summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/nchw_pooling.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/nchw_pooling.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/cpu/nchw_pooling.cpp317
1 files changed, 317 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/nchw_pooling.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/nchw_pooling.cpp
new file mode 100644
index 0000000000..ef4c42bacf
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/cpu/nchw_pooling.cpp
@@ -0,0 +1,317 @@
+/*******************************************************************************
+* Copyright 2017-2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include <assert.h>
+#include <math.h>
+
+#include "c_types_map.hpp"
+#include "type_helpers.hpp"
+#include "math_utils.hpp"
+#include "mkldnn_thread.hpp"
+#include "nstl.hpp"
+
+#include "nchw_pooling.hpp"
+
+namespace mkldnn {
+namespace impl {
+namespace cpu {
+
+template <impl::data_type_t data_type>
+void nchw_pooling_fwd_t<data_type>::execute_forward(
+ const exec_ctx_t &ctx) const {
+ using namespace alg_kind;
+
+ auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
+ auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
+ auto ws = CTX_OUT_MEM(unsigned char *, MKLDNN_ARG_WORKSPACE);
+
+ const memory_desc_wrapper ws_d(pd()->workspace_md());
+ const data_type_t ws_dt = ws ? ws_d.data_type() : data_type::undef;
+
+ const int MB = pd()->MB();
+ const int C = pd()->C();
+ const int OD = pd()->OD();
+ const int OH = pd()->OH();
+ const int OW = pd()->OW();
+ const int ID = pd()->ID();
+ const int IH = pd()->IH();
+ const int IW = pd()->IW();
+ const int KD = pd()->KD();
+ const int KH = pd()->KH();
+ const int KW = pd()->KW();
+ const int SD = pd()->KSD();
+ const int SH = pd()->KSH();
+ const int SW = pd()->KSW();
+ const int padF = pd()->padFront();
+ const int padT = pd()->padT();
+ const int padL = pd()->padL();
+
+ auto alg = pd()->desc()->alg_kind;
+
+ auto apply_offset = [=](int index, int offset) {
+ return (index > offset) ? index - offset : 0;
+ };
+
+ auto set_ws = [=](int mb, int c, int od, int oh, int ow, int value) {
+ if (ws) {
+ assert(ws_dt == data_type::u8 || ws_dt == data_type::s32);
+ size_t ws_offset
+ = (size_t)OW * OH * OD * C * mb
+ + (size_t)OW * OH * OD * c
+ + (size_t)OW * OH * od
+ + (size_t)OW * oh
+ + (size_t)ow;
+ if (ws_dt == data_type::u8) {
+ assert(0 <= value && value <= 255);
+ ws[ws_offset] = value;
+ } else
+ reinterpret_cast<int *>(ws)[ws_offset] = value;
+ }
+ };
+
+ auto ker_max = [=](data_t *d, int mb, int c, int od, int oh, int ow) {
+ for (int kd = 0; kd < KD; ++kd) {
+ for (int kh = 0; kh < KH; ++kh) {
+ for (int kw = 0; kw < KW; ++kw) {
+ const int id = od * SD - padF + kd;
+ const int ih = oh * SH - padT + kh;
+ const int iw = ow * SW - padL + kw;
+
+ if (id < 0 || id >= ID) continue;
+ if (ih < 0 || ih >= IH) continue;
+ if (iw < 0 || iw >= IW) continue;
+
+ auto src_offset
+ = (size_t)IW * IH * ID * C * mb
+ + (size_t)IW * IH * ID * c
+ + (size_t)IW * IH * id
+ + (size_t)IW * ih
+ + (size_t)iw;
+ auto s = src[src_offset];
+ if (s > d[0]) {
+ d[0] = s;
+ set_ws(mb, c, od, oh, ow, kd*KH*KW + kh*KW + kw);
+ }
+ }
+ }
+ }
+ };
+
+ auto ker_avg = [=](data_t *d, int mb, int c, int od, int oh, int ow) {
+ auto id_start = apply_offset(od*SD, padF);
+ auto ih_start = apply_offset(oh*SH, padT);
+ auto iw_start = apply_offset(ow*SW, padL);
+ auto id_end = nstl::min(od*SD - padF + KD, ID);
+ auto ih_end = nstl::min(oh*SH - padT + KH, IH);
