summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/ref_eltwise.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/ref_eltwise.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/cpu/ref_eltwise.cpp297
1 files changed, 297 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/ref_eltwise.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/ref_eltwise.cpp
new file mode 100644
index 0000000000..7beee8d323
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/cpu/ref_eltwise.cpp
@@ -0,0 +1,297 @@
+/*******************************************************************************
+* Copyright 2016-2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include <assert.h>
+
+#include "c_types_map.hpp"
+#include "type_helpers.hpp"
+#include "math_utils.hpp"
+#include "mkldnn_thread.hpp"
+
+#include "ref_eltwise.hpp"
+
+namespace mkldnn {
+namespace impl {
+namespace cpu {
+
+using namespace alg_kind;
+using namespace math;
+
+ref_eltwise_scalar_fwd_t::ref_eltwise_scalar_fwd_t(alg_kind_t alg, float alpha,
+ float beta): alg_(alg), alpha_(alpha), beta_(beta) {
+ assert(utils::one_of(alg_, eltwise_relu, eltwise_tanh, eltwise_elu,
+ eltwise_square, eltwise_abs, eltwise_sqrt, eltwise_linear,
+ eltwise_bounded_relu, eltwise_soft_relu, eltwise_logistic));
+}
+
+ref_eltwise_scalar_fwd_t::ref_eltwise_scalar_fwd_t(
+ const post_ops_t::entry_t::eltwise_t &eltwise)
+ : ref_eltwise_scalar_fwd_t(eltwise.alg, eltwise.alpha, eltwise.beta) {}
+
+float ref_eltwise_scalar_fwd_t::compute_scalar(float s) {
+ switch (alg_) {
+ case eltwise_relu: return relu_fwd(s, alpha_);
+ case eltwise_tanh: return tanh_fwd(s);
+ case eltwise_elu: return elu_fwd(s, alpha_);
+ case eltwise_square: return square_fwd(s);
+ case eltwise_abs: return abs_fwd(s);
+ case eltwise_sqrt: return sqrt_fwd(s);
+ case eltwise_linear: return linear_fwd(s, alpha_, beta_);
+ case eltwise_bounded_relu: return bounded_relu_fwd(s, alpha_);
+ case eltwise_soft_relu: return soft_relu_fwd(s);
+ case eltwise_logistic: return logistic_fwd(s);
+ default: assert(!"unknown eltwise alg_kind");
+ }
+
+ return 0.f;
+}
+
+template <impl::data_type_t data_type>
+void ref_eltwise_fwd_t<data_type>::execute_forward_nCspBc_padded(
+ const exec_ctx_t &ctx) const {
+ auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
+ auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
+
+ const memory_desc_wrapper data_d(pd()->src_md());
+ const blocking_desc_t &blk = data_d.blocking_desc();
+ const int block = blk.inner_blks[0];
+
+ const int MB = pd()->MB();
+ const int C = pd()->C() / block;
+ const int C_PADDED = data_d.padded_dims()[1] / block;
+ const int tail = pd()->C() % block;
+ const int SP = pd()->D() * pd()->H() * pd()->W();
+ const auto alg_kind = pd()->desc()->alg_kind;
+ const float alpha = pd()->desc()->alpha;
+ const float beta = pd()->desc()->beta;
+
+ auto ker = [=] (data_t &d, data_t s) {
+ switch (alg_kind) {
+ case eltwise_linear: d = linear_fwd(s, alpha, beta); break;
+ case eltwise_bounded_relu:
+ d = bounded_relu_fwd(s, alpha); break;
+ case eltwise_soft_relu: d = soft_relu_fwd(s); break;
+ case eltwise_logistic: d = logistic_fwd(s); break;
+ default: assert(!"unknown eltwise alg_kind");
+ }
+ };
+
+ // FIXME: integer overflow?
