diff options
Diffstat (limited to 'thirdparty/openssl/crypto/bn/bn_gcd.c')
-rw-r--r-- | thirdparty/openssl/crypto/bn/bn_gcd.c | 702 |
1 files changed, 0 insertions, 702 deletions
diff --git a/thirdparty/openssl/crypto/bn/bn_gcd.c b/thirdparty/openssl/crypto/bn/bn_gcd.c deleted file mode 100644 index ce59fe701f..0000000000 --- a/thirdparty/openssl/crypto/bn/bn_gcd.c +++ /dev/null @@ -1,702 +0,0 @@ -/* crypto/bn/bn_gcd.c */ -/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) - * All rights reserved. - * - * This package is an SSL implementation written - * by Eric Young (eay@cryptsoft.com). - * The implementation was written so as to conform with Netscapes SSL. - * - * This library is free for commercial and non-commercial use as long as - * the following conditions are aheared to. The following conditions - * apply to all code found in this distribution, be it the RC4, RSA, - * lhash, DES, etc., code; not just the SSL code. The SSL documentation - * included with this distribution is covered by the same copyright terms - * except that the holder is Tim Hudson (tjh@cryptsoft.com). - * - * Copyright remains Eric Young's, and as such any Copyright notices in - * the code are not to be removed. - * If this package is used in a product, Eric Young should be given attribution - * as the author of the parts of the library used. - * This can be in the form of a textual message at program startup or - * in documentation (online or textual) provided with the package. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. All advertising materials mentioning features or use of this software - * must display the following acknowledgement: - * "This product includes cryptographic software written by - * Eric Young (eay@cryptsoft.com)" - * The word 'cryptographic' can be left out if the rouines from the library - * being used are not cryptographic related :-). - * 4. If you include any Windows specific code (or a derivative thereof) from - * the apps directory (application code) you must include an acknowledgement: - * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" - * - * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * The licence and distribution terms for any publically available version or - * derivative of this code cannot be changed. i.e. this code cannot simply be - * copied and put under another distribution licence - * [including the GNU Public Licence.] - */ -/* ==================================================================== - * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * 3. All advertising materials mentioning features or use of this - * software must display the following acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" - * - * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to - * endorse or promote products derived from this software without - * prior written permission. For written permission, please contact - * openssl-core@openssl.org. - * - * 5. Products derived from this software may not be called "OpenSSL" - * nor may "OpenSSL" appear in their names without prior written - * permission of the OpenSSL Project. - * - * 6. Redistributions of any form whatsoever must retain the following - * acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit (http://www.openssl.org/)" - * - * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY - * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED - * OF THE POSSIBILITY OF SUCH DAMAGE. - * ==================================================================== - * - * This product includes cryptographic software written by Eric Young - * (eay@cryptsoft.com). This product includes software written by Tim - * Hudson (tjh@cryptsoft.com). - * - */ - -#include "cryptlib.h" -#include "bn_lcl.h" - -static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); - -int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) -{ - BIGNUM *a, *b, *t; - int ret = 0; - - bn_check_top(in_a); - bn_check_top(in_b); - - BN_CTX_start(ctx); - a = BN_CTX_get(ctx); - b = BN_CTX_get(ctx); - if (a == NULL || b == NULL) - goto err; - - if (BN_copy(a, in_a) == NULL) - goto err; - if (BN_copy(b, in_b) == NULL) - goto err; - a->neg = 0; - b->neg = 0; - - if (BN_cmp(a, b) < 0) { - t = a; - a = b; - b = t; - } - t = euclid(a, b); - if (t == NULL) - goto err; - - if (BN_copy(r, t) == NULL) - goto err; - ret = 1; - err: - BN_CTX_end(ctx); - bn_check_top(r); - return (ret); -} - -static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) -{ - BIGNUM *t; - int shifts = 0; - - bn_check_top(a); - bn_check_top(b); - - /* 0 <= b <= a */ - while (!BN_is_zero(b)) { - /* 0 < b <= a */ - - if (BN_is_odd(a)) { - if (BN_is_odd(b)) { - if (!BN_sub(a, a, b)) - goto err; - if (!BN_rshift1(a, a)) - goto err; - if (BN_cmp(a, b) < 0) { - t = a; - a = b; - b = t; - } - } else { /* a odd - b even */ - - if (!BN_rshift1(b, b)) - goto err; - if (BN_cmp(a, b) < 0) { - t = a; - a = b; - b = t; - } - } - } else { /* a is even */ - - if (BN_is_odd(b)) { - if (!BN_rshift1(a, a)) - goto err; - if (BN_cmp(a, b) < 0) { - t = a; - a = b; - b = t; - } - } else { /* a even - b even */ - - if (!BN_rshift1(a, a)) - goto err; - if (!BN_rshift1(b, b)) - goto err; - shifts++; - } - } - /* 0 <= b <= a */ - } - - if (shifts) { - if (!BN_lshift(a, a, shifts)) - goto err; - } - bn_check_top(a); - return (a); - err: - return (NULL); -} - -/* solves ax == 1 (mod n) */ -static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, - const BIGNUM *a, const BIGNUM *n, - BN_CTX *ctx); - -BIGNUM *BN_mod_inverse(BIGNUM *in, - const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) -{ - BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; - BIGNUM *ret = NULL; - int sign; - - if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) - || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { - return BN_mod_inverse_no_branch(in, a, n, ctx); - } - - bn_check_top(a); - bn_check_top(n); - - BN_CTX_start(ctx); - A = BN_CTX_get(ctx); - B = BN_CTX_get(ctx); - X = BN_CTX_get(ctx); - D = BN_CTX_get(ctx); - M = BN_CTX_get(ctx); - Y = BN_CTX_get(ctx); - T = BN_CTX_get(ctx); - if (T == NULL) - goto err; - - if (in == NULL) - R = BN_new(); - else - R = in; - if (R == NULL) - goto err; - - BN_one(X); - BN_zero(Y); - if (BN_copy(B, a) == NULL) - goto err; - if (BN_copy(A, n) == NULL) - goto err; - A->neg = 0; - if (B->neg || (BN_ucmp(B, A) >= 0)) { - if (!BN_nnmod(B, B, A, ctx)) - goto err; - } - sign = -1; - /*- - * From B = a mod |n|, A = |n| it follows that - * - * 0 <= B < A, - * -sign*X*a == B (mod |n|), - * sign*Y*a == A (mod |n|). - */ - - if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) { - /* - * Binary inversion algorithm; requires odd modulus. This is faster - * than the general algorithm if the modulus is sufficiently small - * (about 400 .. 500 bits on 32-bit sytems, but much more on 64-bit - * systems) - */ - int shift; - - while (!BN_is_zero(B)) { - /*- - * 0 < B < |n|, - * 0 < A <= |n|, - * (1) -sign*X*a == B (mod |n|), - * (2) sign*Y*a == A (mod |n|) - */ - - /* - * Now divide B by the maximum possible power of two in the - * integers, and divide X by the same value mod |n|. When we're - * done, (1) still holds. - */ - shift = 0; - while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ - shift++; - - if (BN_is_odd(X)) { - if (!BN_uadd(X, X, n)) - goto err; - } - /* - * now X is even, so we can easily divide it by two - */ - if (!BN_rshift1(X, X)) - goto err; - } - if (shift > 0) { - if (!BN_rshift(B, B, shift)) - goto err; - } - - /* - * Same for A and