summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp307
1 files changed, 307 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp
new file mode 100644
index 0000000000..604a728b47
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp
@@ -0,0 +1,307 @@
+/*******************************************************************************
+* Copyright 2016-2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include "mkldnn_types.h"
+
+#include "c_types_map.hpp"
+#include "gemm_convolution.hpp"
+#include "utils.hpp"
+#include "type_helpers.hpp"
+#include "mkldnn_thread.hpp"
+#include "ref_eltwise.hpp"
+
+namespace mkldnn {
+namespace impl {
+namespace cpu {
+
+using namespace mkldnn::impl::status;
+using namespace mkldnn::impl::memory_tracking::names;
+using namespace mkldnn::impl::utils;
+
+void gemm_convolution_fwd_t::execute_forward(const exec_ctx_t &ctx) const {
+ auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
+ auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS);
+ auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS);
+ auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
+
+ auto col = scratchpad(ctx).get<data_t>(key_conv_gemm_col);
+
+ const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
+
+ const int M = jcp.os * jcp.od;
+ const size_t src_step = jcp.ic * jcp.ih * jcp.iw * jcp.id;
+ const size_t dst_step = jcp.oc * M;
+ const size_t weights_g_size = jcp.ic * jcp.oc * jcp.ks;
+
+ assert(IMPLICATION(
+ jcp.id != 1, jcp.oh_block == jcp.oh && jcp.ow_block == jcp.ow));
+ assert(IMPLICATION(jcp.ow_block != jcp.ow, jcp.oh_block == 1));
+
+ const int K = jcp.ic * jcp.ks;
+ const int N = jcp.oc;
+
+ if (jcp.im2col_sz && jcp.id != 1)
+ parallel_nd(jcp.im2col_sz * jcp.nthr,
+ [&](ptrdiff_t i) { col[i] = (data_t)0; });
+
+ const int nb_oh = div_up(jcp.oh, jcp.oh_block);
+ const int nb_ow = div_up(jcp.ow, jcp.ow_block);
+ const size_t work_amount = jcp.ngroups * jcp.mb * jcp.od * nb_oh * nb_ow;
+ parallel(jcp.nthr, [&](const int ithr, const int nthr) {
+ data_t *_col = col + (ptrdiff_t)ithr * jcp.im2col_sz;
+
+ int g{ 0 }, n{ 0 }, od{ 0 }, ohb{ 0 }, owb{ 0 };
+ size_t start = 0, end = 0;
+
+ balance211(work_amount, nthr, ithr, start, end);
+ nd_iterator_init(start, g, jcp.ngroups, n, jcp.mb, od, jcp.od, ohb,
+ nb_oh, owb, nb_ow);
+ for (size_t iwork = start; iwork < end; ++iwork) {
+ int oh = ohb * jcp.oh_block;
+ int ow = owb * jcp.ow_block;
+ const data_t *_src = src + (n * jcp.ngroups + g) * src_step;
+ const data_t *_weights = weights + g * weights_g_size;
+ data_t *_dst_im = dst + (n * jcp.ngroups + g) * dst_step;
+ const int h_step = nstl::min(jcp.oh_block, jcp.oh - oh);
+ const int w_step = nstl::min(jcp.ow_block, jcp.ow - ow);
+ if (jcp.im2col_sz) {
+ if (jcp.id == 1)
+ jit_gemm_convolution_utils::im2col(
+ jcp, _src, _col, oh, h_step, ow, w_step);
+ else
+ jit_gemm_convolution_utils::im2col_3d(jcp, _src, _col, od);
+ }
+
+ const data_t one = 1.0;
+
+ const int m = h_step * w_step;
+ const int LDA = jcp.im2col_sz ? m : M;
+ data_t *_dst = _dst_im + od * jcp.os + oh * jcp.ow + ow;
+
+ extended_sgemm("N", "N", &m, &N, &K, &one,
+ jcp.im2col_sz ? _col : _src + od * m, &LDA, _weights, &K,
+ &this->beta_, _dst, &M);