+
+ parallel_nd(MB, C_PADDED, SP,
+ [&](int n, int c, int sp) {
+ auto d_off = (n*C_PADDED*SP + c*SP + sp) * block;
+ if (c < C) {
+ for (int v = 0; v < block; v++)
+ ker(dst[d_off + v], src[d_off + v]);
+ } else {
+ for (int v = 0; v < tail; v++)
+ ker(dst[d_off + v], src[d_off + v]);
+ }
+ });
+}
+
+template <impl::data_type_t data_type>
+void ref_eltwise_fwd_t<data_type>::execute_forward_generic(
+ const exec_ctx_t &ctx) const {
+ /* fast return */
+ if (pd()->has_zero_dim_memory()) return;
+
+ auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
+ auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
+
+ const memory_desc_wrapper data_d(pd()->src_md());
+
+ const int MB = pd()->MB();
+ const int C = pd()->C();
+ const int D = pd()->D();
+ const int H = pd()->H();
+ const int W = pd()->W();
+ const auto alg_kind = pd()->desc()->alg_kind;
+ const float alpha = pd()->desc()->alpha;
+ const float beta = pd()->desc()->beta;
+ const bool is_3d = pd()->desc()->data_desc.ndims == 5;
+
+ parallel_nd(MB, C, D, H, W,
+ [&](int n, int c, int id, int h, int w) {
+ auto d_off = is_3d
+ ? data_d.off(n, c, id, h, w) : data_d.off(n, c, h, w);
+ data_t s = src[d_off];
+ data_t &d = dst[d_off];
+ switch (alg_kind) {
+ case eltwise_relu: d = relu_fwd(s, alpha); break;
+ case eltwise_tanh: d = tanh_fwd(s); break;
+ case eltwise_elu: d = elu_fwd(s, alpha); break;
+ case eltwise_square: d = square_fwd(s); break;
+ case eltwise_abs: d = abs_fwd(s); break;
+ case eltwise_sqrt: d = sqrt_fwd(s); break;
+ case eltwise_linear: d = linear_fwd(s, alpha, beta); break;
+ case eltwise_bounded_relu:
+ d = bounded_relu_fwd(s, alpha); break;
+ case eltwise_soft_relu: d = soft_relu_fwd(s); break;
+ case eltwise_logistic: d = logistic_fwd(s); break;
+ default: assert(!"unknown eltwise alg_kind");
+ }
+ });
+}
+
+template <impl::data_type_t data_type>
+void ref_eltwise_fwd_t<data_type>::execute_forward_dense(
+ const exec_ctx_t &ctx) const {
+ auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
+ auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
+
+ const memory_desc_wrapper data_d(pd()->src_md());
+
+ const ptrdiff_t nelems = static_cast<ptrdiff_t>(data_d.nelems(true));
+ const auto alg_kind = pd()->desc()->alg_kind;
+ const float alpha = pd()->desc()->alpha;
+ const float beta = pd()->desc()->beta;
+
+ src += data_d.offset0();
+ dst += data_d.offset0();
+
+ if (alg_kind == eltwise_relu) {
+ // a fast path for relu as the most popular activation
+ parallel_nd(nelems, [&](ptrdiff_t e) {
+ dst[e] = relu_fwd(src[e], alpha);
+ });
+ return;
+ }
+
+ parallel_nd(nelems, [&](ptrdiff_t e) {
+ const data_t s = src[e];
+ data_t &d = dst[e];
+
+ switch (alg_kind) {
+ case eltwise_tanh: d = tanh_fwd(s); break;
+ case eltwise_elu: d = elu_fwd(s, alpha); break;
+ case eltwise_square: d = square_fwd(s); break;
+ case eltwise_abs: d = abs_fwd(s); break;
+ case eltwise_sqrt: d = sqrt_fwd(s); break;
+ case eltwise_linear: d = linear_fwd(s, alpha, beta); break;
+ case eltwise_bounded_relu: d = bounded_relu_fwd(s, alpha); break;
+ case eltwise_soft_relu: d = soft_relu_fwd(s); break;
+ case eltwise_logistic: d = logistic_fwd(s); break;
+ default: assert(!"unknown eltwise alg_kind");
+ }
+ });
+}
+
+template <impl::data_type_t data_type>
+void ref_eltwise_bwd_t<data_type>::execute_backward_generic(
+ const exec_ctx_t &ctx) const {
+ /* fast return */
+ if (pd()->has_zero_dim_memory()) return;
+
+ auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
+ auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
+ auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
+
+ const memory_desc_wrapper data_d(pd()->src_md());
+ const memory_desc_wrapper diff_data_d(pd()->diff_src_md());
+
+ const int MB = pd()->MB();
+ const int C = pd()->C();
+ const int D = pd()->D();
+ const int H = pd()->H();
+ const int W = pd()->W();
+ const auto alg_kind = pd()->desc()->alg_kind;
+ const float alpha = pd()->desc()->alpha;
+ const float beta = pd()->desc()->beta;
+ const bool is_3d = pd()->desc()->data_desc.ndims == 5;
+
+ parallel_nd(MB, C, D, H, W,
+ [&](int n, int c, int d, int h, int w) {
+ auto data_off = is_3d
+ ? data_d.off(n, c, d, h, w) : data_d.off(n, c, h, w);
+ auto diff_data_off = is_3d
+ ? diff_data_d.off(n, c, d, h, w)
+ : diff_data_d.off(n, c, h, w);
+ data_t s = src[data_off];
+ data_t dd = diff_dst[diff_data_off];
+ data_t &ds = diff_src[diff_data_off];
+ switch (alg_kind) {
+ case eltwise_relu: ds = relu_bwd(dd, s, alpha); break;
+ case eltwise_tanh: ds = tanh_bwd(dd, s); break;
+ case eltwise_elu: ds = elu_bwd(dd, s, alpha); break;
+ case eltwise_square: ds = square_bwd(dd, s); break;
+ case eltwise_abs: ds = abs_bwd(dd, s); break;
+ case eltwise_sqrt: ds = sqrt_bwd(dd, s); break;
+ case eltwise_linear:
+ ds = linear_bwd(dd, s, alpha, beta); break;
+ case eltwise_bounded_relu:
+ ds = bounded_relu_bwd(dd, s, alpha); break;
+ case eltwise_soft_relu: ds = soft_relu_bwd(dd, s); break;
+ case eltwise_logistic: ds = logistic_bwd(dd, s); break;
+ default: assert(!"unknown eltwise alg_kind");
+ }
+ });
+}
+
+template <impl::data_type_t data_type>
+void ref_eltwise_bwd_t<data_type>::execute_backward_dense(
+ const exec_ctx_t &ctx) const {
+ auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
+ auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
+ auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
+
+ const memory_desc_wrapper data_d(pd()->src_md());
+ const memory_desc_wrapper diff_data_d(pd()->diff_src_md());
+
+ const ptrdiff_t nelems = static_cast<ptrdiff_t>(data_d.nelems(true));
+ const auto alg_kind = pd()->desc()->alg_kind;
+ const float alpha = pd()->desc()->alpha;
+ const float beta = pd()->desc()->beta;
+
+ src += data_d.offset0();
+ diff_dst += diff_data_d.offset0();
+ diff_src += diff_data_d.offset0();
+
+ parallel_nd(nelems, [&](ptrdiff_t e) {
+ const data_t dd = diff_dst[e];
+ const data_t s = src[e];
+ data_t &ds = diff_src[e];
+
+ switch (alg_kind) {
+ case eltwise_relu: ds = relu_bwd(dd, s, alpha); break;
+ case eltwise_tanh: ds = tanh_bwd(dd, s); break;
+ case eltwise_elu: ds = elu_bwd(dd, s, alpha); break;
+ case eltwise_square: ds = square_bwd(dd, s); break;
+ case eltwise_abs: ds = abs_bwd(dd, s); break;
+ case eltwise_sqrt: ds = sqrt_bwd(dd, s); break;
+ case eltwise_linear: ds = linear_bwd(dd, s, alpha, beta); break;
+ case eltwise_bounded_relu: ds = bounded_relu_bwd(dd, s, alpha); break;
+ case eltwise_soft_relu: ds = soft_relu_bwd(dd, s); break;
+ case eltwise_logistic: ds = logistic_bwd(dd, s); break;
+ default: assert(!"unknown eltwise alg_kind");
+ }
+ });
+}
+
+template struct ref_eltwise_fwd_t<data_type::f32>;
+template struct ref_eltwise_fwd_t<data_type::s32>;
+template struct ref_eltwise_fwd_t<data_type::s8>;
+template struct ref_eltwise_fwd_t<data_type::u8>;
+
+template struct ref_eltwise_bwd_t<data_type::f32>;
+template struct ref_eltwise_bwd_t<data_type::s32>;
+
+}
+}
+}
+
+// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s