Y. Afterwards, (2) still holds. - */ - shift = 0; - while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ - shift++; - - if (BN_is_odd(Y)) { - if (!BN_uadd(Y, Y, n)) - goto err; - } - /* now Y is even */ - if (!BN_rshift1(Y, Y)) - goto err; - } - if (shift > 0) { - if (!BN_rshift(A, A, shift)) - goto err; - } - - /*- - * We still have (1) and (2). - * Both A and B are odd. - * The following computations ensure that - * - * 0 <= B < |n|, - * 0 < A < |n|, - * (1) -sign*X*a == B (mod |n|), - * (2) sign*Y*a == A (mod |n|), - * - * and that either A or B is even in the next iteration. - */ - if (BN_ucmp(B, A) >= 0) { - /* -sign*(X + Y)*a == B - A (mod |n|) */ - if (!BN_uadd(X, X, Y)) - goto err; - /* - * NB: we could use BN_mod_add_quick(X, X, Y, n), but that - * actually makes the algorithm slower - */ - if (!BN_usub(B, B, A)) - goto err; - } else { - /* sign*(X + Y)*a == A - B (mod |n|) */ - if (!BN_uadd(Y, Y, X)) - goto err; - /* - * as above, BN_mod_add_quick(Y, Y, X, n) would slow things - * down - */ - if (!BN_usub(A, A, B)) - goto err; - } - } - } else { - /* general inversion algorithm */ - - while (!BN_is_zero(B)) { - BIGNUM *tmp; - - /*- - * 0 < B < A, - * (*) -sign*X*a == B (mod |n|), - * sign*Y*a == A (mod |n|) - */ - - /* (D, M) := (A/B, A%B) ... */ - if (BN_num_bits(A) == BN_num_bits(B)) { - if (!BN_one(D)) - goto err; - if (!BN_sub(M, A, B)) - goto err; - } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { - /* A/B is 1, 2, or 3 */ - if (!BN_lshift1(T, B)) - goto err; - if (BN_ucmp(A, T) < 0) { - /* A < 2*B, so D=1 */ - if (!BN_one(D)) - goto err; - if (!BN_sub(M, A, B)) - goto err; - } else { - /* A >= 2*B, so D=2 or D=3 */ - if (!BN_sub(M, A, T)) - goto err; - if (!BN_add(D, T, B)) - goto err; /* use D (:= 3*B) as temp */ - if (BN_ucmp(A, D) < 0) { - /* A < 3*B, so D=2 */ - if (!BN_set_word(D, 2)) - goto err; - /* - * M (= A - 2*B) already has the correct value - */ - } else { - /* only D=3 remains */ - if (!BN_set_word(D, 3)) - goto err; - /* - * currently M = A - 2*B, but we need M = A - 3*B - */ - if (!BN_sub(M, M, B)) - goto err; - } - } - } else { - if (!BN_div(D, M, A, B, ctx)) - goto err; - } - - /*- - * Now - * A = D*B + M; - * thus we have - * (**) sign*Y*a == D*B + M (mod |n|). - */ - - tmp = A; /* keep the BIGNUM object, the value does not - * matter */ - - /* (A, B) := (B, A mod B) ... */ - A = B; - B = M; - /* ... so we have 0 <= B < A again */ - - /*- - * Since the former M is now B and the former B is now A, - * (**) translates into - * sign*Y*a == D*A + B (mod |n|), - * i.e. - * sign*Y*a - D*A == B (mod |n|). - * Similarly, (*) translates into - * -sign*X*a == A (mod |n|). - * - * Thus, - * sign*Y*a + D*sign*X*a == B (mod |n|), - * i.e. - * sign*(Y + D*X)*a == B (mod |n|). - * - * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at - * -sign*X*a == B (mod |n|), - * sign*Y*a == A (mod |n|). - * Note that X and Y stay non-negative all the time. - */ - - /* - * most of the time D is very small, so we can optimize tmp := - * D*X+Y - */ - if (BN_is_one(D)) { - if (!BN_add(tmp, X, Y)) - goto err; - } else { - if (BN_is_word(D, 2)) { - if (!BN_lshift1(tmp, X)) - goto err; - } else if (BN_is_word(D, 4)) { - if (!BN_lshift(tmp, X, 2)) - goto err; - } else if (D->top == 1) { - if (!BN_copy(tmp, X)) - goto err; - if (!BN_mul_word(tmp, D->d[0])) - goto err; - } else { - if (!BN_mul(tmp, D, X, ctx)) - goto err; - } - if (!BN_add(tmp, tmp, Y)) - goto err; - } - - M = Y; /* keep the BIGNUM object, the value does not - * matter */ - Y = X; - X = tmp; - sign = -sign; - } - } - - /*- - * The while loop (Euclid's algorithm) ends when - * A == gcd(a,n); - * we have - * sign*Y*a == A (mod |n|), - * where Y is non-negative. - */ - - if (sign < 0) { - if (!BN_sub(Y, n, Y)) - goto err; - } - /* Now Y*a == A (mod |n|). */ - - if (BN_is_one(A)) { - /* Y*a == 1 (mod |n|) */ - if (!Y->neg && BN_ucmp(Y, n) < 0) { - if (!BN_copy(R, Y)) - goto err; - } else { - if (!BN_nnmod(R, Y, n, ctx)) - goto err; - } - } else { - BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE); - goto err; - } - ret = R; - err: - if ((ret == NULL) && (in == NULL)) - BN_free(R); - BN_CTX_end(ctx); - bn_check_top(ret); - return (ret); -} - -/* - * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does - * not contain branches that may leak sensitive information. - */ -static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, - const BIGNUM *a, const BIGNUM *n, - BN_CTX *ctx) -{ - BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; - BIGNUM local_A, local_B; - BIGNUM *pA, *pB; - BIGNUM *ret = NULL; - int sign; - - bn_check_top(a); - bn_check_top(n); - - BN_CTX_start(ctx); - A = BN_CTX_get(ctx); - B = BN_CTX_get(ctx); - X = BN_CTX_get(ctx); - D = BN_CTX_get(ctx); - M = BN_CTX_get(ctx); - Y = BN_CTX_get(ctx); - T = BN_CTX_get(ctx); - if (T == NULL) - goto err; - - if (in == NULL) - R = BN_new(); - else - R = in; - if (R == NULL) - goto err; - - BN_one(X); - BN_zero(Y); - if (BN_copy(B, a) == NULL) - goto err; - if (BN_copy(A, n) == NULL) - goto err; - A->neg = 0; - - if (B->neg || (BN_ucmp(B, A) >= 0)) { - /* - * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, - * BN_div_no_branch will be called eventually. - */ - pB = &local_B; - local_B.flags = 0; - BN_with_flags(pB, B, BN_FLG_CONSTTIME); - if (!BN_nnmod(B, pB, A, ctx)) - goto err; - } - sign = -1; - /*- - * From B = a mod |n|, A = |n| it follows that - * - * 0 <= B < A, - * -sign*X*a == B (mod |n|), - * sign*Y*a == A (mod |n|). - */ - - while (!BN_is_zero(B)) { - BIGNUM *tmp; - - /*- - * 0 < B < A, - * (*) -sign*X*a == B (mod |n|), - * sign*Y*a == A (mod |n|) - */ - - /* - * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, - * BN_div_no_branch will be called eventually. - */ - pA = &local_A; - local_A.flags = 0; - BN_with_flags(pA, A, BN_FLG_CONSTTIME); - - /* (D, M) := (A/B, A%B) ... */ - if (!BN_div(D, M, pA, B, ctx)) - goto err; - - /*- - * Now - * A = D*B + M; - * thus we have - * (**) sign*Y*a == D*B + M (mod |n|). - */ - - tmp = A; /* keep the BIGNUM object, the value does not - * matter */ - - /* (A, B) := (B, A mod B) ... */ - A = B; - B = M; - /* ... so we have 0 <= B < A again */ - - /*- - * Since the former M is now B and the former B is now A, - * (**) translates into - * sign*Y*a == D*A + B (mod |n|), - * i.e. - * sign*Y*a - D*A == B (mod |n|). - * Similarly, (*) translates into - * -sign*X*a == A (mod |n|). - * - * Thus, - * sign*Y*a + D*sign*X*a == B (mod |n|), - * i.e. - * sign*(Y + D*X)*a == B (mod |n|). - * - * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at - * -sign*X*a == B (mod |n|), - * sign*Y*a == A (mod |n|). - * Note that X and Y stay non-negative all the time. - */ - - if (!BN_mul(tmp, D, X, ctx)) - goto err; - if (!BN_add(tmp, tmp, Y)) - goto err; - - M = Y; /* keep the BIGNUM object, the value does not - * matter */ - Y = X; - X = tmp; - sign = -sign; - } - - /*- - * The while loop (Euclid's algorithm) ends when - * A == gcd(a,n); - * we have - * sign*Y*a == A (mod |n|), - * where Y is non-negative. - */ - - if (sign < 0) { - if (!BN_sub(Y, n, Y)) - goto err; - } - /* Now Y*a == A (mod |n|). */ - - if (BN_is_one(A)) { - /* Y*a == 1 (mod |n|) */ - if (!Y->neg && BN_ucmp(Y, n) < 0) { - if (!BN_copy(R, Y)) - goto err; - } else { - if (!BN_nnmod(R, Y, n, ctx)) - goto err; - } - } else { - BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE); - goto err; - } - ret = R; - err: - if ((ret == NULL) && (in == NULL)) - BN_free(R); - BN_CTX_end(ctx); - bn_check_top(ret); - return (ret); -} |