summaryrefslogtreecommitdiff
path: root/thirdparty/openssl/crypto/bn/bn_mul.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/openssl/crypto/bn/bn_mul.c')
-rw-r--r--thirdparty/openssl/crypto/bn/bn_mul.c1125
1 files changed, 0 insertions, 1125 deletions
diff --git a/thirdparty/openssl/crypto/bn/bn_mul.c b/thirdparty/openssl/crypto/bn/bn_mul.c
deleted file mode 100644
index 6b455a755f..0000000000
--- a/thirdparty/openssl/crypto/bn/bn_mul.c
+++ /dev/null
@@ -1,1125 +0,0 @@
-/* crypto/bn/bn_mul.c */
-/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
- * All rights reserved.
- *
- * This package is an SSL implementation written
- * by Eric Young (eay@cryptsoft.com).
- * The implementation was written so as to conform with Netscapes SSL.
- *
- * This library is free for commercial and non-commercial use as long as
- * the following conditions are aheared to. The following conditions
- * apply to all code found in this distribution, be it the RC4, RSA,
- * lhash, DES, etc., code; not just the SSL code. The SSL documentation
- * included with this distribution is covered by the same copyright terms
- * except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
- * Copyright remains Eric Young's, and as such any Copyright notices in
- * the code are not to be removed.
- * If this package is used in a product, Eric Young should be given attribution
- * as the author of the parts of the library used.
- * This can be in the form of a textual message at program startup or
- * in documentation (online or textual) provided with the package.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * "This product includes cryptographic software written by
- * Eric Young (eay@cryptsoft.com)"
- * The word 'cryptographic' can be left out if the rouines from the library
- * being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
- * the apps directory (application code) you must include an acknowledgement:
- * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
- * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * The licence and distribution terms for any publically available version or
- * derivative of this code cannot be changed. i.e. this code cannot simply be
- * copied and put under another distribution licence
- * [including the GNU Public Licence.]
- */
-
-#ifndef BN_DEBUG
-# undef NDEBUG /* avoid conflicting definitions */
-# define NDEBUG
-#endif
-
-#include <stdio.h>
-#include <assert.h>
-#include "cryptlib.h"
-#include "bn_lcl.h"
-
-#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
-/*
- * Here follows specialised variants of bn_add_words() and bn_sub_words().
- * They have the property performing operations on arrays of different sizes.
- * The sizes of those arrays is expressed through cl, which is the common
- * length ( basicall, min(len(a),len(b)) ), and dl, which is the delta
- * between the two lengths, calculated as len(a)-len(b). All lengths are the
- * number of BN_ULONGs... For the operations that require a result array as
- * parameter, it must have the length cl+abs(dl). These functions should
- * probably end up in bn_asm.c as soon as there are assembler counterparts
- * for the systems that use assembler files.
