diff options
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/simple_reorder.hpp')
-rw-r--r-- | thirdparty/oidn/mkl-dnn/src/cpu/simple_reorder.hpp | 1022 |
1 files changed, 1022 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/simple_reorder.hpp b/thirdparty/oidn/mkl-dnn/src/cpu/simple_reorder.hpp new file mode 100644 index 0000000000..ff845f5bd3 --- /dev/null +++ b/thirdparty/oidn/mkl-dnn/src/cpu/simple_reorder.hpp @@ -0,0 +1,1022 @@ +/******************************************************************************* +* Copyright 2016-2018 Intel Corporation +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*******************************************************************************/ + +#ifndef CPU_SIMPLE_REORDER_HPP +#define CPU_SIMPLE_REORDER_HPP + +#include <assert.h> + +#include "c_types_map.hpp" +#include "type_helpers.hpp" +#include "math_utils.hpp" +#include "mkldnn_thread.hpp" +#include "utils.hpp" + +#include "tag_traits.hpp" +#include "cpu_reorder_pd.hpp" +#include "cpu_primitive.hpp" + +#include "simple_q10n.hpp" +#include "cpu_isa_traits.hpp" + +namespace mkldnn { +namespace impl { +namespace cpu { + +using namespace mkldnn::impl::status; +using namespace mkldnn::impl::format_tag; +using namespace mkldnn::impl::data_type; + +using bd = block_dim_t; +using ib = inner_blk_t; + +using namespace mkldnn::impl::utils; +using math::saturate; + +template<impl::data_type_t type> +using data_t = typename prec_traits<type>::type; + +template<impl::data_type_t type_i, impl::data_type_t type_o> +using _qz_a1b0 = qz_a1b0<data_t<type_i>, data_t<type_o>>; + +template<impl::data_type_t type_i, impl::data_type_t type_o> +using _qz = qz<data_t<type_i>, data_t<type_o>>; + +namespace fmt_order { + const bool keep = true; + const bool reverse = false; + const bool any = keep; +} + +namespace spec { +struct direct_copy {}; +struct direct_copy_except_dim_0 {}; +struct reference {}; +struct conv_s8s8 {}; +} + +#define SIMPLE_REORDER_TEMPL_DECL \ + impl::data_type_t type_i, impl::format_tag_t tag_i, \ + impl::data_type_t type_o, impl::format_tag_t tag_o, bool order_keep +#define SIMPLE_REORDER_TEMPL_CALL \ + type_i, tag_i, type_o, tag_o, order_keep + +#define DECLARE_COMMON_PARAMS() \ + const memory_desc_wrapper &input_d = pd->src_md(); \ + const memory_desc_wrapper &output_d = pd->dst_md(); \ + const float alpha = pd->alpha(); MAYBE_UNUSED(alpha); \ + const float beta = pd->beta(); MAYBE_UNUSED(beta); + +/* specific reorders: common template */ +template <SIMPLE_REORDER_TEMPL_DECL, typename spec = void> +struct simple_reorder_impl {}; + +namespace { +inline bool simple_fmt_check(bool order_keep, impl::format_tag_t tag_i, + impl::format_tag_t tag_o, const memory_desc_wrapper &input_d, + const memory_desc_wrapper &output_d) { + return input_d.matches_tag(order_keep ? tag_i : tag_o) + && output_d.matches_tag(order_keep ? tag_o : tag_i); +} +inline bool simple_attr_check(const primitive_attr_t *attr, bool many_scales_support) { + if (many_scales_support) + return true; + return IMPLICATION(attr, attr->output_scales_.mask_ == 0); +} +} + +/* specific reorders: implementation */ +template <SIMPLE_REORDER_TEMPL_DECL> +struct simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, +typename utils::enable_if<tag_i == any && (false + || tag_o == hwio + || tag_o == hwigo) + , spec::conv_s8s8>::type> +{ + static bool is_applicable(const memory_desc_wrapper &input_d, + const memory_desc_wrapper &output_d, const primitive_attr_t *attr) + { + const size_t D_mask = utils::array_product(input_d.dims(), + math::ilog2q(attr->output_scales_.mask_ + 1)); + const int oc = (input_d.dims()[tag_o == hwigo + 0]); + const int g = (tag_o == hwigo) ? (input_d.dims()[0]) : 1; + + return output_d.matches_tag(tag_o) + && (output_d.extra().flags & memory_extra_flags::compensation_conv_s8s8) + && (input_d.data_type() == f32 || input_d.data_type() == s8) + && output_d.data_type() == s8 + && (D_mask == 1 || D_mask == (size_t)g * oc); + } + + static status_t execute(const cpu_reorder_pd_t *pd, + const data_t<type_i> *input, data_t<type_o> *output) { + DECLARE_COMMON_PARAMS(); + + static