diff options
Diffstat (limited to 'thirdparty/openssl/crypto/bn/bn_mul.c')
-rw-r--r-- | thirdparty/openssl/crypto/bn/bn_mul.c | 1125 |
1 files changed, 0 insertions, 1125 deletions
diff --git a/thirdparty/openssl/crypto/bn/bn_mul.c b/thirdparty/openssl/crypto/bn/bn_mul.c deleted file mode 100644 index 6b455a755f..0000000000 --- a/thirdparty/openssl/crypto/bn/bn_mul.c +++ /dev/null @@ -1,1125 +0,0 @@ -/* crypto/bn/bn_mul.c */ -/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) - * All rights reserved. - * - * This package is an SSL implementation written - * by Eric Young (eay@cryptsoft.com). - * The implementation was written so as to conform with Netscapes SSL. - * - * This library is free for commercial and non-commercial use as long as - * the following conditions are aheared to. The following conditions - * apply to all code found in this distribution, be it the RC4, RSA, - * lhash, DES, etc., code; not just the SSL code. The SSL documentation - * included with this distribution is covered by the same copyright terms - * except that the holder is Tim Hudson (tjh@cryptsoft.com). - * - * Copyright remains Eric Young's, and as such any Copyright notices in - * the code are not to be removed. - * If this package is used in a product, Eric Young should be given attribution - * as the author of the parts of the library used. - * This can be in the form of a textual message at program startup or - * in documentation (online or textual) provided with the package. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. All advertising materials mentioning features or use of this software - * must display the following acknowledgement: - * "This product includes cryptographic software written by - * Eric Young (eay@cryptsoft.com)" - * The word 'cryptographic' can be left out if the rouines from the library - * being used are not cryptographic related :-). - * 4. If you include any Windows specific code (or a derivative thereof) from - * the apps directory (application code) you must include an acknowledgement: - * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" - * - * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * The licence and distribution terms for any publically available version or - * derivative of this code cannot be changed. i.e. this code cannot simply be - * copied and put under another distribution licence - * [including the GNU Public Licence.] - */ - -#ifndef BN_DEBUG -# undef NDEBUG /* avoid conflicting definitions */ -# define NDEBUG -#endif - -#include <stdio.h> -#include <assert.h> -#include "cryptlib.h" -#include "bn_lcl.h" - -#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) -/* - * Here follows specialised variants of bn_add_words() and bn_sub_words(). - * They have the property performing operations on arrays of different sizes. - * The sizes of those arrays is expressed through cl, which is the common - * length ( basicall, min(len(a),len(b)) ), and dl, which is the delta - * between the two lengths, calculated as len(a)-len(b). All lengths are the - * number of BN_ULONGs... For the operations that require a result array as - * parameter, it must have the length cl+abs(dl). These functions should - * probably end up in bn_asm.c as soon as there are assembler counterparts - * for the systems that use assembler files. - */ - -BN_ULONG bn_sub_part_words(BN_ULONG *r, - const BN_ULONG *a, const BN_ULONG *b, - int cl, int dl) -{ - BN_ULONG c, t; - - assert(cl >= 0); - c = bn_sub_words(r, a, b, cl); - - if (dl == 0) - return c; - - r += cl; - a += cl; - b += cl; - - if (dl < 0) { -# ifdef BN_COUNT - fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, - dl, c); -# endif - for (;;) { - t = b[0]; - r[0] = (0 - t - c) & BN_MASK2; - if (t != 0) - c = 1; - if (++dl >= 0) - break; - - t = b[1]; - r[1] = (0 - t - c) & BN_MASK2; - if (t != 0) - c = 1; - if (++dl >= 0) - break; - - t = b[2]; - r[2] = (0 - t - c) & BN_MASK2; - if (t != 0) - c = 1; - if (++dl >= 0) - break; - - t = b[3]; - r[3] = (0 - t - c) & BN_MASK2; - if (t != 0) - c = 1; - if (++dl >= 0) - break; - - b += 4; - r += 4; - } - } else { - int save_dl = dl; -# ifdef BN_COUNT - fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, - dl, c); -# endif - while (c) { - t = a[0]; - r[0] = (t - c) & BN_MASK2; - if (t != 0) - c = 0; - if (--dl <= 0) - break; - - t = a[1]; - r[1] = (t - c) & BN_MASK2; - if (t != 0) - c = 0; - if (--dl <= 0) - break; - - t = a[2]; - r[2] = (t - c) & BN_MASK2; - if (t != 0) - c = 0; - if (--dl <= 0) - break; - - t = a[3]; - r[3] = (t - c) & BN_MASK2; - if (t != 0) - c = 0; - if (--dl <= 0) - break; - - save_dl = dl; - a += 4; - r += 4; - } - if (dl > 0) { -# ifdef BN_COUNT - fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", - cl, dl); -# endif - if (save_dl > dl) { - switch (save_dl - dl) { - case 1: - r[1] = a[1]; - if (--dl <= 0) - break; - case 2: - r[2] = a[2]; - if (--dl <= 0) - break; - case 3: - r[3] = a[3]; - if (--dl <= 0) - break; - } - a += 4; - r += 4; - } - } - if (dl > 0) { -# ifdef BN_COUNT - fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", - cl, dl); -# endif - for (;;) { - r[0] = a[0]; - if (--dl <= 0) - break; - r[1] = a[1]; - if (--dl <= 0) - break; - r[2] = a[2]; - if (--dl <= 0) - break; - r[3] = a[3]; - if (--dl <= 0) - break; - - a += 4; - r += 4; - } - } - } - return c; -} -#endif - -BN_ULONG bn_add_part_words(BN_ULONG *r, - const BN_ULONG *a, const BN_ULONG *b, - int cl, int dl) -{ - BN_ULONG c, l, t; - - assert(cl >= 0); - c = bn_add_words(r, a, b, cl); - - if (dl == 0) - return c; - - r += cl; - a += cl; - b += cl; - - if (dl < 0) { - int save_dl = dl; -#ifdef BN_COUNT - fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, - dl, c); -#endif - while (c) { - l = (c + b[0]) & BN_MASK2; - c = (l < c); - r[0] = l; - if (++dl >= 0) - break; - - l = (c + b[1]) & BN_MASK2; - c = (l < c); - r[1] = l; - if (++dl >= 0) - break; - - l = (c + b[2]) & BN_MASK2; - c = (l < c); - r[2] = l; - if (++dl >= 0) - break; - - l = (c + b[3]) & BN_MASK2; - c = (l < c); - r[3] = l; - if (++dl >= 0) - break; - - save_dl = dl; - b += 4; - r += 4; - } - if (dl < 0) { -#ifdef BN_COUNT - fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", - cl, dl); -#endif - if (save_dl < dl) { - switch (dl - save_dl) { - case 1: - r[1] = b[1]; - if (++dl >= 0) - break; - case 2: - r[2] = b[2]; - if (++dl >= 0) - break; - case 3: - r[3] = b[3]; - if (++dl >= 0) - break; - } - b += 4; - r += 4; - } - } - if (dl < 0) { -#ifdef BN_COUNT - fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", - cl, dl); -#endif - for (;;) { - r[0] = b[0]; - if (++dl >= 0) - break; - r[1] = b[1]; - if (++dl >= 0) - break; - r[2] = b[2]; - if (++dl >= 0) - break; - r[3] = b[3]; - if (++dl >= 0) - break; - - b += 4; - r += 4; - } - } - } else { - int save_dl = dl; -#ifdef BN_COUNT - fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl); -#endif - while (c) { - t = (a[0] + c) & BN_MASK2; - c = (t < c); - r[0] = t; - if (--dl <= 0) - break; - - t = (a[1] + c) & BN_MASK2; - c = (t < c); - r[1] = t; - if (--dl <= 0) - break; - - t = (a[2] + c) & BN_MASK2; - c = (t < c); - r[2] = t; - if (--dl <= 0) - break; - - t = (a[3] + c) & BN_MASK2; - c = (t < c); - r[3] = t; - if (--dl <= 0) - break; - - save_dl = dl; - a += 4; - r += 4; - } -#ifdef BN_COUNT - fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, - dl); -#endif - if (dl > 0) { - if (save_dl > dl) { - switch (save_dl - dl) { - case 1: - r[1] = a[1]; - if (--dl <= 0) - break; - case 2: - r[2] = a[2]; - if (--dl <= 0) - break; - case 3: - r[3] = a[3]; - if (--dl <= 0) - break; - } - a += 4; - r += 4; - } - } - if (dl > 0) { -#ifdef BN_COUNT - fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", - cl, dl); -#endif - for (;;) { - r[0] = a[0]; - if (--dl <= 0) - break; - r[1] = a[1]; - if (--dl <= 0) - break; - r[2] = a[2]; - if (--dl <= 0) - break; - r[3] = a[3]; - if (--dl <= 0) - break; - - a += 4; - r += 4; - } - } - } - return c; -} - -#ifdef BN_RECURSION -/* - * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of - * Computer Programming, Vol. 2) - */ - -/*- - * r is 2*n2 words in size, - * a and b are both n2 words in size. - * n2 must be a power of 2. - * We multiply and return