summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/ref_convolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/ref_convolution.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/cpu/ref_convolution.cpp395
1 files changed, 395 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/ref_convolution.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/ref_convolution.cpp
new file mode 100644
index 0000000000..c0a979c4cf
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/cpu/ref_convolution.cpp
@@ -0,0 +1,395 @@
+/*******************************************************************************
+* Copyright 2016-2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include "c_types_map.hpp"
+#include "math_utils.hpp"
+#include "mkldnn_thread.hpp"
+#include "mkldnn_traits.hpp"
+#include "type_helpers.hpp"
+
+#include "ref_convolution.hpp"
+
+namespace mkldnn {
+namespace impl {
+namespace cpu {
+
+using math::saturate;
+using math::get_bias;
+
+template <data_type_t src_type, data_type_t wei_type,
+ data_type_t dst_type, data_type_t acc_type>
+void ref_convolution_fwd_t<src_type, wei_type, dst_type, acc_type>::
+execute_forward(const exec_ctx_t &ctx) const {
+ auto src = CTX_IN_MEM(const src_data_t *, MKLDNN_ARG_SRC);
+ auto weights = CTX_IN_MEM(const wei_data_t *, MKLDNN_ARG_WEIGHTS);
+ auto bias = CTX_IN_MEM(const char *, MKLDNN_ARG_BIAS);
+ auto dst = CTX_OUT_MEM(dst_data_t *, MKLDNN_ARG_DST);
+
+ const memory_desc_wrapper src_d(pd()->src_md());
+ const memory_desc_wrapper dst_d(pd()->dst_md());
+ const memory_desc_wrapper weights_d(pd()->weights_md(0));
+ const memory_desc_wrapper bias_d(pd()->weights_md(1));
+
+ const bool with_groups = pd()->with_groups();
+
+ const int G = pd()->G();
+ const int MB = pd()->MB();
+ const int OD = pd()->OD();
+ const int OH = pd()->OH();
+ const int OW = pd()->OW();
+ const int ID = pd()->ID();
+ const int IH = pd()->IH();
+ const int IW = pd()->IW();
+
+ const int OC = pd()->OC() / G;
+ const int IC = pd()->IC() / G;
+ const int KD = pd()->KD();
+ const int KH = pd()->KH();
+ const int KW = pd()->KW();
+
+ const int KSD = pd()->KSD();
+ const int KSH = pd()->KSH();
+ const int KSW = pd()->KSW();
+
+ const int KDD = pd()->KDD();
+ const int KDH = pd()->KDH();
+ const int KDW = pd()->KDW();
+
+ const int padFront = pd()->padFront();
+ const int padT = pd()->padT();
+ const int padL = pd()->padL();
+
+ const bool with_relu = 0; // TODO: change if support post_ops
+ const float nslope = 0.f;
+
+ const int ndims = pd()->desc()->src_desc.ndims;
+
+ auto ker = [=](int g, int mb, int oc, int od, int oh,
+ int ow) {
+ acc_data_t d = 0;
+ for (int ic = 0; ic < IC; ++ic)
+ for (int kd = 0; kd < KD; ++kd)
+ for (int kh = 0; kh < KH; ++kh)
+ for (int kw = 0; kw < KW; ++kw) {
+ const int id = od * KSD - padFront + kd * (1 + KDD);
+ const int ih = oh * KSH - padT + kh * (1 + KDH);
+ const int iw = ow * KSW - padL + kw * (1 + KDW);
+
+ if (id < 0 || id >= ID) continue;
+ if (ih < 0 || ih >= IH) continue;
+ if (iw < 0 || iw >= IW) continue;
+
+ if (ndims == 5)
+ d += (acc_data_t)src[src_d.off(mb, g*IC + ic, id, ih, iw)]
