summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/jit_avx2_convolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/jit_avx2_convolution.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/cpu/jit_avx2_convolution.cpp410
1 files changed, 410 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/jit_avx2_convolution.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/jit_avx2_convolution.cpp
new file mode 100644
index 0000000000..13f61e84fe
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/cpu/jit_avx2_convolution.cpp
@@ -0,0 +1,410 @@
+/*******************************************************************************
+* Copyright 2016-2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include "c_types_map.hpp"
+#include "mkldnn_thread.hpp"
+#include "type_helpers.hpp"
+#include "utils.hpp"
+
+#include "jit_avx2_convolution.hpp"
+
+namespace mkldnn {
+namespace impl {
+namespace cpu {
+
+using namespace mkldnn::impl::status;
+using namespace mkldnn::impl::memory_tracking::names;
+using namespace mkldnn::impl::utils;
+
+#define src_blk_off(f, n, c, d, h, w) \
+ (pd()->ndims() == 3) \
+ ? (f).blk_off(n, c, w) \
+ : (pd()->ndims() == 4) \
+ ? (f).blk_off(n, c, h, w) \
+ : (f).blk_off(n, c, d, h, w)
+
+#define wht_blk_off_(f, g, ...) \
+ pd()->with_groups() ? (f).blk_off(g, __VA_ARGS__) : (f).blk_off(__VA_ARGS__)
+#define wht_blk_off(f, g, oc, ic, kd, kh, kw) \
+ (pd()->ndims() == 3) \
+ ? wht_blk_off_(f, g, oc, ic, kw) \
+ : (pd()->ndims() == 4) \
+ ? wht_blk_off_(f, g, oc, ic, kh, kw) \
+ : wht_blk_off_(f, g, oc, ic, kd, kh, kw)
+
+void jit_avx2_convolution_fwd_t::execute_forward(const exec_ctx_t &ctx) const {
+ auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
+ auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS);
+ auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS);
+ auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
+
+ const memory_desc_wrapper src_d(pd()->src_md());
+ const memory_desc_wrapper dst_d(pd()->dst_md());
+ const memory_desc_wrapper weights_d(pd()->weights_md(0));
+ const memory_desc_wrapper bias_d(pd()->weights_md(1));
+
+ const auto &jcp = kernel_->jcp;
+
+ int ocb_work = div_up(jcp.nb_oc, jcp.nb_oc_blocking);
+ const size_t work_amount = jcp.mb * jcp.ngroups * ocb_work * jcp.od
+ * jcp.oh;
+
+ auto ker = [&](const int ithr, const int nthr) {
+ size_t start{0}, end{0};
+ balance211(work_amount, nthr, ithr, start, end);
+
+ int icbb = 0;
+ while (icbb < jcp.nb_ic) {
+ int icb_step = jcp.nb_ic_blocking;
+ int icb_step_rem = jcp.nb_ic - icbb;
+ if (icb_step_rem < jcp.nb_ic_blocking_max)
+ icb_step = icb_step_rem;
+
+ size_t n{0}, g{0}, ocbb{0}, oh{0}, od{0};
+ nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work,
+ od, jcp.od, oh, jcp.oh);
+ for (size_t iwork = start; iwork < end; ++iwork) {
+ int ocb = ocbb * jcp.nb_oc_blocking;
+ int ocb_num = jcp.nb_oc_blocking;
+
+ for (int icb = icbb; icb < icbb + icb_step; ++icb) {
+ auto par_conv = jit_conv_call_s();
+
+ const int ij = oh * jcp.stride_h;
+ const int i_t_overflow = nstl::max(0, jcp.t_pad - ij);
+ const int i_b_overflow = nstl::max(jcp.ih, ij
+ + (jcp.kh-1) * (jcp.dilate_h+1) - jcp.t_pad+1) - jcp.ih;
+
+ const int dj = od * jcp.stride_d;
+ const int d_t_overflow = nstl::max(0, jcp.f_pad - dj);
+ const int d_b_overflow = nstl::max(jcp.id, dj