constexpr bool w_groups = tag_o == hwigo; + + const auto &dims = input_d.dims(); + const auto &pdims = output_d.padded_dims(); + + const int G = w_groups ? dims[0] : 1; + const int OC = dims[w_groups + 0]; + const int IC = dims[w_groups + 1]; + const int H = dims[w_groups + 2]; + const int W = dims[w_groups + 3]; + + const float *scales = pd->attr()->output_scales_.scales_; + const size_t D_mask = utils::array_product(input_d.dims(), + math::ilog2q(pd->attr()->output_scales_.mask_ + 1)); + + assert(output_d.extra().flags + & memory_extra_flags::compensation_conv_s8s8); + float adj_scale = + (output_d.extra().flags & memory_extra_flags::scale_adjust) + ? output_d.extra().scale_adjust : 1.f; + + size_t offset = G * pdims[w_groups + 0] * pdims[w_groups + 1] * H * W; + int32_t *cp = reinterpret_cast<int32_t *>(output + offset); + + parallel_nd(G, OC, [&](int g, int oc) { + cp[g * OC + oc] = 0; + for (int ic = 0; ic < IC; ic++) + for (int h = 0; h < H; h++) + for (int w = 0; w < W; w++) { + auto i = input[input_d.blk_off<!w_groups>(g, oc, ic, h, w)]; + auto &o = output[output_d.blk_off<!w_groups>(g, oc, ic, h, w)]; + const float s = scales[(D_mask == 1) ? 0 : g * OC + oc]; + + o = qz_b0<data_t<type_i>, data_t<type_o>>()( + i, s * adj_scale); + cp[g * OC + oc] -= (int32_t)o; + } + cp [g * OC + oc] *= 128; + }); + return success; + } +}; + +template <SIMPLE_REORDER_TEMPL_DECL> +struct simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, + typename utils::enable_if< + (tag_i == goiw && tag_o == gOIw4i16o4i) + || (tag_i == oiw && tag_o == OIw4i16o4i) + || (tag_i == goihw && tag_o == gOIhw4i16o4i) + || (tag_i == oihw && tag_o == OIhw4i16o4i) + || (tag_i == goihw && tag_o == gOIhw2i8o4i) + || (tag_i == goihw && tag_o == gOIhw4o4i) + , spec::conv_s8s8>::type> +{ + static bool is_applicable(const memory_desc_wrapper &input_d, + const memory_desc_wrapper &output_d, const primitive_attr_t *attr) + { + const size_t D_mask = utils::array_product(input_d.dims(), + math::ilog2q(attr->output_scales_.mask_ + 1)); + const bool w_groups = !utils::one_of(tag_o, OIw4i16o4i, OIhw4i16o4i); + const int oc = (input_d.dims()[w_groups ? 1 : 0]); + const int g = w_groups ? input_d.dims()[0] : 1; + + return input_d.matches_tag(tag_i) + && output_d.matches_tag(tag_o) + && (output_d.extra().flags & memory_extra_flags::compensation_conv_s8s8) + && (input_d.data_type() == f32 || input_d.data_type() == s8) + && output_d.data_type() == s8 + && (D_mask == 1 || D_mask == (size_t)g * oc); + } + + static status_t execute(const cpu_reorder_pd_t *pd, + const data_t<type_i> *input, data_t<type_o> *output) { + DECLARE_COMMON_PARAMS(); + + static constexpr bool w_groups = + !utils::one_of(tag_o, OIw4i16o4i, OIhw4i16o4i); + constexpr int is_1d = + utils::one_of(tag_o, gOIw4i16o4i, OIw4i16o4i); + constexpr int blksize = tag_traits<tag_o>::inner_blks == ib::_4b4c + ? 4 + : tag_traits<tag_o>::inner_blks == ib::_2c8b4c + ? 8 + : 16; + + const auto &_g_oihw_d = order_keep ? input_d : output_d; + const auto &dims = input_d.dims(); + const auto &pdims = order_keep + ? output_d.padded_dims() + : input_d.padded_dims(); + + const int G = w_groups ? dims[0] : 1; + const int OC = dims[w_groups + 0]; + const int NB_OC = pdims[w_groups + 0] / blksize; + const int IC = dims[w_groups + 1]; + const int NB_IC = pdims[w_groups + 1] / blksize; + const int H = is_1d ? 1 : dims[w_groups + 2]; + const int W = dims[w_groups + 3 - is_1d]; + + const float *scales = pd->attr()->output_scales_.scales_; + const size_t D_mask = utils::array_product(input_d.dims(), + math::ilog2q(pd->attr()->output_scales_.mask_ + 1)); + + assert(output_d.extra().flags + & memory_extra_flags::compensation_conv_s8s8); + float adj_scale = + (output_d.extra().flags & memory_extra_flags::scale_adjust) + ? output_d.extra().scale_adjust : 1.f; + + auto ker = [&](const data_t<type_i> *inp, data_t<type_o> *out, + int32_t *c, const float *s, const int oc_block, const int ic_block) { +# define index AB_or_BC_blk_off<tag_traits<tag_o>::inner_blks> + + for (int ic = 0; ic < ic_block; ++ic) { + for (int oc = 0; oc < oc_block; ++oc) { + const auto _g_oihw_off = + oc * _g_oihw_d.blocking_desc().strides[w_groups + 0] + + ic * _g_oihw_d.blocking_desc().strides[w_groups + 1]; + out[index(oc, ic)] + = qz_b0<data_t<type_i>, data_t<type_o>>()( + inp[_g_oihw_off], s[oc] * adj_scale); + c[oc] -= (128 * (int32_t)(out[index(oc, ic)])); + } + } +# undef index + }; + + constexpr int i_mult = blksize; + constexpr int o_mult = 1; + + size_t offset = G * pdims[w_groups+0] * pdims[w_groups+1] * H * W; + int32_t *cp = reinterpret_cast<int32_t *>(output + offset); + parallel_nd(G * NB_OC * blksize, [&](int i) { + cp[i] = 0; + }); + +# define wei_blk_off(md, g, o, i, h, w) \ + (is_1d ? (md).blk_off<!w_groups>(g, o, i, w) \ + : (md).blk_off<!w_groups>(g, o, i, h, w)) + + parallel_nd(G, NB_OC, [&](int g, int O) { + for (int I = 0; I < NB_IC; I++) + for (int h = 0; h < H; h++) + for (int w = 0; w < W; w++) { + auto i = &input[wei_blk_off( + input_d, g, i_mult * O, i_mult * I, h, w)]; + auto o = &output[wei_blk_off( + output_d, g, o_mult * O, o_mult * I, h, w)]; + const int oc_block = nstl::min(blksize, OC - O * blksize); + const int ic_block = nstl::min(blksize, IC - I * blksize); + + int _offset = (g * NB_OC + O) * blksize; + ker(i, o, (order_keep) ? &cp[_offset] : nullptr, + &scales[(D_mask == 1) ? 0 : _offset], + oc_block, ic_block); + } + }); + +# undef wei_blk_off + + return success; + } +}; + +template <SIMPLE_REORDER_TEMPL_DECL> +struct simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, + typename utils::enable_if<false + ||(tag_i == goiw && tag_o == Goiw16g) + ||(tag_i == goihw && tag_o == Goihw16g) + , spec::conv_s8s8>::type> +{ + static bool is_applicable(const memory_desc_wrapper &input_d, + const memory_desc_wrapper &output_d, const primitive_attr_t *attr) { + const size_t D_mask = utils::array_product(input_d.dims(), + math::ilog2q(attr->output_scales_.mask_ + 1)); + const int oc = input_d.dims()[1]; + const int g = input_d.dims()[0]; + + return true + && order_keep + && input_d.matches_tag(tag_i) + && output_d.matches_tag(tag_o) + && (output_d.extra().flags & memory_extra_flags::compensation_conv_s8s8) + && (input_d.data_type() == f32 || input_d.data_type() == s8) + && output_d.data_type() == s8 + && (D_mask == 1 || D_mask == (size_t)g * oc); + } + + static status_t execute(const cpu_reorder_pd_t *pd, + const data_t<type_i> *input, data_t<type_o> *output) { + DECLARE_COMMON_PARAMS(); + + constexpr bool is_1d = tag_i == goiw; + constexpr int blksize = 16; + + const auto &dims = input_d.dims(); + const auto &pdims = output_d.padded_dims(); + const int G = dims[0]; + const int Gp = pdims[0]; + const int OC = dims[1]; + const int IC = dims[2]; + const int H = is_1d ? 1 : dims[3]; + const int W = dims[4 - is_1d]; + + const size_t D_mask = utils::array_product(input_d.dims(), + math::ilog2q(pd->attr()->output_scales_.mask_ + 1)); + const float *scales = pd->attr()->output_scales_.scales_; + + assert(output_d.extra().flags + & memory_extra_flags::compensation_conv_s8s8); + float adj_scale = + (output_d.extra().flags & memory_extra_flags::scale_adjust) + ? output_d.extra().scale_adjust : 1.f; + + auto ker = [&](const data_t<type_i> *inp, data_t<type_o> *out, + int32_t *cp, const float *s, const int g_block) { + PRAGMA_OMP_SIMD() + for (int g = 0; g < g_block; g++) { + const auto i_off = g * input_d.blocking_desc().strides[0]; + out[g] = qz_b0<data_t<type_i>, data_t<type_o>>()( + inp[i_off], s[g * OC] * adj_scale); + cp[g * OC] -= 128 * (int32_t)(out[g]); + } + }; + + size_t cp_offset = output_d.size() - output_d.additional_buffer_size(); + int32_t *cp = reinterpret_cast<int32_t *>(output + cp_offset); + parallel_nd((Gp/blksize) * OC, [&](int ib) { + PRAGMA_OMP_SIMD() + for (int i = 0; i < blksize; i++) + cp[ib * blksize + i] = 0; + }); + +# define wei_blk_off(md, g, o, i, h, w) \ + (is_1d ? (md).blk_off(g, o, i, w) : (md).blk_off(g, o, i, h, w)) + + parallel_nd(Gp/blksize, OC, [&](int gb, int O) { + for (int I = 0; I < IC; I++) { + for (int h = 0; h < H; h++) + for (int w = 0; w < W; w++) + { + const int g_block = nstl::min(G - gb * blksize, blksize); + const auto inp = &input[wei_blk_off( + input_d, gb * blksize, O, I, h, w)]; + const auto out = &output[wei_blk_off( + output_d, gb, O, I, h, w)]; + int offset = gb * blksize + O; + ker(inp, out, &cp[offset], + &scales[(D_mask == 1) ? 