+ * (with_groups
+ ? weights[weights_d.off(g, oc, ic, kd, kh, kw)]
+ : weights[weights_d.off(oc, ic, kd, kh, kw)]);
+ else if (ndims == 4)
+ d += (acc_data_t)src[src_d.off(mb, g*IC + ic, ih, iw)]
+ * (with_groups
+ ? weights[weights_d.off(g, oc, ic, kh, kw)]
+ : weights[weights_d.off(oc, ic, kh, kw)]);
+ else if (ndims == 3)
+ d += (acc_data_t)src[src_d.off(mb, g*IC + ic, iw)]
+ * (with_groups
+ ? weights[weights_d.off(g, oc, ic, kw)]
+ : weights[weights_d.off(oc, ic, kw)]);
+ else
+ assert(false);
+
+ }
+ return d;
+ };
+
+ parallel_nd(G, MB, OC, OD, OH, OW,
+ [&](int g, int mb, int oc, int od, int oh, int ow) {
+ float a = bias
+ ? get_bias(bias, bias_d.off(g * OC + oc),
+ pd()->desc()->bias_desc.data_type)
+ : 0;
+ a += ker(g, mb, oc, od, oh, ow);
+ if (with_relu && a < 0)
+ a = a * nslope;
+ if (ndims == 5)
+ dst[dst_d.off(mb, g*OC + oc, od, oh, ow)] = saturate<dst_data_t>(a);
+ else if (ndims == 4)
+ dst[dst_d.off(mb, g*OC + oc, oh, ow)] = saturate<dst_data_t>(a);
+ else if (ndims == 3)
+ dst[dst_d.off(mb, g*OC + oc, ow)] = saturate<dst_data_t>(a);
+ else
+ assert(false);
+ });
+}
+
+template <data_type_t diff_src_type, data_type_t wei_type,
+ data_type_t diff_dst_type, data_type_t acc_type>
+void ref_convolution_bwd_data_t<diff_src_type, wei_type, diff_dst_type,
+ acc_type>::execute_backward_data(const exec_ctx_t &ctx) const {
+ auto diff_dst = CTX_IN_MEM(const diff_dst_data_t *, MKLDNN_ARG_DIFF_DST);
+ auto weights = CTX_IN_MEM(const wei_data_t *, MKLDNN_ARG_WEIGHTS);
+ auto bias = CTX_IN_MEM(const char *, MKLDNN_ARG_BIAS);
+ auto diff_src = CTX_OUT_MEM(diff_src_data_t *, MKLDNN_ARG_DIFF_SRC);
+
+ const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md());
+ const memory_desc_wrapper diff_src_d(pd()->diff_src_md());
+ const memory_desc_wrapper weights_d(pd()->weights_md(0));
+ const memory_desc_wrapper bias_d(pd()->weights_md(1));
+
+ const bool with_groups = pd()->with_groups();
+
+ const int G = pd()->G();
+ const int MB = pd()->MB();
+ const int OD = pd()->OD();
+ const int OH = pd()->OH();
+ const int OW = pd()->OW();
+ const int ID = pd()->ID();
+ const int IH = pd()->IH();
+ const int IW = pd()->IW();
+
+ const int OC = pd()->OC() / G;
+ const int IC = pd()->IC() / G;
+ const int KD = pd()->KD();
+ const int KH = pd()->KH();
+ const int KW = pd()->KW();
+
+ const int KSD = pd()->KSD();
+ const int KSH = pd()->KSH();
+ const int KSW = pd()->KSW();
+
+ const int KDD = pd()->KDD();
+ const int KDH = pd()->KDH();
+ const int KDW = pd()->KDW();
+
+ const int padFront = pd()->padFront();
+ const int padT = pd()->padT();
+ const int padL = pd()->padL();
+
+ const int ndims = pd()->desc()->diff_src_desc.ndims;
+
+ auto ker = [=](int g, int mb, int ic, int id, int ih,
+ int iw) {
+ acc_data_t d = 0;
+ for (int oc = 0; oc < OC; ++oc)
+ for (int kd = 0; kd < KD; ++kd)
+ for (int kh = 0; kh < KH; ++kh)
+ for (int kw = 0; kw < KW; ++kw) {
+ if (iw + padL < kw * (1 + KDW)
+ || ih + padT < kh * (1 + KDH)
+ || id + padFront < kd * (1 + KDD))
+ continue;
+ int ow = iw - kw * (1 + KDW) + padL;
+ int oh = ih - kh * (1 + KDH) + padT;
