summaryrefslogtreecommitdiff
path: root/thirdparty/openssl/crypto/bn/bn_exp.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/openssl/crypto/bn/bn_exp.c')
-rw-r--r--thirdparty/openssl/crypto/bn/bn_exp.c1458
1 files changed, 0 insertions, 1458 deletions
diff --git a/thirdparty/openssl/crypto/bn/bn_exp.c b/thirdparty/openssl/crypto/bn/bn_exp.c
deleted file mode 100644
index 195a7867a4..0000000000
--- a/thirdparty/openssl/crypto/bn/bn_exp.c
+++ /dev/null
@@ -1,1458 +0,0 @@
-/* crypto/bn/bn_exp.c */
-/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
- * All rights reserved.
- *
- * This package is an SSL implementation written
- * by Eric Young (eay@cryptsoft.com).
- * The implementation was written so as to conform with Netscapes SSL.
- *
- * This library is free for commercial and non-commercial use as long as
- * the following conditions are aheared to. The following conditions
- * apply to all code found in this distribution, be it the RC4, RSA,
- * lhash, DES, etc., code; not just the SSL code. The SSL documentation
- * included with this distribution is covered by the same copyright terms
- * except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
- * Copyright remains Eric Young's, and as such any Copyright notices in
- * the code are not to be removed.
- * If this package is used in a product, Eric Young should be given attribution
- * as the author of the parts of the library used.
- * This can be in the form of a textual message at program startup or
- * in documentation (online or textual) provided with the package.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * "This product includes cryptographic software written by
- * Eric Young (eay@cryptsoft.com)"
- * The word 'cryptographic' can be left out if the rouines from the library
- * being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
- * the apps directory (application code) you must include an acknowledgement:
- * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
- * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * The licence and distribution terms for any publically available version or
- * derivative of this code cannot be changed. i.e. this code cannot simply be
- * copied and put under another distribution licence
- * [including the GNU Public Licence.]
- */
-/* ====================================================================
- * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
-
-#include "cryptlib.h"
-#include "constant_time_locl.h"
-#include "bn_lcl.h"
-
-#include <stdlib.h>
-#ifdef _WIN32
-# include <malloc.h>
-# ifndef alloca
-# define alloca _alloca
-# endif
-#elif defined(__GNUC__)
-# ifndef alloca
-# define alloca(s) __builtin_alloca((s))
-# endif
-#elif defined(__sun)
-# include <alloca.h>
-#endif
-
-#include "rsaz_exp.h"
-
-#undef SPARC_T4_MONT
-#if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
-# include "sparc_arch.h"
-extern unsigned int OPENSSL_sparcv9cap_P[];
-# define SPARC_T4_MONT
-#endif
-
-/* maximum precomputation table size for *variable* sliding windows */
-#define TABLE_SIZE 32
-
-/* this one works - simple but works */
-int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
-{
- int i, bits, ret = 0;
- BIGNUM *v, *rr;
-
- if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
- /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
- BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
- return -1;
- }
-
- BN_CTX_start(ctx);
- if ((r == a) || (r == p))
- rr = BN_CTX_get(ctx);
- else
- rr = r;
- v = BN_CTX_get(ctx);
- if (rr == NULL || v == NULL)
- goto err;
-
- if (BN_copy(v, a) == NULL)
- goto err;
- bits = BN_num_bits(p);
-
- if (BN_is_odd(p)) {
- if (BN_copy(rr, a) == NULL)
- goto err;
- } else {
- if (!BN_one(rr))
- goto err;
- }
-
- for (i = 1; i < bits; i++) {
- if (!BN_sqr(v, v, ctx))
- goto err;
- if (BN_is_bit_set(p, i)) {
- if (!BN_mul(rr, rr, v, ctx))
- goto err;
- }
- }
- if (r != rr && BN_copy(r, rr) == NULL)
- goto err;
-
- ret = 1;
- err:
- BN_CTX_end(ctx);
- bn_check_top(r);
- return (ret);
-}
-
-int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
- BN_CTX *ctx)
-{
- int ret;
-
- bn_check_top(a);
- bn_check_top(p);
- bn_check_top(m);
-
- /*-
- * For even modulus m = 2^k*m_odd, it might make sense to compute
- * a^p mod m_odd and a^p mod 2^k separately (with Montgomery
- * exponentiation for the odd part), using appropriate exponent
- * reductions, and combine the results using the CRT.
- *
- * For now, we use Montgomery only if the modulus is odd; otherwise,
- * exponentiation using the reciprocal-based quick remaindering
- * algorithm is used.