0 : offset], g_block); + } + } + }); + +# undef wei_blk_off + + return success; + } +}; + +/* reorders with tail support */ + +template <SIMPLE_REORDER_TEMPL_DECL> +struct simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, +typename utils::enable_if<false + || (tag_i == nCdhw8c && tag_o == nCdhw16c) + || (tag_i == nChw8c && tag_o == nChw16c) + || (tag_i == nCw8c && tag_o == nCw16c) + >::type> +{ + static bool is_applicable(const memory_desc_wrapper &input_d, + const memory_desc_wrapper &output_d, const primitive_attr_t *attr) + { + return simple_fmt_check(order_keep, tag_i, tag_o, input_d, output_d) + && simple_attr_check(attr, false); + } + + static status_t execute(const cpu_reorder_pd_t *pd, + const data_t<type_i> *input, data_t<type_o> *output) { + DECLARE_COMMON_PARAMS(); + + constexpr int is_1d = tag_i == nCw8c; + constexpr int is_3d = tag_i == nCdhw8c; + constexpr int blksize_16 = 16; + constexpr int blksize_8 = 8; + constexpr int ic_mult = order_keep ? 2 : 1; + constexpr int oc_mult = order_keep ? 1 : 2; + + const auto &dims = input_d.dims(); + const auto &pdims = order_keep ? output_d.padded_dims() + : input_d.padded_dims(); + + const int C = dims[1]; + const int D = is_3d ? dims[2] : 1; + const int H = is_1d ? 1 : dims[2 + is_3d]; + const int W = dims[3 + is_3d - is_1d]; + + auto ker = [&](const data_t<type_i> *i, data_t<type_o> *o, + const int block_16) { + const int nb = (block_16 - 1) / blksize_8 + 1; + if (alpha == 1.0 && beta == 0.0) { + for (int b = 0; b < nb; ++b) { + const ptrdiff_t i_off = order_keep ? b : b * blksize_8; + const ptrdiff_t o_off = order_keep ? b * blksize_8 : b; + const int block_8 = nstl::min(blksize_8, + block_16 - b * blksize_8); + for (int c = 0; c < block_8; ++c) { + o[o_off + c] = _qz_a1b0<type_i, type_o>()( + i[i_off + c]); + } + } + } else { + for (int b = 0; b < nb; ++b) { + const ptrdiff_t i_off = order_keep ? b : b * blksize_8; + const ptrdiff_t o_off = order_keep ? b * blksize_8 : b; + const int block_8 = nstl::min(blksize_8, + block_16 - b * blksize_8); + for (int c = 0; c < block_8; ++c) { + o[o_off + c] = _qz<type_i, type_o>()(i[i_off + c], + o[o_off + c], alpha, beta); + } + } + } + }; + +# define data_blk_off(md, n, c, d, h, w) \ + ( is_1d ? (md).blk_off(n, c, w) \ + : is_3d ? (md).blk_off(n, c, d, h, w) : (md).blk_off(n, c, h, w)) + + parallel_nd(dims[0], pdims[1] / blksize_16, D, H, W, + [&](int n, int nb_c, int d, int h, int w) { + auto i = &input[data_blk_off(input_d, n, ic_mult * nb_c, d, h, w)]; + auto o = &output[data_blk_off(output_d, n, oc_mult * nb_c, d, h, w)]; + const int block_16 = nstl::min(blksize_16, C - nb_c * blksize_16); + ker(i, o, block_16); + }); + +# undef data_blk_off + + return success; + } +}; + +#define PLAIN_TO_BLOCKED_IS_APPLICABLE() \ + static bool is_applicable(const memory_desc_wrapper &input_d, \ + const memory_desc_wrapper &output_d, const primitive_attr_t *attr) { \ + return simple_attr_check(attr, false) && (order_keep \ + ? output_d.matches_tag(tag_o) && input_d.is_plain() \ + : input_d.matches_tag(tag_o) && output_d.is_plain()); \ + } + +template <SIMPLE_REORDER_TEMPL_DECL> +struct simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, +typename utils::enable_if<tag_i == any + && (tag_traits<tag_o>::block_dims == bd::_A + || tag_traits<tag_o>::block_dims == bd::_B) + && tag_traits<tag_o>::ndims >= 3 + && tag_traits<tag_o>::ndims <= 6 + >::type> +{ + PLAIN_TO_BLOCKED_IS_APPLICABLE(); + + static status_t execute(const cpu_reorder_pd_t *pd, + const data_t<type_i> *input, data_t<type_o> *output) { + DECLARE_COMMON_PARAMS(); + + const auto &flat_d = order_keep ? input_d : output_d; + const auto &block_d = order_keep ? output_d : input_d; + const auto &dims = input_d.dims(); + const auto &pdims = block_d.padded_dims(); + + constexpr int ndims = tag_traits<tag_o>::ndims; + constexpr int blk_idx = tag_traits<tag_o>::block_dims == bd::_A ? 