- */
-
-BN_ULONG bn_sub_part_words(BN_ULONG *r,
- const BN_ULONG *a, const BN_ULONG *b,
- int cl, int dl)
-{
- BN_ULONG c, t;
-
- assert(cl >= 0);
- c = bn_sub_words(r, a, b, cl);
-
- if (dl == 0)
- return c;
-
- r += cl;
- a += cl;
- b += cl;
-
- if (dl < 0) {
-# ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl,
- dl, c);
-# endif
- for (;;) {
- t = b[0];
- r[0] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
-
- t = b[1];
- r[1] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
-
- t = b[2];
- r[2] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
-
- t = b[3];
- r[3] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
-
- b += 4;
- r += 4;
- }
- } else {
- int save_dl = dl;
-# ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl,
- dl, c);
-# endif
- while (c) {
- t = a[0];
- r[0] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
-
- t = a[1];
- r[1] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
-
- t = a[2];
- r[2] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
-
- t = a[3];
- r[3] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
-
- save_dl = dl;
- a += 4;
- r += 4;
- }
- if (dl > 0) {
-# ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n",
- cl, dl);
-# endif
- if (save_dl > dl) {
- switch (save_dl - dl) {
- case 1:
- r[1] = a[1];
- if (--dl <= 0)
- break;
- case 2:
- r[2] = a[2];
- if (--dl <= 0)
- break;
- case 3:
- r[3] = a[3];
- if (--dl <= 0)
- break;
- }
- a += 4;
- r += 4;
- }
- }
- if (dl > 0) {
-# ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n",
- cl, dl);
-# endif
- for (;;) {
- r[0] = a[0];
- if (--dl <= 0)
- break;
- r[1] = a[1];
- if (--dl <= 0)
- break;
- r[2] = a[2];
- if (--dl <= 0)
- break;
- r[3] = a[3];
- if (--dl <= 0)
- break;
-
- a += 4;
- r += 4;
- }
- }
- }
- return c;
-}
-#endif
-
-BN_ULONG bn_add_part_words(BN_ULONG *r,
- const BN_ULONG *a, const BN_ULONG *b,
- int cl, int dl)
-{
- BN_ULONG c, l, t;
-
- assert(cl >= 0);
- c = bn_add_words(r, a, b, cl);
-
- if (dl == 0)
- return c;
-
- r += cl;
- a += cl;
- b += cl;
-
- if (dl < 0) {
- int save_dl = dl;
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl,
- dl, c);
-#endif
- while (c) {
- l = (c + b[0]) & BN_MASK2;
- c = (l < c);
- r[0] = l;
- if (++dl >= 0)
- break;
-
- l = (c + b[1]) & BN_MASK2;
- c = (l < c);
- r[1] = l;
- if (++dl >= 0)
- break;
-
- l = (c + b[2]) & BN_MASK2;
- c = (l < c);
- r[2] = l;
- if (++dl >= 0)
- break;
-
- l = (c + b[3]) & BN_MASK2;
- c = (l < c);
- r[3] = l;
- if (++dl >= 0)
- break;
-
- save_dl = dl;
- b += 4;
- r += 4;
- }
- if (dl < 0) {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n",
- cl, dl);
-#endif
- if (save_dl < dl) {
- switch (dl - save_dl) {
- case 1:
- r[1] = b[1];
- if (++dl >= 0)
- break;
- case 2:
- r[2] = b[2];
- if (++dl >= 0)
- break;
- case 3:
- r[3] = b[3];
- if (++dl >= 0)
- break;
- }
- b += 4;
- r += 4;
- }
- }
- if (dl < 0) {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n",
- cl, dl);
-#endif
- for (;;) {
- r[0] = b[0];
- if (++dl >= 0)
- break;
- r[1] = b[1];
- if (++dl >= 0)
- break;
- r[2] = b[2];
- if (++dl >= 0)
- break;
- r[3] = b[3];
- if (++dl >= 0)
- break;
-
- b += 4;
- r += 4;
- }
- }
- } else {
- int save_dl = dl;
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
-#endif
- while (c) {
- t = (a[0] + c) & BN_MASK2;
- c = (t < c);
- r[0] = t;
- if (--dl <= 0)
- break;
-
- t = (a[1] + c) & BN_MASK2;
- c = (t < c);
- r[1] = t;
- if (--dl <= 0)
- break;
-
- t = (a[2] + c) & BN_MASK2;
- c = (t < c);
- r[2] = t;
- if (--dl <= 0)
- break;
-
- t = (a[3] + c) & BN_MASK2;
- c = (t < c);
- r[3] = t;
- if (--dl <= 0)
- break;
-
- save_dl = dl;
- a += 4;
- r += 4;
- }
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl,
- dl);
-#endif
- if (dl > 0) {
- if (save_dl > dl) {
- switch (save_dl - dl) {
- case 1:
- r[1] = a[1];
- if (--dl <= 0)
- break;
- case 2:
- r[2] = a[2];
- if (--dl <= 0)
- break;
- case 3:
- r[3] = a[3];
- if (--dl <= 0)
- break;
- }
- a += 4;
- r += 4;
- }
- }
- if (dl > 0) {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n",
- cl, dl);
-#endif
- for (;;) {
- r[0] = a[0];
- if (--dl <= 0)
- break;
- r[1] = a[1];
- if (--dl <= 0)
- break;
- r[2] = a[2];
- if (--dl <= 0)
- break;
- r[3] = a[3];
- if (--dl <= 0)
- break;
-
- a += 4;
- r += 4;
- }
- }
- }
- return c;
-}
-
-#ifdef BN_RECURSION
-/*
- * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
- * Computer Programming, Vol. 2)
- */
-
-/*-
- * r is 2*n2 words in size,
- * a and b are both n2 words in size.