+
+ data_t *d = _dst;
+ if (eltwise_) {
+ // fast branch for ReLU case
+ if (eltwise_->alg_ == alg_kind::eltwise_relu) {
+ parallel_nd(jcp.oc, [&](const int oc) {
+ data_t b = jcp.with_bias ? bias[g * jcp.oc + oc] : 0;
+ data_t *d_ = d + oc * M;
+ PRAGMA_OMP_SIMD()
+ for (int oS = 0; oS < m; ++oS) {
+ d_[oS] += b;
+ if (d_[oS] < 0) d_[oS] *= eltwise_->alpha_;
+ }
+ });
+ } else {
+ parallel_nd(jcp.oc, [&](const int oc) {
+ data_t b = jcp.with_bias ? bias[g * jcp.oc + oc] : 0;
+ data_t *d_ = d + oc * M;
+ PRAGMA_OMP_SIMD()
+ for (int oS = 0; oS < m; ++oS) {
+ d_[oS] += b;
+ d_[oS] = eltwise_->compute_scalar(d_[oS]);
+ }
+ });
+ }
+ } else if (jcp.with_bias) {
+ parallel_nd(jcp.oc, [&](const int oc) {
+ data_t b = bias[g * jcp.oc + oc];
+ data_t *d_ = d + oc * M;
+ PRAGMA_OMP_SIMD()
+ for (int oS = 0; oS < m; ++oS) {
+ d_[oS] += b;
+ }
+ });
+ }
+ nd_iterator_step(g, jcp.ngroups, n, jcp.mb, od, jcp.od, ohb, nb_oh,
+ owb, nb_ow);
+ }
+ });
+}
+
+void gemm_convolution_bwd_data_t::execute_backward_data(
+ const exec_ctx_t &ctx) const {
+ auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
+ auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS);
+ auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
+
+ auto col = scratchpad(ctx).get<data_t>(key_conv_gemm_col);
+
+ const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
+
+ const int M = jcp.os * jcp.od;
+ const size_t src_step = jcp.ic * jcp.ih * jcp.iw * jcp.id;
+ const size_t dst_step = jcp.oc * M;
+ const size_t weights_g_size = jcp.ic * jcp.oc * jcp.ks;
+
+ const int m = jcp.os;
+ const int K = jcp.oc;
+ const int N = jcp.ic * jcp.ks;
+ const int LDC = jcp.im2col_sz ? m : M;
+
+ const size_t work_amount = (size_t)jcp.ngroups * jcp.mb;
+
+ if (jcp.id > 1) {
+ const ptrdiff_t diff_src_sz = (ptrdiff_t)(work_amount * src_step);
+ parallel_nd(diff_src_sz, [&](ptrdiff_t i) { diff_src[i] = (data_t)0; });
+ }
+
+ parallel(jcp.nthr, [&](const int ithr, const int nthr) {
+ data_t *_col = col + (ptrdiff_t)ithr * jcp.im2col_sz;
+
+ int g{0}, n{0};
+ size_t start = 0, end = 0;
+ balance211(work_amount, nthr, ithr, start, end);
+ nd_iterator_init(start, g, jcp.ngroups, n, jcp.mb);
+ for (size_t iwork = start; iwork < end; ++iwork) {
+
+ data_t *_diff_src = diff_src + (n * jcp.ngroups + g)*src_step;
+ const data_t *_weights = weights + g * weights_g_size;
+ for (int od = 0; od < jcp.od; ++od) {
+ const data_t *_diff_dst = diff_dst + (n * jcp.ngroups + g)
+ *dst_step + od * m;
+
+ const data_t zero = 0.0, one = 1.0;
+ extended_sgemm("N", "T", &m, &N, &K, &one, _diff_dst, &M,
+ _weights, &N, &zero,
+ jcp.im2col_sz ? _col:_diff_src + od * m, &LDC);
+
+ if (jcp.im2col_sz) {
+ if (jcp.id == 1)
+ jit_gemm_convolution_utils::col2im(jcp, _col,
+ _diff_src);
+ else
+ jit_gemm_convolution_utils::col2im_3d(jcp, _col,
+ _diff_src, od);
+ }
+ }
+ nd_iterator_step(g, jcp.ngroups, n, jcp.mb);
+ }
+ });
+}
+
+void gemm_convolution_bwd_weights_t::execute_backward_weights(
+ const exec_ctx_t &ctx) const {
+ auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
+ auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
+ auto diff_weights = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_WEIGHTS);