0 : 1; + + const dim_t H0 = dims[0]; + const dim_t H1 = dims[1]; + const dim_t M0 = ndims >= 6 ? dims[ndims - 4] : 1; + const dim_t M1 = ndims >= 5 ? dims[ndims - 3] : 1; + const dim_t M2 = ndims >= 4 ? dims[ndims - 2] : 1; + const dim_t L = dims[ndims - 1]; + const dim_t l_blk_stride = block_d.blocking_desc().strides[ndims - 1]; + + constexpr int blksize = false ? 0 + : utils::one_of(tag_traits<tag_o>::inner_blks, ib::_4a, ib::_4b) ? 4 + : utils::one_of(tag_traits<tag_o>::inner_blks, ib::_8a, ib::_8b) ? 8 + : 16; + + auto ker = [&](const data_t<type_i> *i, data_t<type_o> *o, int block) { + if (alpha == 1.0 && beta == 0.0) { + for (int l = 0; l < L; ++l) + for (int blk = 0; blk < block; ++blk) { + const dim_t flat_off = 0 + + blk * flat_d.blocking_desc().strides[blk_idx] + + l * flat_d.blocking_desc().strides[ndims - 1]; + if (order_keep) { + o[l * l_blk_stride + blk] = _qz_a1b0<type_i, type_o>()( + i[flat_off]); + } else { + o[flat_off] = _qz_a1b0<type_i, type_o>()( + i[l * l_blk_stride + blk]); + } + } + } else { + for (int l = 0; l < L; ++l) + for (int blk = 0; blk < block; ++blk) { + const dim_t flat_off = 0 + + blk * flat_d.blocking_desc().strides[blk_idx] + + l * flat_d.blocking_desc().strides[ndims - 1]; + if (order_keep) { + o[l * l_blk_stride + blk] = _qz<type_i, type_o>()( + i[flat_off], o[l * blksize + blk], + alpha, beta); + } else { + o[flat_off] = _qz<type_i, type_o>()( + i[l * l_blk_stride + blk], o[flat_off], + alpha, beta); + } + } + } + }; + +# define off(md, h0, h1, m0, m1, m2) \ + (ndims >= 6 ? (md).blk_off(h0, h1, m0, m1, m2) \ + : ndims >= 5 ? (md).blk_off(h0, h1, m1, m2) \ + : ndims >= 4 ? (md).blk_off(h0, h1, m2) \ + : /* ndims >= 3 ? */ (md).blk_off(h0, h1)) + + constexpr int i_mult = order_keep ? blksize : 1; + constexpr int o_mult = order_keep ? 1 : blksize; + + if (blk_idx == 0) { + const dim_t BH0 = pdims[0] / blksize; + parallel_nd(BH0, H1, M0, M1, M2, + [&](dim_t bh0, dim_t h1, dim_t m0, dim_t m1, dim_t m2) { + auto i = &input[off(input_d, bh0 * i_mult, h1, m0, m1, m2)]; + auto o = &output[off(output_d, bh0 * o_mult, h1, m0, m1, m2)]; + const int block = nstl::min<int>(blksize, H0 - bh0 * blksize); + ker(i, o, block); + }); + } else if (blk_idx == 1) { + const dim_t BH1 = pdims[1] / blksize; + parallel_nd(H0, BH1, M0, M1, M2, + [&](dim_t h0, dim_t bh1, dim_t m0, dim_t m1, dim_t m2) { + auto i = &input[off(input_d, h0, bh1 * i_mult, m0, m1, m2)]; + auto o = &output[off(output_d, h0, bh1 * o_mult, m0, m1, m2)]; + const int block = nstl::min<int>(blksize, H1 - bh1 * blksize); + ker(i, o, block); + }); + } else { + assert(!"unimplemented"); + } + +# undef off + + return success; + } +}; + +template <SIMPLE_REORDER_TEMPL_DECL> +struct simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, +typename utils::enable_if<tag_i == any + && (tag_traits<tag_o>::block_dims == bd::_AB + || tag_traits<tag_o>::block_dims == bd::_BC) + && IMPLICATION(tag_traits<tag_o>::block_dims == bd::_AB, + tag_traits<tag_o>::ndims >= 3 && tag_traits<tag_o>::ndims <= 5) + && IMPLICATION(tag_traits<tag_o>::block_dims == bd::_BC, + tag_traits<tag_o>::ndims >= 4 && tag_traits<tag_o>::ndims <= 6) + >::type> +{ + PLAIN_TO_BLOCKED_IS_APPLICABLE(); + + static status_t execute(const cpu_reorder_pd_t *pd, + const data_t<type_i> *input, data_t<type_o> *output) { + DECLARE_COMMON_PARAMS(); + + const auto &flat_d = order_keep ? input_d : output_d; + const auto &dims = input_d.dims(); + const auto &pdims = order_keep + ? output_d.padded_dims() + : input_d.padded_dims(); + + constexpr int ndims = tag_traits<tag_o>::ndims; + + static constexpr bool with_g = tag_traits<tag_o>::block_dims == bd::_BC; + const dim_t G = with_g ? dims[0] : 1; + + const dim_t H0 = dims[0 + with_g]; + const dim_t H1 = dims[1 + with_g]; + + const dim_t M0 = ndims >= 5 + with_g ? dims[ndims - 3] : 1; + const dim_t M1 = ndims >= 4 + with_g ? dims[ndims - 2] : 1; + const dim_t M2 = ndims >= 3 + with_g ? dims[ndims - 1] : 1; + + constexpr int blksize_0 = false ? 0 + : utils::one_of(tag_traits<tag_o>::inner_blks, + ib::_4b4a, ib::_4b4c, ib::_4c4b) + ? 