- *
- * (Timing obtained with expspeed.c [computations a^p mod m
- * where a, p, m are of the same length: 256, 512, 1024, 2048,
- * 4096, 8192 bits], compared to the running time of the
- * standard algorithm:
- *
- * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration]
- * 55 .. 77 % [UltraSparc processor, but
- * debug-solaris-sparcv8-gcc conf.]
- *
- * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration]
- * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
- *
- * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
- * at 2048 and more bits, but at 512 and 1024 bits, it was
- * slower even than the standard algorithm!
- *
- * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
- * should be obtained when the new Montgomery reduction code
- * has been integrated into OpenSSL.)
- */
-
-#define MONT_MUL_MOD
-#define MONT_EXP_WORD
-#define RECP_MUL_MOD
-
-#ifdef MONT_MUL_MOD
- /*
- * I have finally been able to take out this pre-condition of the top bit
- * being set. It was caused by an error in BN_div with negatives. There
- * was also another problem when for a^b%m a >= m. eay 07-May-97
- */
- /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */
-
- if (BN_is_odd(m)) {
-# ifdef MONT_EXP_WORD
- if (a->top == 1 && !a->neg
- && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) {
- BN_ULONG A = a->d[0];
- ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
- } else
-# endif
- ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
- } else
-#endif
-#ifdef RECP_MUL_MOD
- {
- ret = BN_mod_exp_recp(r, a, p, m, ctx);
- }
-#else
- {
- ret = BN_mod_exp_simple(r, a, p, m, ctx);
- }
-#endif
-
- bn_check_top(r);
- return (ret);
-}
-
-int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx)
-{
- int i, j, bits, ret = 0, wstart, wend, window, wvalue;
- int start = 1;
- BIGNUM *aa;
- /* Table of variables obtained from 'ctx' */
- BIGNUM *val[TABLE_SIZE];
- BN_RECP_CTX recp;
-
- if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
- /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
- BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
- return -1;
- }
-
- bits = BN_num_bits(p);
- if (bits == 0) {
- /* x**0 mod 1 is still zero. */
- if (BN_is_one(m)) {
- ret = 1;
- BN_zero(r);
- } else {
- ret = BN_one(r);
- }
- return ret;
- }
-
- BN_CTX_start(ctx);
- aa = BN_CTX_get(ctx);
- val[0] = BN_CTX_get(ctx);
- if (!aa || !val[0])
- goto err;
-
- BN_RECP_CTX_init(&recp);
- if (m->neg) {
- /* ignore sign of 'm' */
- if (!BN_copy(aa, m))
- goto err;
- aa->neg = 0;
- if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
- goto err;
- } else {
- if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
- goto err;
- }
-
- if (!BN_nnmod(val[0], a, m, ctx))
- goto err; /* 1 */
- if (BN_is_zero(val[0])) {
- BN_zero(r);
- ret = 1;
- goto err;
- }
-
- window = BN_window_bits_for_exponent_size(bits);
- if (window > 1) {
- if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
- goto err; /* 2 */
- j = 1 << (window - 1);
- for (i = 1; i < j; i++) {
- if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
- !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
- goto err;
- }
- }
-
- start = 1; /* This is used to avoid multiplication etc
- * when there is only the value '1' in the
- * buffer. */
- wvalue = 0; /* The 'value' of the window */
- wstart = bits - 1; /* The top bit of the window */
- wend = 0; /* The bottom bit of the window */
-
- if (!BN_one(r))
- goto err;
-
- for (;;) {
- if (BN_is_bit_set(p, wstart) == 0) {
- if (!start)
- if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
- goto err;
- if (wstart == 0)
- break;
- wstart--;
- continue;
- }
- /*
- * We now have wstart on a 'set' bit, we now need to work out how bit
- * a window to do. To do this we need to scan forward until the last
- * set bit before the end of the window
- */
- j = wstart;
- wvalue = 1;
- wend = 0;
- for (i = 1; i < window; i++) {
- if (wstart - i < 0)
- break;
- if (BN_is_bit_set(p, wstart - i)) {
- wvalue <<= (i - wend);
- wvalue |= 1;
- wend = i;
- }
- }
-
- /* wend is the size of the current window */
- j = wend + 1;
- /* add the 'bytes above' */
- if (!start)
- for (i = 0; i < j; i++) {
- if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
- goto err;
- }
-
- /* wvalue will be an odd number < 2^window */
- if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
- goto err;
-
- /* move the 'window' down further */
- wstart -= wend + 1;
- wvalue = 0;
- start = 0;
- if (wstart < 0)
- break;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_RECP_CTX_free(&recp);
- bn_check_top(r);
- return (ret);
-}
-
-int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
-{
- int i, j, bits, ret = 0, wstart, wend, window, wvalue;