- * n2 must be a power of 2.
- * We multiply and return the result.
- * t must be 2*n2 words in size
- * We calculate
- * a[0]*b[0]
- * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
- * a[1]*b[1]
- */
-/* dnX may not be positive, but n2/2+dnX has to be */
-void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- int dna, int dnb, BN_ULONG *t)
-{
- int n = n2 / 2, c1, c2;
- int tna = n + dna, tnb = n + dnb;
- unsigned int neg, zero;
- BN_ULONG ln, lo, *p;
-
-# ifdef BN_COUNT
- fprintf(stderr, " bn_mul_recursive %d%+d * %d%+d\n", n2, dna, n2, dnb);
-# endif
-# ifdef BN_MUL_COMBA
-# if 0
- if (n2 == 4) {
- bn_mul_comba4(r, a, b);
- return;
- }
-# endif
- /*
- * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
- * [steve]
- */
- if (n2 == 8 && dna == 0 && dnb == 0) {
- bn_mul_comba8(r, a, b);
- return;
- }
-# endif /* BN_MUL_COMBA */
- /* Else do normal multiply */
- if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
- bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
- if ((dna + dnb) < 0)
- memset(&r[2 * n2 + dna + dnb], 0,
- sizeof(BN_ULONG) * -(dna + dnb));
- return;
- }
- /* r=(a[0]-a[1])*(b[1]-b[0]) */
- c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
- c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
- zero = neg = 0;
- switch (c1 * 3 + c2) {
- case -4:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- break;
- case -3:
- zero = 1;
- break;
- case -2:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
- neg = 1;
- break;
- case -1:
- case 0:
- case 1:
- zero = 1;
- break;
- case 2:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- neg = 1;
- break;
- case 3:
- zero = 1;
- break;
- case 4:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
- break;
- }
-
-# ifdef BN_MUL_COMBA
- if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
- * extra args to do this well */
- if (!zero)
- bn_mul_comba4(&(t[n2]), t, &(t[n]));
- else
- memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
-
- bn_mul_comba4(r, a, b);
- bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
- } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
- * take extra args to do
- * this well */
- if (!zero)
- bn_mul_comba8(&(t[n2]), t, &(t[n]));
- else
- memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
-
- bn_mul_comba8(r, a, b);
- bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
- } else
-# endif /* BN_MUL_COMBA */
- {
- p = &(t[n2 * 2]);
- if (!zero)
- bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
- else
- memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
- bn_mul_recursive(r, a, b, n, 0, 0, p);
- bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
- }
-
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- */
-
- c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
-
- if (neg) { /* if t[32] is negative */
- c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
- } else {
- /* Might have a carry */
- c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
- }
-
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- * c1 holds the carry bits
- */
- c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
- if (c1) {
- p = &(r[n + n2]);
- lo = *p;
- ln = (lo + c1) & BN_MASK2;
- *p = ln;
-
- /*
- * The overflow will stop before we over write words we should not
- * overwrite
- */
- if (ln < (BN_ULONG)c1) {
- do {
- p++;
- lo = *p;
- ln = (lo + 1) & BN_MASK2;
- *p = ln;
- } while (ln == 0);
- }
- }
-}
-
-/*
- * n+tn is the word length t needs to be n*4 is size, as does r
- */
-/* tnX may not be negative but less than n */
-void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
- int tna, int tnb, BN_ULONG *t)
-{
- int i, j, n2 = n * 2;
- int c1, c2, neg;
- BN_ULONG ln, lo, *p;
-
-# ifdef BN_COUNT
- fprintf(stderr, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
- n, tna, n, tnb);
-# endif
- if (n < 8) {
- bn_mul_normal(r, a, n + tna, b, n + tnb);
- return;
- }
-
- /* r=(a[0]-a[1])*(b[1]-b[0]) */
- c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
- c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
- neg = 0;
- switch (c1 * 3 + c2) {
- case -4:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- break;
- case -3:
- /* break; */
- case -2:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
- neg = 1;
- break;
- case -1:
- case 0:
- case 1:
- /* break; */
- case 2:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- neg = 1;
- break;
- case 3:
- /* break; */
- case 4:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
- break;
- }
- /*
- * The zero case isn't yet implemented here. The speedup would probably
- * be negligible.
