summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/rnn/rnn_utils.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/rnn/rnn_utils.hpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/cpu/rnn/rnn_utils.hpp225
1 files changed, 225 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/rnn/rnn_utils.hpp b/thirdparty/oidn/mkl-dnn/src/cpu/rnn/rnn_utils.hpp
new file mode 100644
index 0000000000..99eb787a64
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/cpu/rnn/rnn_utils.hpp
@@ -0,0 +1,225 @@
+/*******************************************************************************
+* Copyright 2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#ifndef RNN_UTILS_HPP
+#define RNN_UTILS_HPP
+
+#include "mkldnn.h"
+
+#include "cpu_rnn_pd.hpp"
+
+
+#define rnn_elemwise_sig(f) \
+ void f(const rnn_utils::rnn_conf_t &rnn, acc_data_t *ws_gates_, \
+ src_data_t *states_t_l_, float *c_states_t_l_, \
+ src_data_t *states_tm1_l_, float *c_states_tm1_l_, \
+ float *diff_states_t_l_, float *diff_states_t_lp1_, \
+ float *diff_states_tp1_l_, float *bias_, float *ws_grid_, \
+ float *ws_cell_) const
+
+#define rnn_cell_execution_sig(f) \
+ void f(const rnn_utils::rnn_conf_t &rnn, src_data_t *states_t_l_, \
+ float *c_states_t_l_, float *diff_states_t_l_, \
+ weights_data_t **w_layer_, weights_data_t **w_iter_, \
+ float **bias_, src_data_t *states_t_lm1_, \
+ src_data_t *states_tm1_l_, float *c_states_tm1_l_, \
+ float *diff_states_t_lp1_, float *diff_states_tp1_l_, \
+ float *diff_w_layer_, float *diff_w_iter_, float *diff_bias_, \
+ acc_data_t *ws_gates_, float *ws_grid_, float *ws_cell_) const
+
+#define rnn_grid_execution_sig(f) \
+ void f(const rnn_utils::rnn_conf_t &rnn, weights_data_t **weights_layer_, \
+ weights_data_t **weights_states_, float **bias_, \
+ src_data_t *ws_states_, float *ws_c_states_, \
+ float *ws_diff_states_, acc_data_t *ws_gates_, float *ws_cell_, \
+ float *ws_grid_, float *diff_weights_layer_, \
+ float *diff_weights_iter_, float *diff_bias_) const
+
+#define rnn_gemm_sig(f) \
+ void f(const char transA, const char transB, int m, int n, int k, \
+ const float alpha, const weights_data_t *a_, const int ldA, \
+ const src_data_t *b_, const int ldB, const float beta, \
+ acc_data_t *c_, const int ldC) const
+
+#define rnn_bias_prepare_sig(f) \
+ void f(const rnn_utils::rnn_conf_t &rnn, float **bias_, const float *b_, \
+ float *scratch_bias_) const
+
+#define rnn_bias_finalize_sig(f) \
+ void f(const rnn_utils::rnn_conf_t &rnn, float *scratch_bias_, \
+ const float *w_iter_comp, const float *w_layer_comp) const
+
+#define rnn_weights_assign_sig(f) \
+ void f(const rnn_utils::rnn_conf_t &rnn, const memory_desc_t *md, int nld, \
+ int ld, int OC_size, int IC_size, const int n_parts, \
+ const int *gates_per_part, const size_t *part_weights_pack_size, \
+ weights_data_t **weights_, const weights_data_t *w_, \
+ float **bias_, const float *b_, float *scratch_bias_) const
+
+
+namespace mkldnn {
+namespace impl {
+namespace cpu {
+
+namespace rnn_utils {
+
+using namespace mkldnn::impl::utils;
+
+enum execution_direction_t {
+ l2r,
+ r2l,
+ bi_concat,
+ bi_sum,
+};
+
+enum data_type_conf_t {
+ all_f32,
+ u8u8u8f32,
+ f32u8f32f32,
+ u8u8u8u8,
+ f32u8f32u8
+};
+
+struct rnn_conf_t {
+ execution_direction_t exec_dir;
+ data_type_conf_t dt_conf;
+ int n_layer, n_iter, n_dir, n_gates, n_states;
+ int mb;
+ int slc, sic, dic, dlc;
+ int gates_ld, gates_nld, gates_ws_ld;
+ int n_parts_weights_layer, parts_weights_layer[MKLDNN_RNN_MAX_N_PARTS];
+ int n_parts_weights_iter, parts_weights_iter[MKLDNN_RNN_MAX_N_PARTS];
+ int n_bias, n_parts_bias, parts_bias[MKLDNN_RNN_MAX_N_PARTS];
+ size_t part_weights_iter_pack_size[MKLDNN_RNN_MAX_N_PARTS],
+ part_weights_layer_pack_size[MKLDNN_RNN_MAX_N_PARTS];
+ bool weights_layer_is_packed, weights_iter_is_packed;
+ /* Size of packed data in bytes */
+ size_t weights_layer_comp_offset, weights_layer_pack_size,