- int start = 1;
- BIGNUM *d, *r;
- const BIGNUM *aa;
- /* Table of variables obtained from 'ctx' */
- BIGNUM *val[TABLE_SIZE];
- BN_MONT_CTX *mont = NULL;
-
- if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
- return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
- }
-
- bn_check_top(a);
- bn_check_top(p);
- bn_check_top(m);
-
- if (!BN_is_odd(m)) {
- BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS);
- return (0);
- }
- bits = BN_num_bits(p);
- if (bits == 0) {
- /* x**0 mod 1 is still zero. */
- if (BN_is_one(m)) {
- ret = 1;
- BN_zero(rr);
- } else {
- ret = BN_one(rr);
- }
- return ret;
- }
-
- BN_CTX_start(ctx);
- d = BN_CTX_get(ctx);
- r = BN_CTX_get(ctx);
- val[0] = BN_CTX_get(ctx);
- if (!d || !r || !val[0])
- goto err;
-
- /*
- * If this is not done, things will break in the montgomery part
- */
-
- if (in_mont != NULL)
- mont = in_mont;
- else {
- if ((mont = BN_MONT_CTX_new()) == NULL)
- goto err;
- if (!BN_MONT_CTX_set(mont, m, ctx))
- goto err;
- }
-
- if (a->neg || BN_ucmp(a, m) >= 0) {
- if (!BN_nnmod(val[0], a, m, ctx))
- goto err;
- aa = val[0];
- } else
- aa = a;
- if (BN_is_zero(aa)) {
- BN_zero(rr);
- ret = 1;
- goto err;
- }
- if (!BN_to_montgomery(val[0], aa, mont, ctx))
- goto err; /* 1 */
-
- window = BN_window_bits_for_exponent_size(bits);
- if (window > 1) {
- if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx))
- goto err; /* 2 */
- j = 1 << (window - 1);
- for (i = 1; i < j; i++) {
- if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
- !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx))
- goto err;
- }
- }
-
- start = 1; /* This is used to avoid multiplication etc
- * when there is only the value '1' in the
- * buffer. */
- wvalue = 0; /* The 'value' of the window */
- wstart = bits - 1; /* The top bit of the window */
- wend = 0; /* The bottom bit of the window */
-
-#if 1 /* by Shay Gueron's suggestion */
- j = m->top; /* borrow j */
- if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
- if (bn_wexpand(r, j) == NULL)
- goto err;
- /* 2^(top*BN_BITS2) - m */
- r->d[0] = (0 - m->d[0]) & BN_MASK2;
- for (i = 1; i < j; i++)
- r->d[i] = (~m->d[i]) & BN_MASK2;
- r->top = j;
- /*
- * Upper words will be zero if the corresponding words of 'm' were
- * 0xfff[...], so decrement r->top accordingly.
- */
- bn_correct_top(r);
- } else
-#endif
- if (!BN_to_montgomery(r, BN_value_one(), mont, ctx))
- goto err;
- for (;;) {
- if (BN_is_bit_set(p, wstart) == 0) {
- if (!start) {
- if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
- goto err;
- }
- if (wstart == 0)
- break;
- wstart--;
- continue;
- }
- /*
- * We now have wstart on a 'set' bit, we now need to work out how bit
- * a window to do. To do this we need to scan forward until the last
- * set bit before the end of the window
- */
- j = wstart;
- wvalue = 1;
- wend = 0;
- for (i = 1; i < window; i++) {
- if (wstart - i < 0)
- break;
- if (BN_is_bit_set(p, wstart - i)) {
- wvalue <<= (i - wend);
- wvalue |= 1;
- wend = i;
- }
- }
-
- /* wend is the size of the current window */
- j = wend + 1;
- /* add the 'bytes above' */
- if (!start)
- for (i = 0; i < j; i++) {
- if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
- goto err;
- }
-
- /* wvalue will be an odd number < 2^window */
- if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx))
- goto err;
-
- /* move the 'window' down further */
- wstart -= wend + 1;
- wvalue = 0;
- start = 0;
- if (wstart < 0)
- break;
- }
-#if defined(SPARC_T4_MONT)
- if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
- j = mont->N.top; /* borrow j */
- val[0]->d[0] = 1; /* borrow val[0] */
- for (i = 1; i < j; i++)
- val[0]->d[i] = 0;
- val[0]->top = j;
- if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
- goto err;
- } else
-#endif
- if (!BN_from_montgomery(rr, r, mont, ctx))
- goto err;
- ret = 1;
- err:
- if ((in_mont == NULL) && (mont != NULL))
- BN_MONT_CTX_free(mont);
- BN_CTX_end(ctx);
- bn_check_top(rr);
- return (ret);
-}
-
-#if defined(SPARC_T4_MONT)
-static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
-{
- BN_ULONG ret = 0;
- int wordpos;
-
- wordpos = bitpos / BN_BITS2;
- bitpos %= BN_BITS2;
- if (wordpos >= 0 && wordpos < a->top) {
- ret = a->d[wordpos] & BN_MASK2;
- if (bitpos) {
- ret >>= bitpos;
- if (++wordpos < a->top)
- ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
- }
- }
-
- return ret & BN_MASK2;
-}
-#endif
-
-/*
- * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
- * layout so that accessing any of these table values shows the same access
- * pattern as far as cache lines are concerned. The following functions are
- * used to transfer a BIGNUM from/to that table.