+ + (jcp.kd-1) * (jcp.dilate_d+1) - jcp.f_pad+1) - jcp.id;
+
+ const size_t _oc = g * jcp.nb_oc + ocb;
+ const size_t _ic = g * jcp.nb_ic * jcp.nonblk_group_off + icb;
+
+ const int ih = nstl::max(ij - jcp.t_pad
+ + div_up(i_t_overflow,
+ (jcp.dilate_h+1)) * (jcp.dilate_h + 1), 0);
+
+ const int id = nstl::max(dj - jcp.f_pad
+ + div_up(d_t_overflow,
+ (jcp.dilate_d+1)) * (jcp.dilate_d + 1), 0);
+
+ par_conv.src = &src[src_blk_off(src_d, n,
+ jcp.ic == 3 ? 0 : _ic, id, ih, 0)];
+
+ par_conv.dst = &dst[src_blk_off(dst_d, n, _oc, od, oh, 0)];
+
+ const int wh = div_up(i_t_overflow, (jcp.dilate_h + 1));
+ const int wd = div_up(d_t_overflow, (jcp.dilate_d + 1));
+ par_conv.filt = &weights[wht_blk_off(weights_d, g, ocb,
+ jcp.ic == 3 ? 0 : icb, wd, wh, 0)];
+
+ if (icb == 0) {
+ if (bias)
+ par_conv.bias =
+ &bias[bias_d.blk_off(_oc * jcp.oc_block)];
+ par_conv.flags |= FLAG_IC_FIRST;
+ }
+
+ if (jcp.with_eltwise && icb + 1 == jcp.nb_ic) {
+ par_conv.flags |= FLAG_IC_LAST;
+ }
+
+ par_conv.oc_blocks =
+ nstl::min(ocb + ocb_num, jcp.nb_oc) - ocb;
+
+ par_conv.kw_padding = 0;
+ const int kh_padding = jcp.kh
+ - div_up(i_t_overflow, (jcp.dilate_h + 1))
+ - div_up(i_b_overflow, (jcp.dilate_h + 1));
+ par_conv.kh_padding = nstl::max(0, kh_padding);
+
+ const int kd_padding = jcp.kd
+ - div_up(d_t_overflow, (jcp.dilate_d + 1))
+ - div_up(d_b_overflow, (jcp.dilate_d + 1));
+ par_conv.kd_padding = nstl::max(0, kd_padding);
+
+ kernel_->jit_ker(&par_conv);
+ }
+ nd_iterator_step(n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work,
+ od, jcp.od, oh, jcp.oh);
+ }
+ icbb += icb_step;
+ }
+ };
+
+ if (pd()->wants_padded_bias()) {
+ auto padded_bias = scratchpad(ctx).get<data_t>(key_conv_padded_bias);
+ utils::array_copy(padded_bias, bias, jcp.oc_without_padding);
+ utils::array_set(padded_bias + jcp.oc_without_padding, 0.f,
+ jcp.oc - jcp.oc_without_padding);
+ bias = padded_bias;
+ }
+
+ parallel(0, ker);
+
+ if (pd()->wants_zero_pad_dst())
+ ctx.memory(MKLDNN_ARG_DST)->zero_pad();
+}
+
+void jit_avx2_convolution_bwd_data_t::execute_backward_data(
+ const exec_ctx_t &ctx) const {
+ auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
+ auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS);
+ auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
+
+ const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md());
+ const memory_desc_wrapper diff_src_d(pd()->diff_src_md());
+ const memory_desc_wrapper weights_d(pd()->weights_md(0));
+
+ const auto &jcp = kernel_->jcp;
+
+ int icb_work = jcp.nb_ic / jcp.nb_ic_blocking;
+ int ih_block_size = jcp.ih;
+ int num_ih_blocks = utils::div_up(jcp.ih, ih_block_size);
+ size_t work_amount = jcp.mb * jcp.ngroups * icb_work * num_ih_blocks;
+ if (work_amount < (size_t)2 * mkldnn_get_max_threads()) {
+ ih_block_size = 1;
+ num_ih_blocks = utils::div_up(jcp.ih, ih_block_size);
+ work_amount *= num_ih_blocks;
+ }
+
+ auto ker = [&](const int ithr, const int nthr) {
+ size_t start{0}, end{0};
+ balance211(work_amount, nthr, ithr, start, end);
+
+ size_t n{0}, g{0}, icbb{0}, ihb{0};
+ nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, icbb, icb_work,
+ ihb, num_ih_blocks);
+ for (size_t iwork = start; iwork < end; ++iwork) {
+ for (int oc = 0; oc < jcp.nb_oc; oc += jcp.nb_oc_blocking)
+ for (int id = 0; id < jcp.id; ++id) {
+ auto par_conv = jit_conv_call_s();
+