- */
-# if 0
- if (n == 4) {
- bn_mul_comba4(&(t[n2]), t, &(t[n]));
- bn_mul_comba4(r, a, b);
- bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
- memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2));
- } else
-# endif
- if (n == 8) {
- bn_mul_comba8(&(t[n2]), t, &(t[n]));
- bn_mul_comba8(r, a, b);
- bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
- memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
- } else {
- p = &(t[n2 * 2]);
- bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
- bn_mul_recursive(r, a, b, n, 0, 0, p);
- i = n / 2;
- /*
- * If there is only a bottom half to the number, just do it
- */
- if (tna > tnb)
- j = tna - i;
- else
- j = tnb - i;
- if (j == 0) {
- bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));
- } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */
- bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- memset(&(r[n2 + tna + tnb]), 0,
- sizeof(BN_ULONG) * (n2 - tna - tnb));
- } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
-
- memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
- if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
- && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
- bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
- } else {
- for (;;) {
- i /= 2;
- /*
- * these simplified conditions work exclusively because
- * difference between tna and tnb is 1 or 0
- */
- if (i < tna || i < tnb) {
- bn_mul_part_recursive(&(r[n2]),
- &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- break;
- } else if (i == tna || i == tnb) {
- bn_mul_recursive(&(r[n2]),
- &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- break;
- }
- }
- }
- }
- }
-
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- */
-
- c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
-
- if (neg) { /* if t[32] is negative */
- c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
- } else {
- /* Might have a carry */
- c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
- }
-
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- * c1 holds the carry bits
- */
- c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
- if (c1) {
- p = &(r[n + n2]);
- lo = *p;
- ln = (lo + c1) & BN_MASK2;
- *p = ln;
-
- /*
- * The overflow will stop before we over write words we should not
- * overwrite
- */
- if (ln < (BN_ULONG)c1) {
- do {
- p++;
- lo = *p;
- ln = (lo + 1) & BN_MASK2;
- *p = ln;
- } while (ln == 0);
- }
- }
-}
-
-/*-
- * a and b must be the same size, which is n2.
- * r needs to be n2 words and t needs to be n2*2
- */
-void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- BN_ULONG *t)
-{
- int n = n2 / 2;
-
-# ifdef BN_COUNT
- fprintf(stderr, " bn_mul_low_recursive %d * %d\n", n2, n2);
-# endif
-
- bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
- if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
- bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- } else {
- bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
- bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
- }
-}
-
-/*-
- * a and b must be the same size, which is n2.
- * r needs to be n2 words and t needs to be n2*2
- * l is the low words of the output.