- */
-
-static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
- unsigned char *buf, int idx,
- int window)
-{
- int i, j;
- int width = 1 << window;
- BN_ULONG *table = (BN_ULONG *)buf;
-
- if (top > b->top)
- top = b->top; /* this works because 'buf' is explicitly
- * zeroed */
- for (i = 0, j = idx; i < top; i++, j += width) {
- table[j] = b->d[i];
- }
-
- return 1;
-}
-
-static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
- unsigned char *buf, int idx,
- int window)
-{
- int i, j;
- int width = 1 << window;
- volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
-
- if (bn_wexpand(b, top) == NULL)
- return 0;
-
- if (window <= 3) {
- for (i = 0; i < top; i++, table += width) {
- BN_ULONG acc = 0;
-
- for (j = 0; j < width; j++) {
- acc |= table[j] &
- ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
- }
-
- b->d[i] = acc;
- }
- } else {
- int xstride = 1 << (window - 2);
- BN_ULONG y0, y1, y2, y3;
-
- i = idx >> (window - 2); /* equivalent of idx / xstride */
- idx &= xstride - 1; /* equivalent of idx % xstride */
-
- y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
- y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
- y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
- y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
-
- for (i = 0; i < top; i++, table += width) {
- BN_ULONG acc = 0;
-
- for (j = 0; j < xstride; j++) {
- acc |= ( (table[j + 0 * xstride] & y0) |
- (table[j + 1 * xstride] & y1) |
- (table[j + 2 * xstride] & y2) |
- (table[j + 3 * xstride] & y3) )
- & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
- }
-
- b->d[i] = acc;
- }
- }
-
- b->top = top;
- bn_correct_top(b);
- return 1;
-}
-
-/*
- * Given a pointer value, compute the next address that is a cache line
- * multiple.
- */
-#define MOD_EXP_CTIME_ALIGN(x_) \
- ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
-
-/*
- * This variant of BN_mod_exp_mont() uses fixed windows and the special
- * precomputation memory layout to limit data-dependency to a minimum to
- * protect secret exponents (cf. the hyper-threading timing attacks pointed
- * out by Colin Percival,
- * http://www.daemonology.net/hyperthreading-considered-harmful/)
- */
-int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx,
- BN_MONT_CTX *in_mont)
-{
- int i, bits, ret = 0, window, wvalue;
- int top;
- BN_MONT_CTX *mont = NULL;
-
- int numPowers;
- unsigned char *powerbufFree = NULL;
- int powerbufLen = 0;
- unsigned char *powerbuf = NULL;
- BIGNUM tmp, am;
-#if defined(SPARC_T4_MONT)
- unsigned int t4 = 0;
-#endif
-
- bn_check_top(a);
- bn_check_top(p);
- bn_check_top(m);
-
- if (!BN_is_odd(m)) {
- BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, BN_R_CALLED_WITH_EVEN_MODULUS);
- return (0);
- }
-
- top = m->top;
-
- bits = BN_num_bits(p);
- if (bits == 0) {
- /* x**0 mod 1 is still zero. */
- if (BN_is_one(m)) {
- ret = 1;
- BN_zero(rr);
- } else {
- ret = BN_one(rr);
- }
- return ret;
- }
-
- BN_CTX_start(ctx);
-
- /*
- * Allocate a montgomery context if it was not supplied by the caller. If
- * this is not done, things will break in the montgomery part.
- */
- if (in_mont != NULL)
- mont = in_mont;
- else {
- if ((mont = BN_MONT_CTX_new()) == NULL)
- goto err;
- if (!BN_MONT_CTX_set(mont, m, ctx))
- goto err;
- }
-
-#ifdef RSAZ_ENABLED
- /*
- * If the size of the operands allow it, perform the optimized
- * RSAZ exponentiation. For further information see
- * crypto/bn/rsaz_exp.c and accompanying assembly modules.