+ auto diff_bias = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_BIAS);
+
+ auto col = scratchpad(ctx).get<data_t>(key_conv_gemm_col);
+ auto wei_reduction = scratchpad(ctx).get<data_t>(key_conv_wei_reduction);
+
+ const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
+
+ const int K = jcp.os * jcp.od;
+ const size_t src_step = jcp.ic * jcp.ih * jcp.iw * jcp.id;
+ const size_t dst_step = jcp.oc * K;
+ const size_t weights_g_size = jcp.ic * jcp.oc * jcp.ks;
+
+ const int k = jcp.os;
+ const int N = jcp.oc;
+ const int M = jcp.ic * jcp.ks;
+ const int LDA = jcp.im2col_sz ? k : K;
+
+ parallel_nd(jcp.im2col_sz * jcp.nthr,
+ [&](ptrdiff_t i) { col[i] = (data_t)0; });
+
+ parallel(jcp.nthr, [&](const int ithr, const int nthr) {
+ int ithr_g, nthr_g, ithr_mb, nthr_mb;
+ size_t g_start{0}, g_end{0}, mb_start{0}, mb_end{0};
+
+ const int mb_for_balance = jcp.need_wei_reduction ? jcp.mb : 1;
+ jit_gemm_convolution_utils::bwd_weights_balance(ithr, nthr, jcp.ngroups,
+ mb_for_balance, ithr_g, nthr_g, ithr_mb, nthr_mb);
+
+ assert(IMPLICATION(!jcp.need_wei_reduction, nthr_mb == 1));
+ const int need_reduction = nthr_mb != 1;
+
+ if (ithr_g != -1 && ithr_mb != -1) {
+ balance211((size_t)jcp.ngroups, nthr_g, ithr_g, g_start, g_end);
+ balance211((size_t)jcp.mb, nthr_mb, ithr_mb, mb_start, mb_end);
+
+ assert(IMPLICATION((g_end - g_start) > 1, need_reduction == 0));
+
+ data_t *_col = col + (ptrdiff_t)ithr * jcp.im2col_sz;
+ data_t *weights_reduce_base = wei_reduction
+ + ithr_g * nthr_mb * weights_g_size;
+ data_t *weights_reduce = weights_reduce_base
+ + ithr_mb * weights_g_size;
+
+ for (size_t g = g_start; g < g_end; ++g) {
+ data_t *_diff_weights = need_reduction
+ ? weights_reduce : (diff_weights + g * weights_g_size);
+ for (size_t mb = mb_start; mb < mb_end; ++mb) {
+ const data_t *_src = src + (mb*jcp.ngroups+g)*src_step;
+ for (int od = 0; od < jcp.od; ++od) {
+ const data_t *_diff_dst = diff_dst
+ + (mb*jcp.ngroups+g)*dst_step + od * k;
+
+ if (jcp.im2col_sz) {
+ if (jcp.id == 1)
+ jit_gemm_convolution_utils::im2col(
+ jcp, _src, _col, 0, jcp.oh, 0, jcp.ow);
+ else
+ jit_gemm_convolution_utils::im2col_3d(jcp, _src,
+ _col, od);
+ }
+
+ const data_t zero = 0.0, one = 1.0;
+ extended_sgemm(
+ "T", "N", &M, &N, &k, &one,
+ jcp.im2col_sz ? _col : _src + od * k,
+ &LDA, _diff_dst, &K,
+ mb == mb_start && od == 0 ? &zero : &one,
+ _diff_weights, &M);
+ }
+ }
+ }
+ if (need_reduction) {
+ mkldnn_thr_barrier();
+ data_t *weights_base = diff_weights + g_start * weights_g_size;
+ jit_gemm_convolution_utils::bwd_weights_reduction_par(
+ ithr_mb, nthr_mb, jcp, weights_reduce_base, weights_base);
+ }
+ } else
+ if (need_reduction) { mkldnn_thr_barrier(); }
+ });
+
+ if (jcp.with_bias) {
+ parallel_nd(jcp.ngroups, jcp.oc, [&](int g, int oc) {
+ data_t db = 0;
+ size_t offset_ = (size_t)g * dst_step + (size_t)oc * K;
+ for (int mb = 0; mb < jcp.mb; ++mb)
+ {
+ size_t offset = offset_ + (size_t)mb * jcp.ngroups * dst_step;
+ for (int od = 0; od < jcp.od; ++od)
+ for (int oh = 0; oh < jcp.oh; ++oh)
+ PRAGMA_OMP_SIMD(reduction(+:db))
+ for (int ow = 0; ow < jcp.ow; ++ow) {
+ db += diff_dst[offset];
+ offset++;
+ }
+ }
+ diff_bias[g*jcp.oc+oc] = db;
+ });
+ }
+}
+
+}
+}
+}