+ int od = id - kd * (1 + KDD) + padFront;
+ if (ow % KSW != 0 || oh % KSH != 0 || od % KSD != 0)
+ continue;
+
+ ow /= KSW;
+ oh /= KSH;
+ od /= KSD;
+
+ if (od < OD && oh < OH && ow < OW) {
+ if (ndims == 5)
+ d += (acc_data_t)diff_dst[diff_dst_d.off(mb, g*OC
+ + oc, od, oh, ow)] * (with_groups
+ ? weights[weights_d.off(g, oc, ic, kd, kh, kw)]
+ : weights[weights_d.off(oc, ic, kd, kh, kw)]);
+ else if (ndims == 4)
+ d += (acc_data_t)diff_dst[diff_dst_d.off(mb, g*OC
+ + oc, oh, ow)] * (with_groups
+ ? weights[weights_d.off(g, oc, ic, kh, kw)]
+ : weights[weights_d.off(oc, ic, kh, kw)]);
+ else if (ndims == 3)
+ d += (acc_data_t)diff_dst[diff_dst_d.off(mb, g*OC
+ + oc, ow)] * (with_groups
+ ? weights[weights_d.off(g, oc, ic, kw)]
+ : weights[weights_d.off(oc, ic, kw)]);
+ else
+ assert(false);
+ }
+ }
+ return d;
+ };
+
+ parallel_nd(G, MB, IC, ID, IH, IW,
+ [&](int g, int mb, int ic, int id, int ih, int iw) {
+ auto ds_idx = (ndims == 5)
+ ? diff_src_d.off(mb, g*IC + ic, id, ih, iw)
+ : (ndims == 4)
+ ? diff_src_d.off(mb, g*IC + ic, ih, iw)
+ : diff_src_d.off(mb, g*IC + ic, iw);
+ float a = bias
+ ? get_bias(bias, bias_d.off(g * IC + ic),
+ pd()->desc()->bias_desc.data_type)
+ : 0;
+ a += ker(g, mb, ic, id, ih, iw);
+ diff_src[ds_idx] = saturate<diff_src_data_t>(a);
+ });
+}
+
+template <data_type_t src_type, data_type_t diff_wei_type,
+ data_type_t diff_dst_type, data_type_t acc_type>
+void ref_convolution_bwd_weights_t<src_type, diff_wei_type, diff_dst_type,
+ acc_type>::execute_backward_weights(const exec_ctx_t &ctx) const {
+ auto diff_dst = CTX_IN_MEM(const diff_dst_data_t *, MKLDNN_ARG_DIFF_DST);
+ auto src = CTX_IN_MEM(const src_data_t *, MKLDNN_ARG_SRC);
+ auto diff_weights = CTX_OUT_MEM(diff_wei_data_t *, MKLDNN_ARG_DIFF_WEIGHTS);
+ auto diff_bias = CTX_OUT_MEM(diff_wei_data_t *, MKLDNN_ARG_DIFF_BIAS);
+
+ const memory_desc_wrapper src_d(pd()->src_md());
+ const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md());
+ const memory_desc_wrapper diff_weights_d(pd()->diff_weights_md(0));
+ const memory_desc_wrapper diff_bias_d(pd()->diff_weights_md(1));
+
+ const bool with_groups = pd()->with_groups();
+
+ const int G = pd()->G();
+ const int MB = pd()->MB();
+ const int OD = pd()->OD();
+ const int OH = pd()->OH();
+ const int OW = pd()->OW();
+ const int ID = pd()->ID();
+ const int IH = pd()->IH();
+ const int IW = pd()->IW();
+
+ const int OC = pd()->OC() / G;
+ const int IC = pd()->IC() / G;
+ const int KD = pd()->KD();
+ const int KH = pd()->KH();
+ const int KW = pd()->KW();
+
+ const int KSD = pd()->KSD();
+ const int KSH = pd()->KSH();
+ const int KSW = pd()->KSW();
+
+ const int KDD = pd()->KDD();
+ const int KDH = pd()->KDH();
+ const int KDW = pd()->KDW();
+
+ const int padFront = pd()->padFront();
+ const int padT = pd()->padT();
+ const int padL = pd()->padL();
+
+ const int ndims = pd()->desc()->src_desc.ndims;
+
+auto ker = [=](acc_data_t &d, int g, int oc, int ic, int kd, int kh, int kw) {
+ for (int mb = 0; mb < MB; ++mb)
+ for (int od = 0; od < OD; ++od)
+ for (int oh = 0; oh < OH; ++oh)
+ for (int ow = 0; ow < OW; ++ow) {