- */
- if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
- && rsaz_avx2_eligible()) {
- if (NULL == bn_wexpand(rr, 16))
- goto err;
- RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
- mont->n0[0]);
- rr->top = 16;
- rr->neg = 0;
- bn_correct_top(rr);
- ret = 1;
- goto err;
- } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
- if (NULL == bn_wexpand(rr, 8))
- goto err;
- RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
- rr->top = 8;
- rr->neg = 0;
- bn_correct_top(rr);
- ret = 1;
- goto err;
- }
-#endif
-
- /* Get the window size to use with size of p. */
- window = BN_window_bits_for_ctime_exponent_size(bits);
-#if defined(SPARC_T4_MONT)
- if (window >= 5 && (top & 15) == 0 && top <= 64 &&
- (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
- (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
- window = 5;
- else
-#endif
-#if defined(OPENSSL_BN_ASM_MONT5)
- if (window >= 5) {
- window = 5; /* ~5% improvement for RSA2048 sign, and even
- * for RSA4096 */
- /* reserve space for mont->N.d[] copy */
- powerbufLen += top * sizeof(mont->N.d[0]);
- }
-#endif
- (void)0;
-
- /*
- * Allocate a buffer large enough to hold all of the pre-computed powers
- * of am, am itself and tmp.
- */
- numPowers = 1 << window;
- powerbufLen += sizeof(m->d[0]) * (top * numPowers +
- ((2 * top) >
- numPowers ? (2 * top) : numPowers));
-#ifdef alloca
- if (powerbufLen < 3072)
- powerbufFree =
- alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
- else
-#endif
- if ((powerbufFree =
- (unsigned char *)OPENSSL_malloc(powerbufLen +
- MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
- == NULL)
- goto err;
-
- powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
- memset(powerbuf, 0, powerbufLen);
-
-#ifdef alloca
- if (powerbufLen < 3072)
- powerbufFree = NULL;
-#endif
-
- /* lay down tmp and am right after powers table */
- tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
- am.d = tmp.d + top;
- tmp.top = am.top = 0;
- tmp.dmax = am.dmax = top;
- tmp.neg = am.neg = 0;
- tmp.flags = am.flags = BN_FLG_STATIC_DATA;
-
- /* prepare a^0 in Montgomery domain */
-#if 1 /* by Shay Gueron's suggestion */
- if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
- /* 2^(top*BN_BITS2) - m */
- tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
- for (i = 1; i < top; i++)
- tmp.d[i] = (~m->d[i]) & BN_MASK2;
- tmp.top = top;
- } else
-#endif
- if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx))
- goto err;
-
- /* prepare a^1 in Montgomery domain */
- if (a->neg || BN_ucmp(a, m) >= 0) {
- if (!BN_mod(&am, a, m, ctx))
- goto err;
- if (!BN_to_montgomery(&am, &am, mont, ctx))
- goto err;
- } else if (!BN_to_montgomery(&am, a, mont, ctx))
- goto err;
-
-#if defined(SPARC_T4_MONT)
- if (t4) {
- typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
- const BN_ULONG *n0, const void *table,
- int power, int bits);
- int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
- const BN_ULONG *n0, const void *table,
- int power, int bits);
- int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
- const BN_ULONG *n0, const void *table,
- int power, int bits);
- int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
- const BN_ULONG *n0, const void *table,
- int power, int bits);
- int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
- const BN_ULONG *n0, const void *table,
- int power, int bits);
- static const bn_pwr5_mont_f pwr5_funcs[4] = {
- bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
- bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
- };
- bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];
-
- typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
- const void *bp, const BN_ULONG *np,
- const BN_ULONG *n0);
- int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
- const BN_ULONG *np, const BN_ULONG *n0);
- int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
- const void *bp, const BN_ULONG *np,
- const BN_ULONG *n0);
- int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
- const void *bp, const BN_ULONG *np,
- const BN_ULONG *n0);
- int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
- const void *bp, const BN_ULONG *np,
- const BN_ULONG *n0);
- static const bn_mul_mont_f mul_funcs[4] = {
- bn_mul_mont_t4_8, bn_mul_mont_t4_16,
- bn_mul_mont_t4_24, bn_mul_mont_t4_32
- };
- bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];
-
- void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
- const void *bp, const BN_ULONG *np,
- const BN_ULONG *n0, int num);
- void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
- const void *bp, const BN_ULONG *np,
- const BN_ULONG *n0, int num);
- void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
- const void *table, const BN_ULONG *np,
- const BN_ULONG *n0, int num, int power);
- void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
- void *table, size_t power);
- void bn_gather5_t4(BN_ULONG *out, size_t num,
- void *table, size_t power);
- void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);
-
- BN_ULONG *np = mont->N.d, *n0 = mont->n0;
- int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
- * than 32 */
-
- /*
- * BN_to_montgomery can contaminate words above .top [in
- * BN_DEBUG[_DEBUG] build]...