+ const int idp = jcp.id + 2 * jcp.f_pad;
+ const int d_t_overflow = nstl::max(0,
+ jcp.kd - 1 - id - jcp.f_pad);
+ const int back_pad = idp - jcp.id - jcp.f_pad;
+ const int d_b_overflow = nstl::max(0,
+ jcp.kd - 1 - (jcp.id - 1 - id) - back_pad);
+ const int od = id + jcp.f_pad - d_b_overflow;
+
+ int ih_start = ihb * ih_block_size;
+ int ih_end = nstl::min(jcp.ih, ih_start + ih_block_size);
+ for (int ih = ih_start; ih < ih_end; ++ih) {
+
+ const int i_t_overflow = nstl::max(0, (jcp.kh - 1
+ - ih - jcp.t_pad) / jcp.stride_h);
+ const int i_b_overflow = nstl::max(0, (jcp.kh - jcp.ih
+ + ih - jcp.b_pad) / jcp.stride_h);
+ int overflow_kh_hi = jcp.kh - 1 - abs((jcp.ih - 1
+ + jcp.b_pad - ih) % jcp.stride_h);
+ int overflow_kh_lo = (ih + jcp.t_pad) % jcp.stride_h;
+
+ par_conv.kd_padding = jcp.kd - d_t_overflow - d_b_overflow;
+ par_conv.kh_padding = (overflow_kh_hi - overflow_kh_lo)
+ / jcp.stride_h + 1 - i_t_overflow - i_b_overflow;
+ par_conv.kw_padding = 0;
+
+ const int k_lo = overflow_kh_lo
+ + i_b_overflow * jcp.stride_h;
+ const int oh = (ih + jcp.t_pad - k_lo) / jcp.stride_h;
+
+ par_conv.src = &diff_src[src_blk_off(diff_src_d, n,
+ /*jcp.ic == 3 ? 0 :*/
+ g * jcp.nb_ic + jcp.nb_ic_blocking * icbb, id, ih, 0)];
+ par_conv.dst = &diff_dst[src_blk_off(diff_dst_d,
+ n, g * jcp.nb_oc + oc, od, oh, 0)];
+ par_conv.filt = &weights[wht_blk_off(weights_d, g, oc,
+ jcp.ic == 3 ? 0 : jcp.nb_ic_blocking * icbb,
+ d_b_overflow, k_lo, 0)];
+
+ par_conv.src_prf = nullptr;
+ par_conv.dst_prf = nullptr;
+ par_conv.filt_prf = nullptr;
+ par_conv.channel = oc;
+ par_conv.ch_blocks = nstl::min(jcp.nb_oc - oc,
+ jcp.nb_oc_blocking);
+
+ kernel_->jit_ker(&par_conv);
+ }
+ }
+ nd_iterator_step(n, jcp.mb, g, jcp.ngroups, icbb, icb_work, ihb,
+ num_ih_blocks);
+ }
+ };
+
+ parallel(0, ker);
+}
+
+void jit_avx2_convolution_bwd_weights_t::execute_backward_weights(
+ const exec_ctx_t &ctx) const {
+ auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
+ auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
+ auto diff_weights = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_WEIGHTS);
+ auto diff_bias_in = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_BIAS);
+
+ auto scratchpad = this->scratchpad(ctx);
+
+ data_t *diff_bias = pd()->wants_padded_bias()
+ ? scratchpad.get<data_t>(key_conv_padded_bias) : diff_bias_in;
+
+ const memory_desc_wrapper src_d(pd()->src_md());
+ const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md());
+ const memory_desc_wrapper diff_weights_d(pd()->diff_weights_md(0));
+
+ const auto &jcp = kernel_->jcp;
+
+ auto reducer_bia_scratchpad = memory_tracking::grantor_t(scratchpad,
+ prefix_reducer_bia);
+ auto rb = this->reducer_bias_;
+ rb->init(reducer_bia_scratchpad);
+
+ auto reducer_wei_scratchpad = memory_tracking::grantor_t(scratchpad,
+ prefix_reducer_wei);
+ auto rw = this->reducer_weights_;
+ rw->init(reducer_wei_scratchpad);
+
+ auto ker = [&](int ithr, int nthr) {
+ assert(nthr == rw->balancer().nthr_);
+
+ const int w_job_start = rw->balancer().ithr_job_off(ithr);
+ const int w_njobs = rw->balancer().ithr_njobs(ithr);
+
+ if (w_njobs == 0) return;
+
+ /* reduction dimension */
+ int img_od_start{0}, img_od_end{0}, img{0}, od_s{0};
+ balance211(jcp.mb * jcp.od, rw->balancer().nthr_per_group_,
+ rw->balancer().id_in_group(ithr), img_od_start, img_od_end);
+