- * t needs to be n2*3
- */
-void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
- BN_ULONG *t)
-{
- int i, n;
- int c1, c2;
- int neg, oneg, zero;
- BN_ULONG ll, lc, *lp, *mp;
-
-# ifdef BN_COUNT
- fprintf(stderr, " bn_mul_high %d * %d\n", n2, n2);
-# endif
- n = n2 / 2;
-
- /* Calculate (al-ah)*(bh-bl) */
- neg = zero = 0;
- c1 = bn_cmp_words(&(a[0]), &(a[n]), n);
- c2 = bn_cmp_words(&(b[n]), &(b[0]), n);
- switch (c1 * 3 + c2) {
- case -4:
- bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
- bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
- break;
- case -3:
- zero = 1;
- break;
- case -2:
- bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
- bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
- neg = 1;
- break;
- case -1:
- case 0:
- case 1:
- zero = 1;
- break;
- case 2:
- bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
- bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
- neg = 1;
- break;
- case 3:
- zero = 1;
- break;
- case 4:
- bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
- bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
- break;
- }
-
- oneg = neg;
- /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
- /* r[10] = (a[1]*b[1]) */
-# ifdef BN_MUL_COMBA
- if (n == 8) {
- bn_mul_comba8(&(t[0]), &(r[0]), &(r[n]));
- bn_mul_comba8(r, &(a[n]), &(b[n]));
- } else
-# endif
- {
- bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2]));
- bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2]));
- }
-
- /*-
- * s0 == low(al*bl)
- * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
- * We know s0 and s1 so the only unknown is high(al*bl)
- * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
- * high(al*bl) == s1 - (r[0]+l[0]+t[0])
- */
- if (l != NULL) {
- lp = &(t[n2 + n]);
- c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n));
- } else {
- c1 = 0;
- lp = &(r[0]);
- }
-
- if (neg)
- neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n));
- else {
- bn_add_words(&(t[n2]), lp, &(t[0]), n);
- neg = 0;
- }
-
- if (l != NULL) {
- bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n);
- } else {
- lp = &(t[n2 + n]);
- mp = &(t[n2]);
- for (i = 0; i < n; i++)
- lp[i] = ((~mp[i]) + 1) & BN_MASK2;
- }
-
- /*-
- * s[0] = low(al*bl)
- * t[3] = high(al*bl)
- * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
- * r[10] = (a[1]*b[1])
- */
- /*-
- * R[10] = al*bl
- * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
- * R[32] = ah*bh
- */
- /*-
- * R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
- * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
- * R[3]=r[1]+(carry/borrow)
- */
- if (l != NULL) {
- lp = &(t[n2]);
- c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n));
- } else {
- lp = &(t[n2 + n]);
- c1 = 0;
- }
- c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n));
- if (oneg)
- c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n));
- else
- c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n));
-
- c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n));
- c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n));
- if (oneg)
- c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n));
- else
- c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n));
-
- if (c1 != 0) { /* Add starting at r[0], could be +ve or -ve */
- i = 0;
- if (c1 > 0) {
- lc = c1;
- do {
- ll = (r[i] + lc) & BN_MASK2;
- r[i++] = ll;
- lc = (lc > ll);
- } while (lc);
- } else {
- lc = -c1;
- do {
- ll = r[i];
- r[i++] = (ll - lc) & BN_MASK2;
- lc = (lc > ll);
- } while (lc);
- }
- }
- if (c2 != 0) { /* Add starting at r[1] */
- i = n;
- if (c2 > 0) {
- lc = c2;
- do {
- ll = (r[i] + lc) & BN_MASK2;
- r[i++] = ll;
- lc = (lc > ll);
- } while (lc);
- } else {
- lc = -c2;
