group->field, p)) + goto err; + i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; + if ((i != 5) && (i != 3)) { + ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); + goto err; + } + + /* group->a */ + if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) + goto err; + if (bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) + == NULL) + goto err; + for (i = group->a.top; i < group->a.dmax; i++) + group->a.d[i] = 0; + + /* group->b */ + if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) + goto err; + if (bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) + == NULL) + goto err; + for (i = group->b.top; i < group->b.dmax; i++) + group->b.d[i] = 0; + + ret = 1; + err: + return ret; +} + +/* + * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL + * then there values will not be set but the method will return with success. + */ +int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, + BIGNUM *a, BIGNUM *b, BN_CTX *ctx) +{ + int ret = 0; + + if (p != NULL) { + if (!BN_copy(p, &group->field)) + return 0; + } + + if (a != NULL) { + if (!BN_copy(a, &group->a)) + goto err; + } + + if (b != NULL) { + if (!BN_copy(b, &group->b)) + goto err; + } + + ret = 1; + + err: + return ret; +} + +/* + * Gets the degree of the field. For a curve over GF(2^m) this is the value + * m. + */ +int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) +{ + return BN_num_bits(&group->field) - 1; +} + +/* + * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an + * elliptic curve <=> b != 0 (mod p) + */ +int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, + BN_CTX *ctx) +{ + int ret = 0; + BIGNUM *b; + BN_CTX *new_ctx = NULL; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) { + ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, + ERR_R_MALLOC_FAILURE); + goto err; + } + } + BN_CTX_start(ctx); + b = BN_CTX_get(ctx); + if (b == NULL) + goto err; + + if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) + goto err; + + /* + * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic + * curve <=> b != 0 (mod p) + */ + if (BN_is_zero(b)) + goto err; + + ret = 1; + + err: + if (ctx != NULL) + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +/* Initializes an EC_POINT. */ +int ec_GF2m_simple_point_init(EC_POINT *point) +{ + BN_init(&point->X); + BN_init(&point->Y); + BN_init(&point->Z); + return 1; +} + +/* Frees an EC_POINT. */ +void ec_GF2m_simple_point_finish(EC_POINT *point) +{ + BN_free(&point->X); + BN_free(&point->Y); + BN_free(&point->Z); +} + +/* Clears and frees an EC_POINT. */ +void ec_GF2m_simple_point_clear_finish(EC_POINT *point) +{ + BN_clear_free(&point->X); + BN_clear_free(&point->Y); + BN_clear_free(&point->Z); + point->Z_is_one = 0; +} + +/* + * Copy the contents of one EC_POINT into another. Assumes dest is + * initialized. + */ +int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) +{ + if (!BN_copy(&dest->X, &src->X)) + return 0; + if (!BN_copy(&dest->Y, &src->Y)) + return 0; + if (!BN_copy(&dest->Z, &src->Z)) + return 0; + dest->Z_is_one = src->Z_is_one; + + return 1; +} + +/* + * Set an EC_POINT to the point at infinity. A point at infinity is + * represented by having Z=0. + */ +int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, + EC_POINT *point) +{ + point->Z_is_one = 0; + BN_zero(&point->Z); + return 1; +} + +/* + * Set the coordinates of an EC_POINT using affine coordinates. Note that + * the simple implementation only uses affine coordinates. + */ +int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, + EC_POINT *point, + const BIGNUM *x, + const BIGNUM *y, BN_CTX *ctx) +{ + int ret = 0; + if (x == NULL || y == NULL) { + ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, + ERR_R_PASSED_NULL_PARAMETER); + return 0; + } + + if (!BN_copy(&point->X, x)) + goto err; + BN_set_negative(&point->X, 0); + if (!BN_copy(&point->Y, y)) + goto err; + BN_set_negative(&point->Y, 0); + if (!BN_copy(&point->Z, BN_value_one())) + goto err; + BN_set_negative(&point->Z, 0); + point->Z_is_one = 1; + ret = 1; + + err: + return ret; +} + +/* + * Gets the affine coordinates of an EC_POINT. Note that the simple + * implementation