+ int img_start = img_od_start, img_end = img_od_end;
+ nd_iterator_init(img_start, img, jcp.mb, od_s, jcp.od);
+ const int img_first = img;
+
+ /* jobs */
+ int g_start{0}, ocb_start{0}, icb_start{0};
+ nd_iterator_init(w_job_start, g_start, jcp.ngroups, ocb_start,
+ jcp.nb_oc, icb_start, jcp.nb_ic);
+
+ while (img_start < img_end) {
+ int g = g_start, ocb = ocb_start, icb = icb_start;
+
+ const int work_rem = img_end - img_start;
+ const int od_e = od_s + work_rem > jcp.od ? jcp.od : od_s + work_rem;
+ const int id_s = od_s * jcp.stride_d;
+ const int idp = jcp.id + jcp.f_pad + jcp.back_pad;
+
+ if (id_s < idp - jcp.back_pad - jcp.kd + 1)
+ for (int w_job_loc = 0; w_job_loc < w_njobs; ++w_job_loc) {
+ const size_t _oc = g * jcp.nb_oc + ocb;
+ const size_t _ic = g * jcp.nb_ic + icb;
+
+ /* TODO: put dw <-- 0 in kernel */
+ if (img == img_first)
+ array_set(rw->get_local_ptr(ithr, diff_weights,
+ reducer_wei_scratchpad) +
+ w_job_loc * rw->balancer().job_size_, 0,
+ rw->balancer().job_size_);
+
+ for (int od = od_s; od < od_e; ++od) {
+ const int id = od * jcp.stride_d;
+ if (id >= jcp.id - jcp.back_pad - jcp.kd + 1) break;
+
+ auto par_conv = jit_conv_call_s();
+ par_conv.src = &src[src_blk_off(src_d, img, _ic, id, 0, 0)];
+ par_conv.dst =
+ &diff_dst[src_blk_off(diff_dst_d, img, _oc, od, 0, 0)];
+ par_conv.filt = rw->get_local_ptr(ithr, diff_weights,
+ reducer_wei_scratchpad) +
+ w_job_loc * rw->balancer().job_size_;
+
+ kernel_->jit_ker(&par_conv);
+ }
+ nd_iterator_step(g, jcp.ngroups, ocb, jcp.nb_oc, icb,
+ jcp.nb_ic);
+ }
+ nd_iterator_jump(img_start, img_end, img, jcp.mb, od_s, jcp.od);
+ }
+ rw->reduce(ithr, diff_weights, reducer_wei_scratchpad);
+ };
+
+ auto ker_bias = [&](int ithr, int nthr) {
+ assert(nthr == rb->balancer().nthr_);
+
+ const int b_job_start = rb->balancer().ithr_job_off(ithr);
+ const int b_njobs = rb->balancer().ithr_njobs(ithr);
+
+ if (b_njobs == 0) return;
+
+ /* reduction dimension */
+ int img_start{0}, img_end{0};
+ balance211(jcp.mb, rb->balancer().nthr_per_group_,
+ rb->balancer().id_in_group(ithr), img_start, img_end);
+
+ /* jobs */
+ int g_start{0}, ocb_start{0};
+ nd_iterator_init(b_job_start, g_start, jcp.ngroups, ocb_start,
+ jcp.nb_oc);
+
+ for (int img = img_start; img < img_end; ++img) {
+ int g = g_start, ocb = ocb_start;
+ for (int b_job_loc = 0; b_job_loc < b_njobs; ++b_job_loc) {
+ const size_t _oc = g * jcp.nb_oc + ocb;
+
+ const data_t *d_dst = &diff_dst[diff_dst_d.blk_off(img, _oc)];
+ data_t *d_bias = rb->get_local_ptr(ithr, diff_bias,
+ reducer_bia_scratchpad) +
+ b_job_loc * rb->balancer().job_size_;
+
+ if (img == img_start)
+ for (int o = 0; o < 8; ++o)
+ d_bias[o] = 0.;
+
+ for (int dhw = 0; dhw < jcp.od * jcp.oh * jcp.ow; ++dhw) {
+ PRAGMA_OMP_SIMD()
+ for (int o = 0; o < 8; ++o)
+ d_bias[o] += d_dst[o];
+ d_dst += 8;
+ }
+
+ nd_iterator_step(g, jcp.ngroups, ocb, jcp.nb_oc);
+ }
+ }
+ rb->reduce(ithr, diff_bias, reducer_bia_scratchpad);
+ };
+
+ parallel(0, [&](const int ithr, const int nthr) {
+ ker(ithr, nthr);
+ if (pd()->with_bias())
+ ker_bias(ithr, nthr);
+ });
+
+ /* TODO: put this in ker_bias */
+ if (pd()->wants_padded_bias()) {
+ assert(jcp.ngroups == 1);
+ for (int oc = 0; oc < jcp.oc_without_padding; ++oc)
+ diff_bias_in[oc] = diff_bias[oc];
+ }
+}
+
+}
+}
+}
+
+// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s