summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/common/convolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/common/convolution.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/common/convolution.cpp200
1 files changed, 200 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/common/convolution.cpp b/thirdparty/oidn/mkl-dnn/src/common/convolution.cpp
new file mode 100644
index 0000000000..0c5c02bcd1
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/common/convolution.cpp
@@ -0,0 +1,200 @@
+/*******************************************************************************
+* Copyright 2016-2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include <assert.h>
+#include "mkldnn.h"
+
+#include "c_types_map.hpp"
+#include "type_helpers.hpp"
+#include "utils.hpp"
+
+using namespace mkldnn::impl;
+using namespace mkldnn::impl::utils;
+using namespace mkldnn::impl::status;
+using namespace mkldnn::impl::prop_kind;
+using namespace mkldnn::impl::alg_kind;
+using namespace mkldnn::impl::types;
+
+namespace mkldnn {
+namespace impl {
+status_t conv_desc_init(convolution_desc_t *conv_desc,
+ prop_kind_t prop_kind, alg_kind_t alg_kind,
+ const memory_desc_t *src_desc, const memory_desc_t *weights_desc,
+ const memory_desc_t *bias_desc, const memory_desc_t *dst_desc,
+ const dims_t strides, const dims_t dilates,
+ const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ bool args_ok = true
+ && !any_null(conv_desc, src_desc, weights_desc, dst_desc, strides,
+ padding_l)
+ && one_of(alg_kind, convolution_auto, convolution_direct, convolution_winograd)
+ && one_of(padding_kind, padding_kind::padding_zero);
+ if (!args_ok) return invalid_arguments;
+
+ if (padding_r == nullptr) padding_r = padding_l;
+
+ auto cd = convolution_desc_t();
+ cd.primitive_kind = primitive_kind::convolution;
+ cd.prop_kind = prop_kind;
+ cd.alg_kind = alg_kind;
+
+ cd.diff_src_desc = cd.src_desc = zero_md();
+ cd.diff_dst_desc = cd.dst_desc = zero_md();
+ cd.diff_weights_desc = cd.weights_desc = zero_md();
+ cd.diff_bias_desc = cd.bias_desc = zero_md();
+
+ const bool is_fwd = one_of(prop_kind, forward_training, forward_inference);
+ const bool with_bias =
+ bias_desc && bias_desc->format_kind != format_kind::undef;
+ const bool with_groups = weights_desc->ndims == src_desc->ndims + 1;
+
+ (prop_kind == backward_data ? cd.diff_src_desc : cd.src_desc) = *src_desc;
+ (is_fwd ? cd.dst_desc : cd.diff_dst_desc) = *dst_desc;
+ (prop_kind == backward_weights ? cd.diff_weights_desc : cd.weights_desc) =
+ *weights_desc;
+ if (with_bias)
+ (prop_kind == backward_weights ? cd.diff_bias_desc : cd.bias_desc) =
+ *bias_desc;
+
+ int sp_dims = src_desc->ndims - 2;
+ utils::array_copy(cd.strides, strides, sp_dims);
+ utils::array_copy(cd.padding[0], padding_l, sp_dims);
+ utils::array_copy(cd.padding[1], padding_r, sp_dims);
+ if (dilates)
+ utils::array_copy(cd.dilates, dilates, sp_dims);
+ else
+ utils::array_set(cd.dilates, 0, sp_dims);
+
+ cd.padding_kind = padding_kind;
+ cd.accum_data_type = types::default_accum_data_type(src_desc->data_type,
+ weights_desc->data_type, dst_desc->data_type, prop_kind);
+
+ const int g = with_groups ? weights_desc->dims[0] : 1;
+ const int bias_dim = prop_kind == backward_data
+ ? src_desc->dims[1]
+ : dst_desc->dims[1];
+
+ bool consistency = true
+ && memory_desc_wrapper(weights_desc).nelems()
+ && src_desc->ndims == dst_desc->ndims
+ && utils::one_of(src_desc->ndims, 3, 4, 5)
+ && utils::one_of(weights_desc->ndims, src_desc->ndims,
+ src_desc->ndims + 1)
+ && (with_bias ? bias_desc->ndims == 1 : true)
+ && (with_bias ? bias_desc->dims[0] == bias_dim : true)
+ && src_desc->dims[0] == dst_desc->dims[0]
+ && src_desc->dims[1] == g * weights_desc->dims[with_groups + 1]
+ && dst_desc->dims[1] == g * weights_desc->dims[with_groups + 0];
+ for (int i = 2; i < src_desc->ndims; ++i)
+ {
+ int src = src_desc->dims[i];
+ int ker = weights_desc->dims[with_groups + i];