only uses affine coordinates. + */ +int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, + const EC_POINT *point, + BIGNUM *x, BIGNUM *y, + BN_CTX *ctx) +{ + int ret = 0; + + if (EC_POINT_is_at_infinity(group, point)) { + ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, + EC_R_POINT_AT_INFINITY); + return 0; + } + + if (BN_cmp(&point->Z, BN_value_one())) { + ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, + ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); + return 0; + } + if (x != NULL) { + if (!BN_copy(x, &point->X)) + goto err; + BN_set_negative(x, 0); + } + if (y != NULL) { + if (!BN_copy(y, &point->Y)) + goto err; + BN_set_negative(y, 0); + } + ret = 1; + + err: + return ret; +} + +/* + * Computes a + b and stores the result in r. r could be a or b, a could be + * b. Uses algorithm A.10.2 of IEEE P1363. + */ +int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, + const EC_POINT *b, BN_CTX *ctx) +{ + BN_CTX *new_ctx = NULL; + BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; + int ret = 0; + + if (EC_POINT_is_at_infinity(group, a)) { + if (!EC_POINT_copy(r, b)) + return 0; + return 1; + } + + if (EC_POINT_is_at_infinity(group, b)) { + if (!EC_POINT_copy(r, a)) + return 0; + return 1; + } + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + BN_CTX_start(ctx); + x0 = BN_CTX_get(ctx); + y0 = BN_CTX_get(ctx); + x1 = BN_CTX_get(ctx); + y1 = BN_CTX_get(ctx); + x2 = BN_CTX_get(ctx); + y2 = BN_CTX_get(ctx); + s = BN_CTX_get(ctx); + t = BN_CTX_get(ctx); + if (t == NULL) + goto err; + + if (a->Z_is_one) { + if (!BN_copy(x0, &a->X)) + goto err; + if (!BN_copy(y0, &a->Y)) + goto err; + } else { + if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) + goto err; + } + if (b->Z_is_one) { + if (!BN_copy(x1, &b->X)) + goto err; + if (!BN_copy(y1, &b->Y)) + goto err; + } else { + if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) + goto err; + } + + if (BN_GF2m_cmp(x0, x1)) { + if (!BN_GF2m_add(t, x0, x1)) + goto err; + if (!BN_GF2m_add(s, y0, y1)) + goto err; + if (!group->meth->field_div(group, s, s, t, ctx)) + goto err; + if (!group->meth->field_sqr(group, x2, s, ctx)) + goto err; + if (!BN_GF2m_add(x2, x2, &group->a)) + goto err; + if (!BN_GF2m_add(x2, x2, s)) + goto err; + if (!BN_GF2m_add(x2, x2, t)) + goto err; + } else { + if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { + if (!EC_POINT_set_to_infinity(group, r)) + goto err; + ret = 1; + goto err; + } + if (!group->meth->field_div(group, s, y1, x1, ctx)) + goto err; + if (!BN_GF2m_add(s, s, x1)) + goto err; + + if (!group->meth->field_sqr(group, x2, s, ctx)) + goto err; + if (!BN_GF2m_add(x2, x2, s)) + goto err; + if (!BN_GF2m_add(x2, x2, &group->a)) + goto err; + } + + if (!BN_GF2m_add(y2, x1, x2)) + goto err; + if (!group->meth->field_mul(group, y2, y2, s, ctx)) + goto err; + if (!BN_GF2m_add(y2, y2, x2)) + goto err; + if (!BN_GF2m_add(y2, y2, y1)) + goto err; + + if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) + goto err; + + ret = 1; + + err: + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +/* + * Computes 2 * a and stores the result in r. r could be a. Uses algorithm + * A.10.2 of IEEE P1363. + */ +int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, + BN_CTX *ctx) +{ + return ec_GF2m_simple_add(group, r, a, a, ctx); +} + +int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) +{ + if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) + /* point is its own inverse */ + return 1; + + if (!EC_POINT_make_affine(group, point, ctx)) + return 0; + return BN_GF2m_add(&point->Y, &point->X, &point->Y); +} + +/* Indicates whether the given point is the point at infinity. */ +int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, + const EC_POINT *point) +{ + return BN_is_zero(&point->Z); +} + +/*- + * Determines whether the given EC_POINT is an actual point on the curve defined + * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: + * y^2 + x*y = x^3 + a*x^2 + b. + */ +int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, + BN_CTX *ctx) +{ + int ret = -1; + BN_CTX *new_ctx = NULL; + BIGNUM *lh, *y2; + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, + const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); + + if (EC_POINT_is_at_infinity(group, point)) + return 1; + + field_mul = group->meth->field_mul; + field_sqr = group->meth->field_sqr; + + /* only support affine coordinates */ + if (!point->Z_is_one) + return -1; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return -1; + } + + BN_CTX_start(ctx); + y2 = BN_CTX_get(ctx); + lh = BN_CTX_get(ctx); + if (lh == NULL) + goto err; + + /*- + * We have a curve defined by a Weierstrass equation + * y^2 + x*y = x^3 + a*x^2 + b. + * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 + * <=> ((x + a) * x + y ) * x + b + y^2 = 0 + */ + if (!BN_GF2m_add(lh, &point->X, &group->a)) + goto err; + if (!field_mul(group, lh, lh, &point->X, ctx)) + goto err; + if (!BN_GF2m_add(lh, lh, &point->Y)) + goto err; + if (!field_mul(group, lh, lh, &point->X, ctx)) + goto err; + if (!BN_GF2m_add(lh, lh, &group->b)) + goto err; + if (!field_sqr(group, y2, &point->Y, ctx)) + goto err; + if (!BN_GF2m_add(lh, lh, y2)) + goto err; + ret = BN_is_zero(lh); + err: + if (ctx) + BN_CTX_end(ctx); + if (new_ctx) + BN_CTX_free(new_ctx); + return ret; +} + +/*- + * Indicates whether two points are equal. + * Return values: + * -1 error + * 0 equal (in affine coordinates) + * 1 not equal + */ +int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, + const EC_POINT *b, BN_CTX *ctx) +{ + BIGNUM *aX, *aY, *bX, *bY; + BN_CTX *new_ctx = NULL; + int ret = -1; + + if (EC_POINT_is_at_infinity(group, a)) { + return EC_POINT_is_at_infinity(group, b) ? 0 : 1; + } + + if (EC_POINT_is_at_infinity(group, b)) + return 1; + + if (a->Z_is_one && b->Z_is_one) { + return ((BN_cmp(&a->X, &b->X) == 0) + && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; + } + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return -1; + } + + BN_CTX_start(ctx); + aX = BN_CTX_get(ctx); + aY = BN_CTX_get(ctx); + bX = BN_CTX_get(ctx); + bY = BN_CTX_get(ctx); + if (bY == NULL) + goto err; + + if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) + goto err; + if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) + goto err; + ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; + + err: + if (ctx) + BN_CTX_end(ctx); + if (new_ctx) + BN_CTX_free(new_ctx); + return ret; +} + +/* Forces the given EC_POINT to internally use affine coordinates. */ +int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, + BN_CTX *ctx) +{ + BN_CTX *new_ctx = NULL; + BIGNUM *x, *y; + int ret = 0; + + if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) + return 1; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + BN_CTX_start(ctx); + x = BN_CTX_get(ctx); + y = BN_CTX_get(ctx); + if (y == NULL) + goto err; + + if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) + goto err; + if (!BN_copy(&point->X, x)) + goto err; + if (!BN_copy(&point->Y, y)) + goto err; + if (!BN_one(&point->Z)) + goto err; + point->Z_is_one = 1; + + ret = 1; + + err: + if (ctx) + BN_CTX_end(ctx); + if (new_ctx) + BN_CTX_free(new_ctx); + return ret; +} + +/* + * Forces each of the EC_POINTs in the given array to use affine coordinates. + */ +int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, + EC_POINT *points[], BN_CTX *ctx) +{ + size_t i; + + for (i = 0; i < num; i++) { + if (!group->meth->make_affine(group, points[i], ctx)) + return 0; + } + + return 1; +} + +/* Wrapper to simple binary polynomial field multiplication implementation. */ +int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, + const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) +{ + return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); +} + +/* Wrapper to simple binary polynomial field squaring implementation. */ +int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, + const BIGNUM *a, BN_CTX *ctx) +{ + return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); +} + +/* Wrapper to simple binary polynomial field division implementation. */ +int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, + const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) +{ + return BN_GF2m_mod_div(r, a, b, &group->field, ctx); +} + +#endif |