diff options
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp')
-rw-r--r-- | thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp | 307 |
1 files changed, 307 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp new file mode 100644 index 0000000000..604a728b47 --- /dev/null +++ b/thirdparty/oidn/mkl-dnn/src/cpu/gemm_convolution.cpp @@ -0,0 +1,307 @@ +/******************************************************************************* +* Copyright 2016-2018 Intel Corporation +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*******************************************************************************/ + +#include "mkldnn_types.h" + +#include "c_types_map.hpp" +#include "gemm_convolution.hpp" +#include "utils.hpp" +#include "type_helpers.hpp" +#include "mkldnn_thread.hpp" +#include "ref_eltwise.hpp" + +namespace mkldnn { +namespace impl { +namespace cpu { + +using namespace mkldnn::impl::status; +using namespace mkldnn::impl::memory_tracking::names; +using namespace mkldnn::impl::utils; + +void gemm_convolution_fwd_t::execute_forward(const exec_ctx_t &ctx) const { + auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); + auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS); + auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS); + auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); + + auto col = scratchpad(ctx).get<data_t>(key_conv_gemm_col); + + const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_; + + const int M = jcp.os * jcp.od; + const size_t src_step = jcp.ic * jcp.ih * jcp.iw * jcp.id; + const size_t dst_step = jcp.oc * M; + const size_t weights_g_size = jcp.ic * jcp.oc * jcp.ks; + + assert(IMPLICATION( + jcp.id != 1, jcp.oh_block == jcp.oh && jcp.ow_block == jcp.ow)); + assert(IMPLICATION(jcp.ow_block != jcp.ow, jcp.oh_block == 1)); + + const int K = jcp.ic * jcp.ks; + const int N = jcp.oc; + + if (jcp.im2col_sz && jcp.id != 1) + parallel_nd(jcp.im2col_sz * jcp.nthr, + [&](ptrdiff_t i) { col[i] = (data_t)0; }); + + const int nb_oh = div_up(jcp.oh, jcp.oh_block); + const int nb_ow = div_up(jcp.ow, jcp.ow_block); + const size_t work_amount = jcp.ngroups * jcp.mb * jcp.od * nb_oh * nb_ow; + parallel(jcp.nthr, [&](const int ithr, const int nthr) { + data_t *_col = col + (ptrdiff_t)ithr * jcp.im2col_sz; + + int g{ 0 }, n{ 0 }, od{ 0 }, ohb{ 0 }, owb{ 0 }; + size_t start = 0, end = 0; + + balance211(work_amount, nthr, ithr, start, end); + nd_iterator_init(start, g, jcp.ngroups, n, jcp.mb, od, jcp.od, ohb, + nb_oh, owb, nb_ow); + for (size_t iwork = start; iwork < end; ++iwork) { + int oh = ohb * jcp.oh_block; + int ow = owb * jcp.ow_block; + const data_t *_src = src + (n * jcp.ngroups + g) * src_step; + const data_t *_weights = weights + g * weights_g_size; + data_t *_dst_im = dst + (n * jcp.ngroups + g) * dst_step; + const int h_step = nstl::min(jcp.oh_block, jcp.oh - oh); + const int w_step = nstl::min(jcp.ow_block, jcp.ow - ow); + if (jcp.im2col_sz) { + if (jcp.id == 1) + jit_gemm_convolution_utils::im2col( + jcp, _src, _col, oh, h_step, ow, w_step); + else + jit_gemm_convolution_utils::im2col_3d(jcp, _src, _col, od); + } + + const data_t one = 1.0; + + const int m = h_step * w_step; + const int LDA = jcp.im2col_sz ? m : M; + data_t *_dst = _dst_im + od * jcp.os + oh * jcp.ow + ow; + + extended_sgemm("N", "N", &m, &N, &K, &one, + jcp.im2col_sz ? _col : _src + od * m, &LDA, _weights, &K, + &this->beta_, _dst, &M); + + data_t *d = _dst; + if (eltwise_) { + // fast branch for ReLU case + if (eltwise_->alg_ == alg_kind::eltwise_relu) { + parallel_nd(jcp.oc, [&](const int oc) { + data_t b = jcp.with_bias ? bias[g * jcp.oc + oc] : 0; + data_t *d_ = d + oc * M; + PRAGMA_OMP_SIMD() + for (int oS = 0; oS < m; ++oS) { + d_[oS] += b; + if (d_[oS] < 0) d_[oS] *= eltwise_->alpha_; + } + }); + } else { + parallel_nd(jcp.oc, [&](const int oc) { + data_t b = jcp.with_bias ? bias[g * jcp.oc + oc] : 0; + data_t *d_ = d + oc * M; + PRAGMA_OMP_SIMD() + for (int oS = 0; oS < m; ++oS) { + d_[oS] += b; + d_[oS] = eltwise_->compute_scalar(d_[oS]); + } + }); + } + } else if (jcp.with_bias) { + parallel_nd(jcp.oc, [&](const int oc) { + data_t b = bias[g * jcp.oc + oc]; + data_t *d_ = d + oc * M; + PRAGMA_OMP_SIMD() + for (int oS = 0; oS < m; ++oS) { + d_[oS] += b; + } + }); + } + nd_iterator_step(g, jcp.ngroups, n, jcp.mb, od, jcp.od, ohb, nb_oh, + owb, nb_ow); + } + }); +} + +void gemm_convolution_bwd_data_t::execute_backward_data( + const exec_ctx_t &ctx) const { + auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); + auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS); + auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); + + auto col = scratchpad(ctx).get<data_t>(key_conv_gemm_col); + + const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_; + + const int M = jcp.os * jcp.od; + const size_t src_step = jcp.ic * jcp.ih * jcp.iw * jcp.id; + const size_t dst_step = jcp.oc * M; + const size_t weights_g_size = jcp.ic * jcp.oc * jcp.ks; + + const int m = jcp.os; + const int K = jcp.oc; + const int N = jcp.ic * jcp.ks; + const int LDC = jcp.im2col_sz ? m : M; + + const size_t work_amount = (size_t)jcp.ngroups * jcp.mb; + + if (jcp.id > 1) { + const ptrdiff_t diff_src_sz = (ptrdiff_t)(work_amount * src_step); + parallel_nd(diff_src_sz, [&](ptrdiff_t i) { diff_src[i] = (data_t)0; }); + } + + parallel(jcp.nthr, [&](const int ithr, const int nthr) { + data_t *_col = col + (ptrdiff_t)ithr * jcp.im2col_sz; + + int g{0}, n{0}; + size_t start = 0, end = 0; + balance211(work_amount, nthr, ithr, start, end); + nd_iterator_init(start, g, jcp.ngroups, n, jcp.mb); + for (size_t iwork = start; iwork < end; ++iwork) { + + data_t *_diff_src = diff_src + (n * jcp.ngroups + g)*src_step; + const data_t *_weights = weights + g * weights_g_size; + for (int od = 0; od < jcp.od; ++od) { + const data_t *_diff_dst = diff_dst + (n * jcp.ngroups + g) + *dst_step + od * m; + + const data_t zero = 0.0, one = 1.0; + extended_sgemm("N", "T", &m, &N, &K, &one, _diff_dst, &M, + _weights, &N, &zero, + jcp.im2col_sz ? _col:_diff_src + od * m, &LDC); + + if (jcp.im2col_sz) { + if (jcp.id == 1) + jit_gemm_convolution_utils::col2im(jcp, _col, + _diff_src); + else + jit_gemm_convolution_utils::col2im_3d(jcp, _col, + _diff_src, od); + } + } + nd_iterator_step(g, jcp.ngroups, n, jcp.mb); + } + }); +} + +void gemm_convolution_bwd_weights_t::execute_backward_weights( + const exec_ctx_t &ctx) const { + auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); + auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); + auto diff_weights = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_WEIGHTS); + auto diff_bias = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_BIAS); + + auto col = scratchpad(ctx).get<data_t>(key_conv_gemm_col); + auto wei_reduction = scratchpad(ctx).get<data_t>(key_conv_wei_reduction); + + const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_; + + const int K = jcp.os * jcp.od; + const size_t src_step = jcp.ic * jcp.ih * jcp.iw * jcp.id; + const size_t dst_step = jcp.oc * K; + const size_t weights_g_size = jcp.ic * jcp.oc * jcp.ks; + + const int k = jcp.os; + const int N = jcp.oc; + const int M = jcp.ic * jcp.ks; + const int LDA = jcp.im2col_sz ? k : K; + + parallel_nd(jcp.im2col_sz * jcp.nthr, + [&](ptrdiff_t i) { col[i] = (data_t)0; }); + + parallel(jcp.nthr, [&](const int ithr, const int nthr) { + int ithr_g, nthr_g, ithr_mb, nthr_mb; + size_t g_start{0}, g_end{0}, mb_start{0}, mb_end{0}; + + const int mb_for_balance = jcp.need_wei_reduction ? jcp.mb : 1; + jit_gemm_convolution_utils::bwd_weights_balance(ithr, nthr, jcp.ngroups, + mb_for_balance, ithr_g, nthr_g, ithr_mb, nthr_mb); + + assert(IMPLICATION(!jcp.need_wei_reduction, nthr_mb == 1)); + const int need_reduction = nthr_mb != 1; + + if (ithr_g != -1 && ithr_mb != -1) { + balance211((size_t)jcp.ngroups, nthr_g, ithr_g, g_start, g_end); + balance211((size_t)jcp.mb, nthr_mb, ithr_mb, mb_start, mb_end); + + assert(IMPLICATION((g_end - g_start) > 1, need_reduction == 0)); + + data_t *_col = col + (ptrdiff_t)ithr * jcp.im2col_sz; + data_t *weights_reduce_base = wei_reduction + + ithr_g * nthr_mb * weights_g_size; + data_t *weights_reduce = weights_reduce_base + + ithr_mb * weights_g_size; + + for (size_t g = g_start; g < g_end; ++g) { + data_t *_diff_weights = need_reduction + ? weights_reduce : (diff_weights + g * weights_g_size); + for (size_t mb = mb_start; mb < mb_end; ++mb) { + const data_t *_src = src + (mb*jcp.ngroups+g)*src_step; + for (int od = 0; od < jcp.od; ++od) { + const data_t *_diff_dst = diff_dst + + (mb*jcp.ngroups+g)*dst_step + od * k; + + if (jcp.im2col_sz) { + if (jcp.id == 1) + jit_gemm_convolution_utils::im2col( + jcp, _src, _col, 0, jcp.oh, 0, jcp.ow); + else + jit_gemm_convolution_utils::im2col_3d(jcp, _src, + _col, od); + } + + const data_t zero = 0.0, one = 1.0; + extended_sgemm( + "T", "N", &M, &N, &k, &one, + jcp.im2col_sz ? _col : _src + od * k, + &LDA, _diff_dst, &K, + mb == mb_start && od == 0 ? &zero : &one, + _diff_weights, &M); + } + } + } + if (need_reduction) { + mkldnn_thr_barrier(); + data_t *weights_base = diff_weights + g_start * weights_g_size; + jit_gemm_convolution_utils::bwd_weights_reduction_par( + ithr_mb, nthr_mb, jcp, weights_reduce_base, weights_base); + } + } else + if (need_reduction) { mkldnn_thr_barrier(); } + }); + + if (jcp.with_bias) { + parallel_nd(jcp.ngroups, jcp.oc, [&](int g, int oc) { + data_t db = 0; + size_t offset_ = (size_t)g * dst_step + (size_t)oc * K; + for (int mb = 0; mb < jcp.mb; ++mb) + { + size_t offset = offset_ + (size_t)mb * jcp.ngroups * dst_step; + for (int od = 0; od < jcp.od; ++od) + for (int oh = 0; oh < jcp.oh; ++oh) + PRAGMA_OMP_SIMD(reduction(+:db)) + for (int ow = 0; ow < jcp.ow; ++ow) { + db += diff_dst[offset]; + offset++; + } + } + diff_bias[g*jcp.oc+oc] = db; + }); + } +} + +} +} +} |