+ if (ow*KSW + kw * (1 + KDW) < padL
+ || oh*KSH + kh * (1 + KDH) < padT
+ || od*KSD + kd * (1 + KDD) < padFront
+ || ow*KSW + kw * (1 + KDW) >= IW + padL
+ || oh*KSH + kh * (1 + KDH) >= IH + padT
+ || od*KSD + kd * (1 + KDD) >= ID + padFront)
+ continue;
+
+ int id = od*KSD - padFront + kd * (1 + KDD);
+ int ih = oh*KSH - padT + kh * (1 + KDH);
+ int iw = ow*KSW - padL + kw * (1 + KDW);
+ if (ndims == 5)
+ d += (acc_data_t)diff_dst[diff_dst_d.off(mb, g*OC + oc, od,
+ oh, ow)] * src[src_d.off(mb, g*IC + ic, id, ih, iw)];
+ else if (ndims == 4)
+ d += (acc_data_t)diff_dst[diff_dst_d.off(mb, g*OC + oc, oh, ow)]
+ * src[src_d.off(mb, g*IC + ic, ih, iw)];
+ else if (ndims == 3)
+ d += (acc_data_t)diff_dst[diff_dst_d.off(mb, g*OC + oc, ow)]
+ * src[src_d.off(mb, g*IC + ic, iw)];
+ else
+ assert(false);
+ }
+ };
+
+ auto ker_bias = [=](acc_data_t &d, int g, int oc) {
+ for (int mb = 0; mb < MB; ++mb)
+ for (int od = 0; od < OD; ++od)
+ for (int oh = 0; oh < OH; ++oh)
+ for (int ow = 0; ow < OW; ++ow) {
+ if (ndims == 5)
+ d += (acc_data_t)diff_dst[diff_dst_d.off(mb, g*OC + oc, od, oh,
+ ow)];
+ else if (ndims == 4)
+ d += (acc_data_t)diff_dst[diff_dst_d.off(mb, g*OC + oc, oh,
+ ow)];
+ else if (ndims == 3)
+ d += (acc_data_t)diff_dst[diff_dst_d.off(mb, g*OC + oc, ow)];
+ else
+ assert(false);
+ }
+ };
+
+ parallel_nd(G, OC, [&](int g, int oc) {
+ if (diff_bias) {
+ // XXX: loss of precision when bias is a float...
+ acc_data_t db = 0;
+ ker_bias(db, g, oc);
+ diff_bias[diff_bias_d.off(g*OC+oc)]
+ = saturate<diff_wei_data_t>(db);
+ }
+
+ for (int ic = 0; ic < IC; ++ic)
+ for (int kd = 0; kd < KD; ++kd)
+ for (int kh = 0; kh < KH; ++kh)
+ for (int kw = 0; kw < KW; ++kw) {
+ acc_data_t dw = 0;
+ ker(dw, g, oc, ic, kd, kh, kw);
+
+ if (ndims == 5) {
+ auto idx = with_groups
+ ? diff_weights_d.off(g, oc, ic, kd, kh, kw)
+ : diff_weights_d.off(oc, ic, kd, kh, kw);
+ diff_weights[idx] = saturate<diff_wei_data_t>(dw);
+ } else if (ndims == 4) {
+ auto idx = with_groups
+ ? diff_weights_d.off(g, oc, ic, kh, kw)
+ : diff_weights_d.off(oc, ic, kh, kw);
+ diff_weights[idx] = saturate<diff_wei_data_t>(dw);
+ } else if (ndims == 3) {
+ auto idx = with_groups
+ ? diff_weights_d.off(g, oc, ic, kw)
+ : diff_weights_d.off(oc, ic, kw);
+ diff_weights[idx] = saturate<diff_wei_data_t>(dw);
+ } else {
+ assert(false);
+ }
+ }
+ });
+}
+
+using namespace data_type;
+
+template struct ref_convolution_fwd_t<f32>;
+
+template struct ref_convolution_fwd_t<u8, s8, f32, s32>;
+template struct ref_convolution_fwd_t<u8, s8, s32, s32>;
+template struct ref_convolution_fwd_t<u8, s8, s8, s32>;
+template struct ref_convolution_fwd_t<u8, s8, u8, s32>;
+
+template struct ref_convolution_bwd_data_t<f32, f32, f32, f32>;
+
+template struct ref_convolution_bwd_data_t<f32, s8, u8, s32>;
+template struct ref_convolution_bwd_data_t<s32, s8, u8, s32>;
+template struct ref_convolution_bwd_data_t<s8, s8, u8, s32>;
+template struct ref_convolution_bwd_data_t<u8, s8, u8, s32>;
+
+template struct ref_convolution_bwd_weights_t<f32, f32, f32, f32>;
+
+}
+}
+}
+
+// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s