+ auto iw_end = nstl::min(ow*SW - padL + KW, IW);
+
+ auto num_summands = (alg == pooling_avg_include_padding) ? KD*KW*KH
+ : (id_end - id_start)*(ih_end - ih_start)*(iw_end - iw_start);
+
+ for (int id = id_start; id < id_end; ++id) {
+ for (int ih = ih_start; ih < ih_end; ++ih) {
+ for (int iw = iw_start; iw < iw_end; ++iw) {
+ auto src_offset
+ = (size_t)IW * IH * ID * C * mb
+ + (size_t)IW * IH * ID * c
+ + (size_t)IW * IH * id
+ + (size_t)IW * ih
+ + (size_t)iw;
+ d[0] += src[src_offset];
+ }
+ }
+ }
+
+ d[0] = math::out_round<data_t>((float)d[0] / num_summands);
+ };
+
+
+ if (pd()->desc()->alg_kind == pooling_max) {
+ parallel_nd(MB, C, OD, OH, OW,
+ [&](int mb, int c, int od, int oh, int ow) {
+ size_t dst_offset
+ = (size_t)OW * OH * OD * C * mb
+ + (size_t)OW * OH * OD * c
+ + (size_t)OW * OH * od
+ + (size_t)OW * oh
+ + (size_t)ow;
+ data_t *d = &dst[dst_offset];
+ d[0] = nstl::numeric_limits<data_t>::lowest();
+ set_ws(mb, c, od, oh, ow, 0);
+ ker_max(d, mb, c, od, oh, ow);
+ });
+ } else {
+ parallel_nd(MB, C, OD, OH, OW,
+ [&](int mb, int c, int od, int oh, int ow) {
+ size_t dst_offset
+ = (size_t)OW * OH * OD * C * mb
+ + (size_t)OW * OH * OD * c
+ + (size_t)OW * OH * od
+ + (size_t)OW * oh
+ + (size_t)ow;
+ data_t *d = &dst[dst_offset];
+ d[0] = 0;
+ ker_avg(d, mb, c, od, oh, ow);
+ });
+ }
+}
+
+template <impl::data_type_t data_type>
+void nchw_pooling_bwd_t<data_type>::execute_backward(
+ const exec_ctx_t &ctx) const {
+ using namespace alg_kind;
+
+ auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
+ auto ws = CTX_IN_MEM(const unsigned char *, MKLDNN_ARG_WORKSPACE);
+ auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
+
+ const memory_desc_wrapper ws_d(pd()->workspace_md());
+
+ const int MB = pd()->MB();
+ const int C = pd()->C();
+ const int OD = pd()->OD();
+ const int OH = pd()->OH();
+ const int OW = pd()->OW();
+ const int ID = pd()->ID();
+ const int IH = pd()->IH();
+ const int IW = pd()->IW();
+ const int KD = pd()->KD();
+ const int KH = pd()->KH();
+ const int KW = pd()->KW();
+ const int SD = pd()->KSD();
+ const int SH = pd()->KSH();
+ const int SW = pd()->KSW();
+ const int padF = pd()->padFront();
+ const int padT = pd()->padT();
+ const int padL = pd()->padL();
+
+ const bool is_3d = pd()->desc()->diff_src_desc.ndims == 5;
+
+ auto alg = pd()->desc()->alg_kind;
+
+ auto apply_offset = [=](int index, int offset) {
+ return (index > offset) ? index - offset : 0;
+ };
+
+ auto ker_zero = [=](int mb, int c) {
+ size_t diff_src_offset = (size_t)mb*C*ID*IH*IW + (size_t)c*ID*IH*IW;
+ for (int id = 0; id < ID; ++id) {
+ for (int ih = 0; ih < IH; ++ih) {
+ for (int iw = 0; iw < IW; ++iw) {
+ diff_src[diff_src_offset++] = 0;
+ }
+ }
+ }
+ };
+
+ auto ker_max = [=](const data_t *d, int mb, int c, int od, int oh, int ow) {
+ auto b_c = ws_d.blocking_desc().inner_nblks == 0
+ ? 1 : ws_d.blocking_desc().inner_blks[0];
+ auto ws_offset = is_3d
+ ? ws_d.blk_off(mb, c / b_c, od, oh, ow) + c % b_c
+ : ws_d.blk_off(mb, c / b_c, oh, ow) + c % b_c;
+
+ const int index = ws_d.data_type() == data_type::u8
+ ? (int)ws[ws_offset] : ((const int *)ws)[ws_offset];
+ const int kw = index % KW;
+ const int kh = (index / KW) % KH;
+ const int kd = (index / KW) / KH;
+
+ const int id = od * SD - padF + kd;
+ const int ih = oh * SH - padT + kh;
+ const int iw = ow * SW - padL + kw;
+
+ // If padding area could fit the kernel,
+ // then input displacement would be out of bounds.