+ int dil = cd.dilates[i - 2];
+ int pad_l = padding_l[i - 2];
+ int pad_r = padding_r[i - 2];
+ int str = strides[i - 2];
+ int dst = dst_desc->dims[i];
+ int ker_range = 1 + (ker - 1) * (dil + 1);
+
+ if (str < 1) return invalid_arguments;
+ consistency = consistency
+ && dil >= 0
+ && pad_l >= 0
+ && pad_r + str > 0
+ && (src - ker_range + pad_l + pad_r) / str + 1 == dst;
+ }
+ if (!consistency) return invalid_arguments;
+
+ *conv_desc = cd;
+ return success;
+}
+}
+}
+
+status_t mkldnn_convolution_forward_desc_init(convolution_desc_t *conv_desc,
+ prop_kind_t prop_kind, alg_kind_t alg_kind,
+ const memory_desc_t *src_desc, const memory_desc_t *weights_desc,
+ const memory_desc_t *bias_desc, const memory_desc_t *dst_desc,
+ const dims_t strides, const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ if (!one_of(prop_kind, forward_training, forward_inference))
+ return invalid_arguments;
+ return mkldnn::impl::conv_desc_init(conv_desc, prop_kind, alg_kind, src_desc,
+ weights_desc, bias_desc, dst_desc, strides, nullptr,
+ padding_l, padding_r, padding_kind);
+}
+
+status_t mkldnn_dilated_convolution_forward_desc_init(
+ convolution_desc_t *conv_desc, prop_kind_t prop_kind,
+ alg_kind_t alg_kind, const memory_desc_t *src_desc,
+ const memory_desc_t *weights_desc, const memory_desc_t *bias_desc,
+ const memory_desc_t *dst_desc, const dims_t strides,
+ const dims_t dilates, const dims_t padding_l,
+ const dims_t padding_r, padding_kind_t padding_kind) {
+ if (!one_of(prop_kind, forward_training, forward_inference))
+ return invalid_arguments;
+ return mkldnn::impl::conv_desc_init(conv_desc, prop_kind, alg_kind, src_desc,
+ weights_desc, bias_desc, dst_desc, strides, dilates,
+ padding_l, padding_r, padding_kind);
+}
+
+status_t mkldnn_convolution_backward_data_desc_init(
+ convolution_desc_t *conv_desc, alg_kind_t alg_kind,
+ const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc,
+ const memory_desc_t *diff_dst_desc, const dims_t strides,
+ const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ return mkldnn::impl::conv_desc_init(conv_desc, backward_data, alg_kind, diff_src_desc,
+ weights_desc, nullptr, diff_dst_desc, strides, nullptr,
+ padding_l, padding_r, padding_kind);
+}
+
+status_t mkldnn_dilated_convolution_backward_data_desc_init(
+ convolution_desc_t *conv_desc, alg_kind_t alg_kind,
+ const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc,
+ const memory_desc_t *diff_dst_desc, const dims_t strides,
+ const dims_t dilates, const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ return mkldnn::impl::conv_desc_init(conv_desc, backward_data, alg_kind, diff_src_desc,
+ weights_desc, nullptr, diff_dst_desc, strides, dilates,
+ padding_l, padding_r, padding_kind);
+}
+
+status_t mkldnn_convolution_backward_weights_desc_init(
+ convolution_desc_t *conv_desc, alg_kind_t alg_kind,
+ const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc,
+ const memory_desc_t *diff_bias_desc,
+ const memory_desc_t *diff_dst_desc, const dims_t strides,
+ const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ return mkldnn::impl::conv_desc_init(conv_desc, backward_weights, alg_kind, src_desc,
+ diff_weights_desc, diff_bias_desc, diff_dst_desc, strides,
+ nullptr, padding_l, padding_r, padding_kind);
+}
+
+status_t mkldnn_dilated_convolution_backward_weights_desc_init(
+ convolution_desc_t *conv_desc, alg_kind_t alg_kind,
+ const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc,
+ const memory_desc_t *diff_bias_desc,
+ const memory_desc_t *diff_dst_desc, const dims_t strides,
+ const dims_t dilates, const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ return mkldnn::impl::conv_desc_init(conv_desc, backward_weights, alg_kind, src_desc,
+ diff_weights_desc, diff_bias_desc, diff_dst_desc, strides,
+ dilates, padding_l, padding_r, padding_kind);
+}
+
+// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s