- do {
- ll = r[i];
- r[i++] = (ll - lc) & BN_MASK2;
- lc = (lc > ll);
- } while (lc);
- }
- }
-}
-#endif /* BN_RECURSION */
-
-int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
-{
- int ret = 0;
- int top, al, bl;
- BIGNUM *rr;
-#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
- int i;
-#endif
-#ifdef BN_RECURSION
- BIGNUM *t = NULL;
- int j = 0, k;
-#endif
-
-#ifdef BN_COUNT
- fprintf(stderr, "BN_mul %d * %d\n", a->top, b->top);
-#endif
-
- bn_check_top(a);
- bn_check_top(b);
- bn_check_top(r);
-
- al = a->top;
- bl = b->top;
-
- if ((al == 0) || (bl == 0)) {
- BN_zero(r);
- return (1);
- }
- top = al + bl;
-
- BN_CTX_start(ctx);
- if ((r == a) || (r == b)) {
- if ((rr = BN_CTX_get(ctx)) == NULL)
- goto err;
- } else
- rr = r;
- rr->neg = a->neg ^ b->neg;
-
-#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
- i = al - bl;
-#endif
-#ifdef BN_MUL_COMBA
- if (i == 0) {
-# if 0
- if (al == 4) {
- if (bn_wexpand(rr, 8) == NULL)
- goto err;
- rr->top = 8;
- bn_mul_comba4(rr->d, a->d, b->d);
- goto end;
- }
-# endif
- if (al == 8) {
- if (bn_wexpand(rr, 16) == NULL)
- goto err;
- rr->top = 16;
- bn_mul_comba8(rr->d, a->d, b->d);
- goto end;
- }
- }
-#endif /* BN_MUL_COMBA */
-#ifdef BN_RECURSION
- if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
- if (i >= -1 && i <= 1) {
- /*
- * Find out the power of two lower or equal to the longest of the
- * two numbers
- */
- if (i >= 0) {
- j = BN_num_bits_word((BN_ULONG)al);
- }
- if (i == -1) {
- j = BN_num_bits_word((BN_ULONG)bl);
- }
- j = 1 << (j - 1);
- assert(j <= al || j <= bl);
- k = j + j;
- t = BN_CTX_get(ctx);
- if (t == NULL)
- goto err;
- if (al > j || bl > j) {
- if (bn_wexpand(t, k * 4) == NULL)
- goto err;
- if (bn_wexpand(rr, k * 4) == NULL)
- goto err;
- bn_mul_part_recursive(rr->d, a->d, b->d,
- j, al - j, bl - j, t->d);
- } else { /* al <= j || bl <= j */
-
- if (bn_wexpand(t, k * 2) == NULL)
- goto err;
- if (bn_wexpand(rr, k * 2) == NULL)
- goto err;
- bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
- }
- rr->top = top;
- goto end;
- }
- }
-#endif /* BN_RECURSION */
- if (bn_wexpand(rr, top) == NULL)
- goto err;
- rr->top = top;
- bn_mul_normal(rr->d, a->d, al, b->d, bl);
-
-#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
- end:
-#endif
- bn_correct_top(rr);
- if (r != rr && BN_copy(r, rr) == NULL)
- goto err;
-
- ret = 1;
- err:
- bn_check_top(r);
- BN_CTX_end(ctx);
- return (ret);
-}
-
-void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
-{
- BN_ULONG *rr;
-
-#ifdef BN_COUNT
- fprintf(stderr, " bn_mul_normal %d * %d\n", na, nb);
-#endif
-
- if (na < nb) {
- int itmp;
- BN_ULONG *ltmp;
-
- itmp = na;
- na = nb;
- nb = itmp;
- ltmp = a;
- a = b;
- b = ltmp;
-
- }
- rr = &(r[na]);
- if (nb <= 0) {
- (void)bn_mul_words(r, a, na, 0);
- return;
- } else
- rr[0] = bn_mul_words(r, a, na, b[0]);
-
- for (;;) {
- if (--nb <= 0)
- return;
- rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
- if (--nb <= 0)
- return;
- rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
- if (--nb <= 0)
- return;
- rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
- if (--nb <= 0)
- return;
- rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
- rr += 4;
- r += 4;
- b += 4;
- }
-}
-
-void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
-{
-#ifdef BN_COUNT
- fprintf(stderr, " bn_mul_low_normal %d * %d\n", n, n);
-#endif
- bn_mul_words(r, a, n, b[0]);
-
- for (;;) {
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[1]), a, n, b[1]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[2]), a, n, b[2]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[3]), a, n, b[3]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[4]), a, n, b[4]);
- r += 4;
- b += 4;
- }
-}