- */
- for (i = am.top; i < top; i++)
- am.d[i] = 0;
- for (i = tmp.top; i < top; i++)
- tmp.d[i] = 0;
-
- bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
- bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
- if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
- !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
- bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
- bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);
-
- for (i = 3; i < 32; i++) {
- /* Calculate a^i = a^(i-1) * a */
- if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
- !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
- bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
- bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
- }
-
- /* switch to 64-bit domain */
- np = alloca(top * sizeof(BN_ULONG));
- top /= 2;
- bn_flip_t4(np, mont->N.d, top);
-
- bits--;
- for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--)
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- bn_gather5_t4(tmp.d, top, powerbuf, wvalue);
-
- /*
- * Scan the exponent one window at a time starting from the most
- * significant bits.
- */
- while (bits >= 0) {
- if (bits < stride)
- stride = bits + 1;
- bits -= stride;
- wvalue = bn_get_bits(p, bits + 1);
-
- if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
- continue;
- /* retry once and fall back */
- if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
- continue;
-
- bits += stride - 5;
- wvalue >>= stride - 5;
- wvalue &= 31;
- bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
- wvalue);
- }
-
- bn_flip_t4(tmp.d, tmp.d, top);
- top *= 2;
- /* back to 32-bit domain */
- tmp.top = top;
- bn_correct_top(&tmp);
- OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
- } else
-#endif
-#if defined(OPENSSL_BN_ASM_MONT5)
- if (window == 5 && top > 1) {
- /*
- * This optimization uses ideas from http://eprint.iacr.org/2011/239,
- * specifically optimization of cache-timing attack countermeasures
- * and pre-computation optimization.
- */
-
- /*
- * Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
- * 512-bit RSA is hardly relevant, we omit it to spare size...
- */
- void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
- const void *table, const BN_ULONG *np,
- const BN_ULONG *n0, int num, int power);
- void bn_scatter5(const BN_ULONG *inp, size_t num,
- void *table, size_t power);
- void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
- void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
- const void *table, const BN_ULONG *np,
- const BN_ULONG *n0, int num, int power);
- int bn_get_bits5(const BN_ULONG *ap, int off);
- int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
- const BN_ULONG *not_used, const BN_ULONG *np,
- const BN_ULONG *n0, int num);
-
- BN_ULONG *n0 = mont->n0, *np;
-
- /*
- * BN_to_montgomery can contaminate words above .top [in
- * BN_DEBUG[_DEBUG] build]...
- */
- for (i = am.top; i < top; i++)
- am.d[i] = 0;
- for (i = tmp.top; i < top; i++)
- tmp.d[i] = 0;
-
- /*
- * copy mont->N.d[] to improve cache locality
- */
- for (np = am.d + top, i = 0; i < top; i++)
- np[i] = mont->N.d[i];
-
- bn_scatter5(tmp.d, top, powerbuf, 0);
- bn_scatter5(am.d, am.top, powerbuf, 1);
- bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, 2);
-
-# if 0
- for (i = 3; i < 32; i++) {
- /* Calculate a^i = a^(i-1) * a */
- bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
- bn_scatter5(tmp.d, top, powerbuf, i);
- }
-# else
- /* same as above, but uses squaring for 1/2 of operations */
- for (i = 4; i < 32; i *= 2) {
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, i);
- }
- for (i = 3; i < 8; i += 2) {
- int j;
- bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
- bn_scatter5(tmp.d, top, powerbuf, i);
- for (j = 2 * i; j < 32; j *= 2) {
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, j);
- }
- }
- for (; i < 16; i += 2) {
- bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
- bn_scatter5(tmp.d, top, powerbuf, i);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_scatter5(tmp.d, top, powerbuf, 2 * i);
- }
- for (; i < 32; i += 2) {
- bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
- bn_scatter5(tmp.d, top, powerbuf, i);
- }
-# endif
- bits--;
- for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--)
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- bn_gather5(tmp.d, top, powerbuf, wvalue);
-
- /*
- * Scan the exponent one window at a time starting from the most
- * significant bits.