+ weights_iter_comp_offset, weights_iter_pack_size;
+
+ bool copy_bias;
+ int weights_layer_ld, weights_layer_nld;
+ int diff_weights_layer_ld, diff_weights_layer_nld;
+ int weights_iter_ld, weights_iter_nld;
+ int diff_weights_iter_ld, diff_weights_iter_nld;
+ int states_nld, states_ws_ld;
+ int weights_iter_compensation_size, weights_layer_compensation_size;
+ bool is_fwd, is_training, is_lbr;
+ bool use_workspace;
+
+ /* Size of workspace for each tensor in bytes */
+ size_t ws_gates_size, ws_states_size, ws_c_states_size, ws_diff_states_size,
+ ws_cell_comp_size, ws_grid_comp_size, ws_per_cell, ws_bias_size;
+ bool merge_gemm_iter, merge_gemm_layer, use_jit_gemm, use_layer_packed_gemm,
+ use_iter_packed_gemm;
+};
+
+bool is_ldigo(const memory_desc_wrapper &md);
+bool is_ldgoi(const memory_desc_wrapper &md);
+
+int get_good_ld(int dim, int sizeof_dt);
+
+void init_conf(rnn_conf_t &rnn, const rnn_desc_t &rd,
+ const memory_desc_wrapper &src_layer_d,
+ const memory_desc_wrapper &src_iter_d,
+ const memory_desc_wrapper &weights_layer_d,
+ const memory_desc_wrapper &weights_iter_d,
+ const memory_desc_wrapper &dst_layer_d);
+
+void set_conf(rnn_conf_t &rnn, const rnn_desc_t &rd,
+ const memory_desc_wrapper &weights_layer_d,
+ const memory_desc_wrapper &weights_iter_d,
+ const memory_desc_wrapper &diff_weights_layer_d,
+ const memory_desc_wrapper &diff_weights_iter_d);
+
+void set_offsets(const rnn_conf_t &rnn, size_t &ws_gates_offset,
+ size_t &ws_h_state_offset, size_t &ws_c_state_offset,
+ size_t &ws_diff_states_offset, size_t &ws_grid_comp_offset,
+ size_t &ws_cell_comp_offset, size_t &ws_bias_offset,
+ size_t &scratchpad_size, size_t &workspace_size);
+
+void get_scratchpad_and_workspace_sizes(const rnn_conf_t &rnn,
+ size_t &scratchpad_size, size_t &workspace_size);
+status_t set_expected_desc(
+ rnn_conf_t &rnn, memory_desc_t &weights_md, bool is_iter);
+status_t set_good_strides(memory_desc_t &weights_md, format_tag_t tag);
+
+template <typename T>
+struct ws_gates_aoc {
+ ws_gates_aoc(const rnn_conf_t &rnn, T *data)
+ : gates_(data, rnn.gates_nld, rnn.gates_ws_ld), DIC_(rnn.dic) {}
+ T &operator()(int batch, int gate, int dic) {
+ return gates_(batch, gate * DIC_ + dic);
+ }
+
+private:
+ mkldnn::impl::utils::array_offset_calculator<T, 2> gates_;
+ int DIC_;
+};
+using ws_gates_aoc_t = ws_gates_aoc<float>;
+using ws_gates_aoc_s32_t = ws_gates_aoc<int32_t>;
+
+struct bias_aoc_t {
+ bias_aoc_t(const rnn_conf_t &rnn, const float *data)
+ : bias_(data, rnn.n_bias, rnn.dic) {}
+ const float &operator()(int bias_n, int dic) { return bias_(bias_n, dic); }
+
+private:
+ mkldnn::impl::utils::array_offset_calculator<const float, 2> bias_;
+};
+
+template <typename T>
+struct ws_states_aoc {
+ ws_states_aoc(const rnn_conf_t &rnn, T *data)
+ : state_(data, rnn.states_nld, rnn.states_ws_ld) {}
+ T &operator()(int batch, int dic) { return state_(batch, dic); }
+
+private:
+ mkldnn::impl::utils::array_offset_calculator<T, 2> state_;
+};
+using ws_states_aoc_t = ws_states_aoc<float>;
+using ws_states_aoc_u8_t = ws_states_aoc<uint8_t>;
+
+struct ws_diff_states_aoc_t {
+ ws_diff_states_aoc_t(const rnn_conf_t &rnn, float *data)
+ : diff_states_(data, rnn.n_states + 1, rnn.n_iter + 1, rnn.states_nld,
+ rnn.states_ws_ld) {}
+ float &operator()(int state_n, int batch, int dic) {
+ return diff_states_(state_n, 0, batch, dic);
+ }
+
+private:
+ mkldnn::impl::utils::array_offset_calculator<float, 4> diff_states_;
+};
+
+struct ws_diff_w_iter_aoc_t {
+ ws_diff_w_iter_aoc_t(const rnn_conf_t &rnn, float *data)
+ : diff_weights_iter_(
+ data, rnn.diff_weights_iter_nld, rnn.diff_weights_iter_ld)
+ , DIC_(rnn.dic) {}
+ float &operator()(int sic, int gate, int dic) {
+ return diff_weights_iter_(sic, gate * DIC_ + dic);
+ }
+
+private:
+ mkldnn::impl::utils::array_offset_calculator<float, 2> diff_weights_iter_;
+ int DIC_;
+};
+}
+}
+}
+}
+#endif