4 + : utils::one_of(tag_traits<tag_o>::inner_blks, + ib::_8a8b, ib::_8b8a, ib::_8b8c, ib::_8c8b, ib::_2c8b4c) + ? 8 + : utils::one_of(tag_traits<tag_o>::inner_blks, + ib::_16a16b, ib::_16a4b, ib::_16b16a, ib::_16b4c, + ib::_16b16c, ib::_16c16b, ib::_8a16b2a, ib::_4b16a4b, + ib::_8b16a2b, ib::_8b16c2b, ib::_4c16b4c, ib::_8c16b2c) + ? 16 : INT_MIN; + + constexpr int blksize_1 = utils::one_of(tag_traits<tag_o>::inner_blks, + ib::_8a8b, ib::_8b8a, ib::_8b8c, ib::_8c8b, ib::_2c8b4c) + ? 8 + : utils::one_of(tag_traits<tag_o>::inner_blks, + ib::_16a16b, ib::_16b16a, ib::_16b16c, ib::_16c16b, + ib::_8a16b2a, ib::_4b16a4b, ib::_8b16a2b, ib::_8b16c2b, + ib::_4c16b4c, ib::_8c16b2c) + ? 16 + : utils::one_of(tag_traits<tag_o>::inner_blks, + ib::_4b4a, ib::_4b4c, ib::_4c4b, + ib::_16a4b, ib::_16b4c) + ? 4 + : INT_MIN; + + const dim_t NB_H0 = pdims[0 + with_g] / blksize_0; + const dim_t NB_H1 = pdims[1 + with_g] / blksize_1; + + auto ker = [&](const data_t<type_i> *i, data_t<type_o> *o, + const int block_h0, const int block_h1) { +# define blk_off AB_or_BC_blk_off<tag_traits<tag_o>::inner_blks> + + if (alpha == 1.0 && beta == 0.0) { + for (int h0 = 0; h0 < block_h0; ++h0) + for (int h1 = 0; h1 < block_h1; ++h1) { + const dim_t flat_off = 0 + + h0 * flat_d.blocking_desc().strides[with_g + 0] + + h1 * flat_d.blocking_desc().strides[with_g + 1]; + if (order_keep) { + o[blk_off(h0, h1)] = _qz_a1b0<type_i, type_o>()( + i[flat_off]); + } else { + o[flat_off] = _qz_a1b0<type_i, type_o>()( + i[blk_off(h0, h1)]); + } + } + } else { + for (int h0 = 0; h0 < block_h0; ++h0) + for (int h1 = 0; h1 < block_h1; ++h1) { + const dim_t flat_off = 0 + + h0 * flat_d.blocking_desc().strides[with_g + 0] + + h1 * flat_d.blocking_desc().strides[with_g + 1]; + if (order_keep) { + o[blk_off(h0, h1)] = _qz<type_i, type_o>()(i[flat_off], + o[blk_off(h0, h1)], alpha, beta); + } else { + o[flat_off] = _qz<type_i, type_o>()(i[blk_off(h0, h1)], + o[flat_off], alpha, beta); + } + } + } + +# undef blk_off + }; + + constexpr int i_mult_0 = order_keep ? blksize_0 : 1; + constexpr int o_mult_0 = order_keep ? 1 : blksize_0; + + constexpr int i_mult_1 = order_keep ? blksize_1 : 1; + constexpr int o_mult_1 = order_keep ? 1 : blksize_1; + +# define off(md, g, h0, h1, m0, m1, m2) \ + (ndims >= 5 + with_g ? (md).blk_off<!with_g>(g, h0, h1, m0, m1, m2) \ + : ndims >= 4 + with_g ? (md).blk_off<!with_g>(g, h0, h1, m1, m2) \ + : /* ndims >= 3 + with_g ? */ (md).blk_off<!with_g>(g, h0, h1, m2)) + + parallel_nd(G, NB_H0, NB_H1, M0, M1, M2, + [&](dim_t g, dim_t nb_h0, dim_t nb_h1, dim_t m0, dim_t m1, dim_t m2) { + auto i = &input[off(input_d, + g, i_mult_0 * nb_h0, i_mult_1 * nb_h1, m0, m1, m2)]; + auto o = &output[off(output_d, + g, o_mult_0 * nb_h0, o_mult_1 * nb_h1, m0, m1, m2)]; + const int block_h0 = nstl::min<int>(blksize_0, H0 - nb_h0 * blksize_0); + const int block_h1 = nstl::min<int>(blksize_1, H1 - nb_h1 * blksize_1); + ker(i, o, block_h0, block_h1); + }); + +# undef off + + return success; + } +}; + +/* generic and direct-copy reorders */ + +template <SIMPLE_REORDER_TEMPL_DECL> +struct simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, + typename utils::enable_if< + tag_i == any && tag_o == any && order_keep == fmt_order::any, + spec::direct_copy>::type> +{ + static bool is_applicable(const memory_desc_wrapper &input_d, + const memory_desc_wrapper &output_d, const primitive_attr_t *attr) { + /* FIXME: is the formula correct? */ + return input_d.similar_to(output_d, true, false, 0) + && input_d.is_dense() && output_d.is_dense() + && simple_attr_check(attr, false); + } + + static status_t execute(const cpu_reorder_pd_t *pd, + const data_t<type_i> *input, data_t<type_o> *output) { + DECLARE_COMMON_PARAMS(); + + assert(input_d.is_dense()); + + input += input_d.blk_off(0); + output += output_d.blk_off(0); + + const size_t nelems = input_d.nelems(); + + constexpr int block_size = 16; + const auto num_blocks = nelems / block_size; + const auto rem_elems = nelems % block_size; + + parallel(0, [&](const int ithr, const int nthr) { + size_t