- */
- if (top & 7)
- while (bits >= 0) {
- for (wvalue = 0, i = 0; i < 5; i++, bits--)
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
-
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
- bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
- wvalue);
- } else {
- while (bits >= 0) {
- wvalue = bn_get_bits5(p->d, bits - 4);
- bits -= 5;
- bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
- }
- }
-
- ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
- tmp.top = top;
- bn_correct_top(&tmp);
- if (ret) {
- if (!BN_copy(rr, &tmp))
- ret = 0;
- goto err; /* non-zero ret means it's not error */
- }
- } else
-#endif
- {
- if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
- goto err;
- if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
- goto err;
-
- /*
- * If the window size is greater than 1, then calculate
- * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
- * powers could instead be computed as (a^(i/2))^2 to use the slight
- * performance advantage of sqr over mul).
- */
- if (window > 1) {
- if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx))
- goto err;
- if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
- window))
- goto err;
- for (i = 3; i < numPowers; i++) {
- /* Calculate a^i = a^(i-1) * a */
- if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx))
- goto err;
- if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
- window))
- goto err;
- }
- }
-
- bits--;
- for (wvalue = 0, i = bits % window; i >= 0; i--, bits--)
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
- window))
- goto err;
-
- /*
- * Scan the exponent one window at a time starting from the most
- * significant bits.
- */
- while (bits >= 0) {
- wvalue = 0; /* The 'value' of the window */
-
- /* Scan the window, squaring the result as we go */
- for (i = 0; i < window; i++, bits--) {
- if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx))
- goto err;
- wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
- }
-
- /*
- * Fetch the appropriate pre-computed value from the pre-buf
- */
- if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
- window))
- goto err;
-
- /* Multiply the result into the intermediate result */
- if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx))
- goto err;
- }
- }
-
- /* Convert the final result from montgomery to standard format */
-#if defined(SPARC_T4_MONT)
- if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
- am.d[0] = 1; /* borrow am */
- for (i = 1; i < top; i++)
- am.d[i] = 0;
- if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
- goto err;
- } else
-#endif
- if (!BN_from_montgomery(rr, &tmp, mont, ctx))
- goto err;
- ret = 1;
- err:
- if ((in_mont == NULL) && (mont != NULL))
- BN_MONT_CTX_free(mont);
- if (powerbuf != NULL) {
- OPENSSL_cleanse(powerbuf, powerbufLen);
- if (powerbufFree)
- OPENSSL_free(powerbufFree);
- }
- BN_CTX_end(ctx);
- return (ret);
-}
-
-int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
-{
- BN_MONT_CTX *mont = NULL;
- int b, bits, ret = 0;
- int r_is_one;
- BN_ULONG w, next_w;
- BIGNUM *d, *r, *t;
- BIGNUM *swap_tmp;
-#define BN_MOD_MUL_WORD(r, w, m) \
- (BN_mul_word(r, (w)) && \
- (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
- (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
- /*
- * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
- * probably more overhead than always using BN_mod (which uses BN_copy if
- * a similar test returns true).
- */
- /*
- * We can use BN_mod and do not need BN_nnmod because our accumulator is
- * never negative (the result of BN_mod does not depend on the sign of
- * the modulus).
- */
-#define BN_TO_MONTGOMERY_WORD(r, w, mont) \
- (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
-
- if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
- /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
- BNerr(BN_F_BN_MOD_EXP_MONT_WORD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
- return -1;
- }
-
- bn_check_top(p);
- bn_check_top(m);
-
- if (!BN_is_odd(m)) {
- BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS);
- return (0);
- }
- if (m->top == 1)
- a %= m->d[0]; /* make sure that 'a' is reduced */
-
- bits = BN_num_bits(p);
- if (bits == 0) {
- /* x**0 mod 1 is still zero. */
- if (BN_is_one(m)) {
- ret = 1;
- BN_zero(rr);
- } else {
- ret = BN_one(rr);
- }
- return ret;
- }
- if (a == 0) {
- BN_zero(rr);
- ret = 1;