+ // No need to back propagate there as padding is
+ // virtual in pooling_max case.
+ if (id < 0 || id >= ID)
+ return;
+ if (ih < 0 || ih >= IH)
+ return;
+ if (iw < 0 || iw >= IW)
+ return;
+
+ size_t diff_src_offset =
+ (size_t)mb*C*ID*IH*IW + (size_t)c*ID*IH*IW + (size_t)id*IH*IW
+ + (size_t)ih*IW + (size_t)iw;
+ diff_src[diff_src_offset] += d[0];
+ };
+
+ auto ker_avg = [=](const data_t *d, int mb, int c, int od, int oh, int ow) {
+ auto id_start = apply_offset(od*SD, padF);
+ auto ih_start = apply_offset(oh*SH, padT);
+ auto iw_start = apply_offset(ow*SW, padL);
+ auto id_end = nstl::min(od*SD - padF + KD, ID);
+ auto ih_end = nstl::min(oh*SH - padT + KH, IH);
+ auto iw_end = nstl::min(ow*SW - padL + KW, IW);
+
+ size_t num_summands = (alg == pooling_avg_include_padding)
+ ? (size_t)KW*KH*KD
+ : (size_t)(id_end - id_start)*(ih_end - ih_start)
+ *(iw_end - iw_start);
+
+ for (int id = id_start; id < id_end; ++id) {
+ for (int ih = ih_start; ih < ih_end; ++ih) {
+ for (int iw = iw_start; iw < iw_end; ++iw) {
+ size_t diff_src_offset = (size_t)mb*C*ID*IH*IW
+ + (size_t)c*ID*IH*IW + (size_t)id*IH*IW
+ + (size_t)ih*IW + (size_t)iw;
+ diff_src[diff_src_offset] += d[0] / num_summands;
+ }
+ }
+ }
+ };
+
+ if (pd()->desc()->alg_kind == pooling_max) {
+ parallel_nd(MB, C, [&](int mb, int c) {
+ size_t diff_dst_offset = (size_t)mb*C*OD*OH*OW
+ + (size_t)c*OD*OH*OW;
+ ker_zero(mb, c);
+ for (int od = 0; od < OD; ++od) {
+ for (int oh = 0; oh < OH; ++oh) {
+ for (int ow = 0; ow < OW; ++ow) {
+ const data_t *d = &diff_dst[diff_dst_offset++];
+ ker_max(d, mb, c, od, oh, ow);
+ }
+ }
+ }
+ });
+ } else {
+ parallel_nd(MB, C, [&](int mb, int c) {
+ size_t diff_dst_offset = (size_t)mb*C*OD*OH*OW
+ + (size_t)c*OD*OH*OW;
+ ker_zero(mb, c);
+ for (int od = 0; od < OD; ++od) {
+ for (int oh = 0; oh < OH; ++oh) {
+ for (int ow = 0; ow < OW; ++ow) {
+ const data_t *d = &diff_dst[diff_dst_offset++];
+ ker_avg(d, mb, c, od, oh, ow);
+ }
+ }
+ }
+ });
+ }
+}
+
+template struct nchw_pooling_fwd_t<data_type::f32>;
+template struct nchw_pooling_bwd_t<data_type::f32>;
+
+}
+}
+}
+
+// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s