the result. - * t must be 2*n2 words in size - * We calculate - * a[0]*b[0] - * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) - * a[1]*b[1] - */ -/* dnX may not be positive, but n2/2+dnX has to be */ -void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, - int dna, int dnb, BN_ULONG *t) -{ - int n = n2 / 2, c1, c2; - int tna = n + dna, tnb = n + dnb; - unsigned int neg, zero; - BN_ULONG ln, lo, *p; - -# ifdef BN_COUNT - fprintf(stderr, " bn_mul_recursive %d%+d * %d%+d\n", n2, dna, n2, dnb); -# endif -# ifdef BN_MUL_COMBA -# if 0 - if (n2 == 4) { - bn_mul_comba4(r, a, b); - return; - } -# endif - /* - * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete - * [steve] - */ - if (n2 == 8 && dna == 0 && dnb == 0) { - bn_mul_comba8(r, a, b); - return; - } -# endif /* BN_MUL_COMBA */ - /* Else do normal multiply */ - if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { - bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); - if ((dna + dnb) < 0) - memset(&r[2 * n2 + dna + dnb], 0, - sizeof(BN_ULONG) * -(dna + dnb)); - return; - } - /* r=(a[0]-a[1])*(b[1]-b[0]) */ - c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); - c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); - zero = neg = 0; - switch (c1 * 3 + c2) { - case -4: - bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ - bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ - break; - case -3: - zero = 1; - break; - case -2: - bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ - bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ - neg = 1; - break; - case -1: - case 0: - case 1: - zero = 1; - break; - case 2: - bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ - bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ - neg = 1; - break; - case 3: - zero = 1; - break; - case 4: - bn_sub_part_words(t, a, &(a[n]), tna, n - tna); - bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); - break; - } - -# ifdef BN_MUL_COMBA - if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take - * extra args to do this well */ - if (!zero) - bn_mul_comba4(&(t[n2]), t, &(t[n])); - else - memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); - - bn_mul_comba4(r, a, b); - bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); - } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could - * take extra args to do - * this well */ - if (!zero) - bn_mul_comba8(&(t[n2]), t, &(t[n])); - else - memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); - - bn_mul_comba8(r, a, b); - bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); - } else -# endif /* BN_MUL_COMBA */ - { - p = &(t[n2 * 2]); - if (!zero) - bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); - else - memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); - bn_mul_recursive(r, a, b, n, 0, 0, p); - bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); - } - - /*- - * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign - * r[10] holds (a[0]*b[0]) - * r[32] holds (b[1]*b[1]) - */ - - c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); - - if (neg) { /* if t[32] is negative */ - c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); - } else { - /* Might have a carry */ - c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); - } - - /*- - * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) - * r[10] holds (a[0]*b[0]) - * r[32] holds (b[1]*b[1]) - * c1 holds the carry bits - */ - c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); - if (c1) { - p = &(r[n + n2]); - lo = *p; - ln = (lo + c1) & BN_MASK2; - *p = ln; - - /* - * The overflow will stop before we over write words we should not - * overwrite - */ - if (ln < (BN_ULONG)c1) { - do { - p++; - lo = *p; - ln = (lo + 1) & BN_MASK2; - *p = ln; - } while (ln == 0); - } - } -} - -/* - * n+tn is the word length t needs to be n*4 is size, as does r - */ -/* tnX may not be negative but less than n */ -void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, - int tna, int tnb, BN_ULONG *t) -{ - int i, j, n2 = n * 2; - int c1, c2, neg; - BN_ULONG ln, lo, *p; - -# ifdef BN_COUNT - fprintf(stderr, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n", - n, tna, n, tnb); -# endif - if (n < 8) { - bn_mul_normal(r, a, n + tna, b, n + tnb); - return; - } - - /* r=(a[0]-a[1])*(b[1]-b[0]) */ - c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); - c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); - neg = 0; - switch (c1 * 3 + c2) { - case -4: - bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ - bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ - break; - case -3: - /* break; */ - case -2: - bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ - bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ - neg = 1; - break; - case -1: - case 0: - case 1: - /* break; */ - case 2: - bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ - bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ - neg = 1; - break; - case 3: - /* break; */ - case 4: - bn_sub_part_words(t, a, &(a[n]), tna, n - tna); - bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); - break; - } - /* - * The zero case isn't yet implemented here. The speedup would probably - * be negligible. - */ -# if 0 - if (n == 4) { - bn_mul_comba4(&(t[n2]), t, &(t[n])); - bn_mul_comba4(r, a, b); - bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); - memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); - } else -# endif - if (n == 8) { - bn_mul_comba8(&(t[n2]), t, &(t[n])); - bn_mul_comba8(r, a, b); - bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); - memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); - } else { - p = &(t[n2 * 2]); - bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); - bn_mul_recursive(r, a, b, n, 0, 0, p); - i = n / 2; - /* - * If there is only a bottom half to the number, just do it - */ - if (tna > tnb) - j = tna - i; - else - j = tnb - i; - if (j == 0) { - bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), - i, tna - i, tnb - i, p); - memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2)); - } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */ - bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), - i, tna - i, tnb - i, p); - memset(&(r[n2 + tna + tnb]), 0, - sizeof(BN_ULONG) * (n2 - tna - tnb)); - } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ - - memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); - if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL - && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { - bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); - } else { - for (;;) { - i /= 2; - /* - * these simplified conditions work exclusively because - * difference between tna and tnb is 1 or 0 - */ - if (i < tna || i < tnb) { - bn_mul_part_recursive(&(r[n2]), - &(a[n]), &(b[n]), - i, tna - i, tnb - i, p); - break; - } else if (i == tna || i == tnb) { - bn_mul_recursive(&(r[n2]), - &(a[n]), &(b[n]), - i, tna - i, tnb - i, p); - break; - } - } - } - } - } - - /*- - * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign - * r[10] holds (a[0]*b[0]) - * r[32] holds (b[1]*b[1]) - */ - - c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); - - if (neg) { /* if t[32] is negative */ - c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); - } else { - /* Might have a carry */ - c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); - } - - /*- - * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) - * r[10] holds (a[0]*b[0]) - * r[32] holds (b[1]*b[1]) - * c1 holds the carry bits - */ - c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); - if (c1) { - p = &(r[n + n2]); - lo = *p; - ln = (lo + c1) & BN_MASK2; - *p = ln; - - /* - * The overflow will stop before we over write words we should not - * overwrite - */ - if (ln < (BN_ULONG)c1) { - do { - p++; - lo = *p; - ln = (lo + 1) & BN_MASK2; - *p = ln; - } while (ln == 0); - } - } -} - -/*- - * a and b must be the same size, which is n2. - * r needs to be n2 words and t needs to be n2*2 - */ -void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, - BN_ULONG *t) -{ - int n = n2 / 2; - -# ifdef BN_COUNT - fprintf(stderr, " bn_mul_low_recursive %d * %d\n", n2, n2); -# endif - - bn_mul_recursive(r, a, b, n, 0, 0, &(t[0])); - if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { - bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); - bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); - bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); - bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); - } else { - bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); - bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); - bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); - bn_add_words(&(r[n]), &(r[n]), &(t[n]), n); - } -} - -/*- - * a and b must be the same size, which is n2. - * r needs to be n2 words and t needs to be n2*2 - * l is the low words of the output. - * t needs to be n2*3 - */ -void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, - BN_ULONG *t) -{ - int i, n; - int c1, c2; - int neg, oneg, zero; - BN_ULONG ll, lc, *lp, *mp; - -# ifdef BN_COUNT - fprintf(stderr, " bn_mul_high %d * %d\n", n2, n2); -# endif - n = n2 / 2; - - /* Calculate (al-ah)*(bh-bl) */ - neg = zero = 0; - c1 = bn_cmp_words(&(a[0]), &(a[n]), n); - c2 = bn_cmp_words(&(b[n]), &(b[0]), n); - switch (c1 * 3 + c2) { - case -4: - bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); - bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); - break; - case -3: - zero = 1; - break; - case -2: - bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); - bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); - neg = 1; - break; - case -1: - case 0: - case 1: - zero = 1; - break; - case 2: - bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); - bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); - neg = 1; - break; - case 3: - zero = 1; - break; - case 4: - bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); - bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); - break; - } - - oneg = neg; - /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ - /* r[10] = (a[1]*b[1]) */ -# ifdef BN_MUL_COMBA - if (n == 8) { - bn_mul_comba8(&(t[0]), &(r[0]), &(r[n])); - bn_mul_comba8(r, &(a[n]), &(b[n])); - } else -# endif - { - bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2])); - bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2])); - } - - /*- - * s0 == low(al*bl) - * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) - * We know s0 and s1 so the only unknown is high(al*bl) - * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) - * high(al*bl) == s1 - (r[0]+l[0]+t[0]) - */ - if (l != NULL) { - lp = &(t[n2 + n]); - c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n)); - } else { - c1 = 0; - lp = &(r[0]); - } - - if (neg) - neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n)); - else { - bn_add_words(&(t[n2]), lp, &(t[0]), n); - neg = 0; - } - - if (l != NULL) { - bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n); - } else { - lp = &(t[n2 + n]); - mp = &(t[n2]); - for (i = 0; i < n; i++) - lp[i] = ((~mp[i]) + 1) & BN_MASK2; - } - - /*- - * s[0] = low(al*bl) - * t[3] = high(al*bl) - * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign - * r[10] = (a[1]*b[1]) - */ - /*- - * R[10] = al*bl - * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) - * R[32] = ah*bh - */ - /*- - * R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) - * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) - * R[3]=r[1]+(carry/borrow) - */ - if (l != NULL) { - lp = &(t[n2]); - c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n)); - } else { - lp = &(t[n2 + n]); - c1 = 0; - } - c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n)); - if (oneg) - c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n)); - else - c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n)); - - c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n)); - c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n)); - if (oneg) - c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n)); - else - c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n)); - - if (c1 != 0) { /* Add starting at r[0], could be +ve or -ve */ - i = 0; - if (c1 > 0) { - lc = c1; - do { - ll = (r[i] + lc) & BN_MASK2; - r[i++] = ll; - lc = (lc > ll); - } while (lc); - } else { - lc = -c1; - do { - ll = r[i]; - r[i++] = (ll - lc) & BN_MASK2; - lc = (lc > ll); - } while (lc); - } - } - if (c2 != 0) { /* Add starting at r[1] */ - i = n; - if (c2 > 0) { - lc = c2; - do { - ll = (r[i] + lc) & BN_MASK2; - r[i++] = ll; - lc = (lc > ll); - } while (lc); - } else { - lc = -c2; - do { - ll = r[i]; - r[i++] = (ll - lc) & BN_MASK2; - lc = (lc > ll); - } while (lc); - } - } -} -#endif /* BN_RECURSION */ - -int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) -{ - int ret = 0; - int top, al, bl; - BIGNUM *rr; -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) - int i; -#endif -#ifdef BN_RECURSION - BIGNUM *t = NULL; - int j = 0, k; -#endif - -#ifdef BN_COUNT - fprintf(stderr, "BN_mul %d * %d\n", a->top, b->top); -#endif - - bn_check_top(a); - bn_check_top(b); - bn_check_top(r); - - al = a->top; - bl = b->top; - - if ((al == 0) || (bl == 0)) { - BN_zero(r); - return (1); - } - top = al + bl; - - BN_CTX_start(ctx); - if ((r == a) || (r == b)) { - if ((rr = BN_CTX_get(ctx)) == NULL) - goto err; - } else - rr = r; - rr->neg = a->neg ^ b->neg; - -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) - i = al - bl; -#endif -#ifdef BN_MUL_COMBA - if (i == 0) { -# if 0 - if (al == 4) { - if (bn_wexpand(rr, 8) == NULL) - goto err; - rr->top = 8; - bn_mul_comba4(rr->d, a->d, b->d); - goto end; - } -# endif - if (al == 8) { - if (bn_wexpand(rr, 16) == NULL) - goto err; - rr->top = 16; - bn_mul_comba8(rr->d, a->d, b->d); - goto end; - } - } -#endif /* BN_MUL_COMBA */ -#ifdef BN_RECURSION - if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { - if (i >= -1 && i <= 1) { - /* - * Find out the power of two lower or equal to the longest of the - * two numbers - */ - if (i >= 0) { - j = BN_num_bits_word((BN_ULONG)al); - } - if (i == -1) { - j = BN_num_bits_word((BN_ULONG)bl); - } - j = 1 << (j - 1); - assert(j <= al || j <= bl); - k = j + j; - t = BN_CTX_get(ctx); - if (t == NULL) - goto err; - if (al > j || bl > j) { - if (bn_wexpand(t, k * 4) == NULL) - goto err; - if (bn_wexpand(rr, k * 4) == NULL) - goto err; - bn_mul_part_recursive(rr->d, a->d, b->d, - j, al - j, bl - j, t->d); - } else { /* al <= j || bl <= j */ - - if (bn_wexpand(t, k * 2) == NULL) - goto err; - if (bn_wexpand(rr, k * 2) == NULL) - goto err; - bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); - } - rr->top = top; - goto end; - } - } -#endif /* BN_RECURSION */ - if (bn_wexpand(rr, top) == NULL) - goto err; - rr->top = top; - bn_mul_normal(rr->d, a->d, al, b->d, bl); - -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) - end: -#endif - bn_correct_top(rr); - if (r != rr && BN_copy(r, rr) == NULL) - goto err; - - ret = 1; - err: - bn_check_top(r); - BN_CTX_end(ctx); - return (ret); -} - -void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) -{ - BN_ULONG *rr; - -#ifdef BN_COUNT - fprintf(stderr, " bn_mul_normal %d * %d\n", na, nb); -#endif - - if (na < nb) { - int itmp; - BN_ULONG *ltmp; - - itmp = na; - na = nb; - nb = itmp; - ltmp = a; - a = b; - b = ltmp; - - } - rr = &(r[na]); - if (nb <= 0) { - (void)bn_mul_words(r, a, na, 0); - return; - } else - rr[0] = bn_mul_words(r, a, na, b[0]); - - for (;;) { - if (--nb <= 0) - return; - rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); - if (--nb <= 0) - return; - rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); - if (--nb <= 0) - return; - rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); - if (--nb <= 0) - return; - rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); - rr += 4; - r += 4; - b += 4; - } -} - -void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) -{ -#ifdef BN_COUNT - fprintf(stderr, " bn_mul_low_normal %d * %d\n", n, n); -#endif - bn_mul_words(r, a, n, b[0]); - - for (;;) { - if (--n <= 0) - return; - bn_mul_add_words(&(r[1]), a, n, b[1]); - if (--n <= 0) - return; - bn_mul_add_words(&(r[2]), a, n, b[2]); - if (--n <= 0) - return; - bn_mul_add_words(&(r[3]), a, n, b[3]); - if (--n <= 0) - return; - bn_mul_add_words(&(r[4]), a, n, b[4]); - r += 4; - b += 4; - } -} |