- return ret;
- }
-
- BN_CTX_start(ctx);
- d = BN_CTX_get(ctx);
- r = BN_CTX_get(ctx);
- t = BN_CTX_get(ctx);
- if (d == NULL || r == NULL || t == NULL)
- goto err;
-
- if (in_mont != NULL)
- mont = in_mont;
- else {
- if ((mont = BN_MONT_CTX_new()) == NULL)
- goto err;
- if (!BN_MONT_CTX_set(mont, m, ctx))
- goto err;
- }
-
- r_is_one = 1; /* except for Montgomery factor */
-
- /* bits-1 >= 0 */
-
- /* The result is accumulated in the product r*w. */
- w = a; /* bit 'bits-1' of 'p' is always set */
- for (b = bits - 2; b >= 0; b--) {
- /* First, square r*w. */
- next_w = w * w;
- if ((next_w / w) != w) { /* overflow */
- if (r_is_one) {
- if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
- goto err;
- r_is_one = 0;
- } else {
- if (!BN_MOD_MUL_WORD(r, w, m))
- goto err;
- }
- next_w = 1;
- }
- w = next_w;
- if (!r_is_one) {
- if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
- goto err;
- }
-
- /* Second, multiply r*w by 'a' if exponent bit is set. */
- if (BN_is_bit_set(p, b)) {
- next_w = w * a;
- if ((next_w / a) != w) { /* overflow */
- if (r_is_one) {
- if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
- goto err;
- r_is_one = 0;
- } else {
- if (!BN_MOD_MUL_WORD(r, w, m))
- goto err;
- }
- next_w = a;
- }
- w = next_w;
- }
- }
-
- /* Finally, set r:=r*w. */
- if (w != 1) {
- if (r_is_one) {
- if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
- goto err;
- r_is_one = 0;
- } else {
- if (!BN_MOD_MUL_WORD(r, w, m))
- goto err;
- }
- }
-
- if (r_is_one) { /* can happen only if a == 1 */
- if (!BN_one(rr))
- goto err;
- } else {
- if (!BN_from_montgomery(rr, r, mont, ctx))
- goto err;
- }
- ret = 1;
- err:
- if ((in_mont == NULL) && (mont != NULL))
- BN_MONT_CTX_free(mont);
- BN_CTX_end(ctx);
- bn_check_top(rr);
- return (ret);
-}
-
-/* The old fallback, simple version :-) */
-int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx)
-{
- int i, j, bits, ret = 0, wstart, wend, window, wvalue;
- int start = 1;
- BIGNUM *d;
- /* Table of variables obtained from 'ctx' */
- BIGNUM *val[TABLE_SIZE];
-
- if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
- /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
- BNerr(BN_F_BN_MOD_EXP_SIMPLE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
- return -1;
- }
-
- bits = BN_num_bits(p);
- if (bits == 0) {
- /* x**0 mod 1 is still zero. */
- if (BN_is_one(m)) {
- ret = 1;
- BN_zero(r);
- } else {
- ret = BN_one(r);
- }
- return ret;
- }
-
- BN_CTX_start(ctx);
- d = BN_CTX_get(ctx);
- val[0] = BN_CTX_get(ctx);
- if (!d || !val[0])
- goto err;
-
- if (!BN_nnmod(val[0], a, m, ctx))
- goto err; /* 1 */
- if (BN_is_zero(val[0])) {
- BN_zero(r);
- ret = 1;
- goto err;
- }
-
- window = BN_window_bits_for_exponent_size(bits);
- if (window > 1) {
- if (!BN_mod_mul(d, val[0], val[0], m, ctx))
- goto err; /* 2 */
- j = 1 << (window - 1);
- for (i = 1; i < j; i++) {
- if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
- !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
- goto err;
- }
- }
-
- start = 1; /* This is used to avoid multiplication etc
- * when there is only the value '1' in the
- * buffer. */
- wvalue = 0; /* The 'value' of the window */
- wstart = bits - 1; /* The top bit of the window */
- wend = 0; /* The bottom bit of the window */
-
- if (!BN_one(r))
- goto err;
-
- for (;;) {
- if (BN_is_bit_set(p, wstart) == 0) {
- if (!start)
- if (!BN_mod_mul(r, r, r, m, ctx))
- goto err;
- if (wstart == 0)
- break;
- wstart--;
- continue;
- }
- /*
- * We now have wstart on a 'set' bit, we now need to work out how bit
- * a window to do. To do this we need to scan forward until the last
- * set bit before the end of the window
- */
- j = wstart;
- wvalue = 1;
- wend = 0;
- for (i = 1; i < window; i++) {
- if (wstart - i < 0)
- break;
- if (BN_is_bit_set(p, wstart - i)) {
- wvalue <<= (i - wend);
- wvalue |= 1;
- wend = i;
- }
- }
-
- /* wend is the size of the current window */
- j = wend + 1;
- /* add the 'bytes above' */
- if (!start)
- for (i = 0; i < j; i++) {
- if (!BN_mod_mul(r, r, r, m, ctx))
- goto err;
- }
-
- /* wvalue will be an odd number < 2^window */
- if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
- goto err;
-
- /* move the 'window' down further */
- wstart -= wend + 1;
- wvalue = 0;
- start = 0;
- if (wstart < 0)
- break;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- bn_check_top(r);
- return (ret);
-}