start{0}, end{0}; + balance211(num_blocks, nthr, ithr, start, end); + start = start * block_size; + end = end * block_size; + + if (alpha == 1.0 && beta == 0.0) { + PRAGMA_OMP_SIMD() + for (size_t e = start; e < end; ++e) { + output[e] = qz_a1b0<data_t<type_i>, data_t<type_o>>() + (input[e]); + } + } else if (alpha == 1.0) { + PRAGMA_OMP_SIMD() + for (size_t e = start; e < end; ++e) { + output[e] = qz_a1<data_t<type_i>, data_t<type_o>>() + (input[e], output[e], beta); + } + } else if (beta == 0.0) { + PRAGMA_OMP_SIMD() + for (size_t e = start; e < end; ++e) { + output[e] = qz_b0<data_t<type_i>, data_t<type_o>>() + (input[e], alpha); + } + } else { + PRAGMA_OMP_SIMD() + for (size_t e = start; e < end; ++e) { + output[e] = qz<data_t<type_i>, data_t<type_o>>() + (input[e], output[e], alpha, beta); + } + } + + if (rem_elems != 0 && ithr == nthr - 1){ + if (alpha == 1.0 && beta == 0.0) { + PRAGMA_OMP_SIMD() + for (size_t e = nelems - rem_elems; e < nelems; ++e) { + output[e] = qz_a1b0<data_t<type_i>, + data_t<type_o>>()(input[e]); + } + } else if (alpha == 1.0) { + PRAGMA_OMP_SIMD() + for (size_t e = nelems - rem_elems; e < nelems; ++e) { + output[e] = qz_a1<data_t<type_i>, + data_t<type_o>>()(input[e], output[e], beta); + } + } else if (beta == 0.0) { + PRAGMA_OMP_SIMD() + for (size_t e = nelems - rem_elems; e < nelems; ++e) { + output[e] = qz_b0<data_t<type_i>, + data_t<type_o>>()(input[e], alpha); + } + } else { + PRAGMA_OMP_SIMD() + for (size_t e = nelems - rem_elems; e < nelems; ++e) { + output[e] = qz<data_t<type_i>, data_t<type_o>>() + (input[e], output[e], alpha, beta); + } + } + } + }); + return success; + } +}; + +template <SIMPLE_REORDER_TEMPL_DECL> +struct simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, + typename utils::enable_if< + tag_i == any && tag_o == any && order_keep == fmt_order::any, + spec::direct_copy_except_dim_0>::type> +{ + static bool is_applicable(const memory_desc_wrapper &input_d, + const memory_desc_wrapper &output_d, const primitive_attr_t *attr) { + auto is_dense_no_0 = [](const memory_desc_wrapper &data_d) { + return nelems_no_dim_0(data_d) == _size_no_dim_0(data_d); + }; + /* FIXME: is the formula correct? */ + return input_d.similar_to(output_d, true, false, 1) + && is_dense_no_0(input_d) && is_dense_no_0(output_d) + && simple_attr_check(attr, false); + } + + static status_t execute(const cpu_reorder_pd_t *pd, + const data_t<type_i> *input, data_t<type_o> *output) { + DECLARE_COMMON_PARAMS(); + + input += input_d.blk_off(0); + output += output_d.blk_off(0); + + const int N = input_d.dims()[0]; + const dim_t is = input_d.blocking_desc().strides[0]; + const dim_t os = output_d.blocking_desc().strides[0]; + const dim_t nelems_no_d0 = nelems_no_dim_0(input_d); + const dim_t work_amount = N * nelems_no_d0; + + if (alpha == 1.0 && beta == 0.0) { + parallel(0, [&](const int ithr, const int nthr) { + dim_t n{0}, dim1_s{0}; + dim_t start{0}, end{0}; + balance211(work_amount, nthr, ithr, start, end); + nd_iterator_init(start, n, N, dim1_s, nelems_no_d0); + while(start < end) { + dim_t work_rem = end - start; + dim_t dim1_e = dim1_s + work_rem > nelems_no_d0 + ? nelems_no_d0 : dim1_s + work_rem; + PRAGMA_OMP_SIMD() + for (dim_t e = dim1_s; e < dim1_e; ++e) { + output[os * n + e] = _qz_a1b0<type_i, type_o>()( + input[is * n + e]); + } + nd_iterator_jump(start, end, n, N, dim1_s, nelems_no_d0); + } + }); + } else { + parallel(0, [&](const int ithr, const int nthr) { + dim_t n{0}, dim1_s{0}; + dim_t start{0}, end{0}; + balance211(work_amount, nthr, ithr, start, end); + nd_iterator_init(start, n, N, dim1_s, nelems_no_d0); + while(start < end) { + dim_t work_rem = end - start; + dim_t dim1_e = + dim1_s + work_rem > nelems_no_d0 ? nelems_no_d0 + : dim1_s + work_rem; + PRAGMA_OMP_SIMD() + for (dim_t e = dim1_s; e < dim1_e; ++e){ + output[os * n + e] = _qz<type_i, type_o>()( + input[is * n + e], output[os * n + e], alpha, + beta); + } + nd_iterator_jump(start, end, n, N, dim1_s, nelems_no_d0); + } + }); + } + + return success; + } + +private: + static dim_t nelems_no_dim_0(const memory_desc_wrapper &data_d) { + const int ndims = data_d.ndims(); + if (ndims <= 1) return 1; + return utils::array_product(data_d.dims() + 1, data_d.ndims() - 1); + } + + static dim_t _size_no_dim_0(const memory_desc_wrapper &data_d) { + dims_t blocks; + data_d.compute_blocks(blocks); + + const auto &blk = data_d.blocking_desc(); + + dim_t blk_size = 1; + for (int iblk = 0; iblk < blk.inner_nblks; ++iblk) + blk_size *= blk.inner_blks[iblk]; + + dim_t max_size = blk_size; + for (int d = 1; d < data_d.ndims(); ++d) { + max_size = nstl::max(max_size, + data_d.padded_dims()[d] / blocks[d] * blk.strides[d]); + } + + return max_size; + } +}; + +template <SIMPLE_REORDER_TEMPL_DECL> +struct simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, + typename utils::enable_if< + tag_i == any && tag_o == any && order_keep == fmt_order::any, + spec::reference>::type> +{ + static bool is_applicable(const memory_desc_wrapper &input_d, + const memory_desc_wrapper &output_d, const primitive_attr_t *attr) { + /* supported smask: 0x0...011..10...0, + * i.e. 1 should be contiguous */ + int smask = attr ? attr->output_scales_.mask_ : 0; + for (; smask > 0 && !(smask & 0x1); smask >>= 1); + for (; smask > 0 && smask & 0x1; smask >>= 1); + return true + && input_d.is_blocking_desc() + && output_d.is_blocking_desc() + && !output_d.is_additional_buffer() + && !input_d.is_additional_buffer() + && smask == 0; + } + + static status_t execute(const cpu_reorder_pd_t *pd, + const data_t<type_i> *input, data_t<type_o> *output) { + DECLARE_COMMON_PARAMS(); + + const size_t nelems = input_d.nelems(); + + int ndims_start = 0, ndims_mask = 0; + int smask = pd->attr()->output_scales_.mask_; + for (; smask > 0 && !(smask & 0x1); smask >>= 1) ++ndims_start; + for (; smask > 0 && smask & 0x1; smask >>= 1) ++ndims_mask; + assert(smask == 0); + + const ptrdiff_t D_start + = utils::array_product(input_d.dims(), ndims_start); + const ptrdiff_t D_mask + = utils::array_product(input_d.dims() + ndims_start, ndims_mask); + const ptrdiff_t D_rest = nelems / D_start / D_mask; + + const float *scales = pd->attr()->output_scales_.scales_; + + parallel_nd(D_start, D_mask, D_rest, + [&](ptrdiff_t ds, ptrdiff_t dm, ptrdiff_t dr) { + const float scale = scales[dm]; + + const size_t e = (ds * D_mask + dm) * D_rest + dr; + const auto &i = input[input_d.off_l(e)]; + auto &o = output[output_d.off_l(e)]; + + o = _qz<type_i, type_o>()(i, o, scale, beta); + }); + + return success; + } +}; + + +/* high level class declaration */ + +template <SIMPLE_REORDER_TEMPL_DECL, typename spec = void> +struct simple_reorder_t: public cpu_primitive_t { + struct pd_t: public cpu_reorder_pd_t { + using cpu_reorder_pd_t::cpu_reorder_pd_t; + + DECLARE_COMMON_PD_T("simple:any", simple_reorder_t); + + static status_t create(reorder_pd_t **reorder_pd, + engine_t *engine, const primitive_attr_t *attr, + engine_t *src_engine, const memory_desc_t *src_md, + engine_t *dst_engine, const memory_desc_t *dst_md) { + bool args_ok = true + && src_md->data_type == type_i + && dst_md->data_type == type_o + && simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, spec>:: + is_applicable(src_md, dst_md, attr); + if (!args_ok) + return status::invalid_arguments; + + auto _pd = new pd_t(engine, attr, src_engine, src_md, dst_engine, + dst_md); + if (_pd == nullptr) return status::out_of_memory; + if (_pd->init() != status::success) { + delete _pd; + return status::unimplemented; + } + return safe_ptr_assign<reorder_pd_t>(*reorder_pd, _pd); + } + }; + + simple_reorder_t(const pd_t *apd): cpu_primitive_t(apd) {} + + virtual status_t execute(const exec_ctx_t &ctx) const override { + auto input = CTX_IN_MEM(const data_t<type_i> *, MKLDNN_ARG_FROM); + auto output = CTX_OUT_MEM(data_t<type_o> *, MKLDNN_ARG_TO); + simple_reorder_impl<SIMPLE_REORDER_TEMPL_CALL, spec>::execute( + pd(), input, output); + return status::success; + } + +private: + const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } +}; + +#undef SIMPLE_REORDER_TEMPL_DECL +#undef SIMPLE_REORDER_TEMPL_CALL + +} +} +} + +#endif + +// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |