diff options
Diffstat (limited to 'thirdparty/msdfgen/core/edge-segments.cpp')
-rw-r--r-- | thirdparty/msdfgen/core/edge-segments.cpp | 504 |
1 files changed, 504 insertions, 0 deletions
diff --git a/thirdparty/msdfgen/core/edge-segments.cpp b/thirdparty/msdfgen/core/edge-segments.cpp new file mode 100644 index 0000000000..5274a9a5a1 --- /dev/null +++ b/thirdparty/msdfgen/core/edge-segments.cpp @@ -0,0 +1,504 @@ + +#include "edge-segments.h" + +#include "arithmetics.hpp" +#include "equation-solver.h" + +namespace msdfgen { + +void EdgeSegment::distanceToPseudoDistance(SignedDistance &distance, Point2 origin, double param) const { + if (param < 0) { + Vector2 dir = direction(0).normalize(); + Vector2 aq = origin-point(0); + double ts = dotProduct(aq, dir); + if (ts < 0) { + double pseudoDistance = crossProduct(aq, dir); + if (fabs(pseudoDistance) <= fabs(distance.distance)) { + distance.distance = pseudoDistance; + distance.dot = 0; + } + } + } else if (param > 1) { + Vector2 dir = direction(1).normalize(); + Vector2 bq = origin-point(1); + double ts = dotProduct(bq, dir); + if (ts > 0) { + double pseudoDistance = crossProduct(bq, dir); + if (fabs(pseudoDistance) <= fabs(distance.distance)) { + distance.distance = pseudoDistance; + distance.dot = 0; + } + } + } +} + +LinearSegment::LinearSegment(Point2 p0, Point2 p1, EdgeColor edgeColor) : EdgeSegment(edgeColor) { + p[0] = p0; + p[1] = p1; +} + +QuadraticSegment::QuadraticSegment(Point2 p0, Point2 p1, Point2 p2, EdgeColor edgeColor) : EdgeSegment(edgeColor) { + if (p1 == p0 || p1 == p2) + p1 = 0.5*(p0+p2); + p[0] = p0; + p[1] = p1; + p[2] = p2; +} + +CubicSegment::CubicSegment(Point2 p0, Point2 p1, Point2 p2, Point2 p3, EdgeColor edgeColor) : EdgeSegment(edgeColor) { + if ((p1 == p0 || p1 == p3) && (p2 == p0 || p2 == p3)) { + p1 = mix(p0, p3, 1/3.); + p2 = mix(p0, p3, 2/3.); + } + p[0] = p0; + p[1] = p1; + p[2] = p2; + p[3] = p3; +} + +LinearSegment * LinearSegment::clone() const { + return new LinearSegment(p[0], p[1], color); +} + +QuadraticSegment * QuadraticSegment::clone() const { + return new QuadraticSegment(p[0], p[1], p[2], color); +} + +CubicSegment * CubicSegment::clone() const { + return new CubicSegment(p[0], p[1], p[2], p[3], color); +} + +Point2 LinearSegment::point(double param) const { + return mix(p[0], p[1], param); +} + +Point2 QuadraticSegment::point(double param) const { + return mix(mix(p[0], p[1], param), mix(p[1], p[2], param), param); +} + +Point2 CubicSegment::point(double param) const { + Vector2 p12 = mix(p[1], p[2], param); + return mix(mix(mix(p[0], p[1], param), p12, param), mix(p12, mix(p[2], p[3], param), param), param); +} + +Vector2 LinearSegment::direction(double param) const { + return p[1]-p[0]; +} + +Vector2 QuadraticSegment::direction(double param) const { + Vector2 tangent = mix(p[1]-p[0], p[2]-p[1], param); + if (!tangent) + return p[2]-p[0]; + return tangent; +} + +Vector2 CubicSegment::direction(double param) const { + Vector2 tangent = mix(mix(p[1]-p[0], p[2]-p[1], param), mix(p[2]-p[1], p[3]-p[2], param), param); + if (!tangent) { + if (param == 0) return p[2]-p[0]; + if (param == 1) return p[3]-p[1]; + } + return tangent; +} + +Vector2 LinearSegment::directionChange(double param) const { + return Vector2(); +} + +Vector2 QuadraticSegment::directionChange(double param) const { + return (p[2]-p[1])-(p[1]-p[0]); +} + +Vector2 CubicSegment::directionChange(double param) const { + return mix((p[2]-p[1])-(p[1]-p[0]), (p[3]-p[2])-(p[2]-p[1]), param); +} + +double LinearSegment::length() const { + return (p[1]-p[0]).length(); +} + +double QuadraticSegment::length() const { + Vector2 ab = p[1]-p[0]; + Vector2 br = p[2]-p[1]-ab; + double abab = dotProduct(ab, ab); + double abbr = dotProduct(ab, br); + double brbr = dotProduct(br, br); + double abLen = sqrt(abab); + double brLen = sqrt(brbr); + double crs = crossProduct(ab, br); + double h = sqrt(abab+abbr+abbr+brbr); + return ( + brLen*((abbr+brbr)*h-abbr*abLen)+ + crs*crs*log((brLen*h+abbr+brbr)/(brLen*abLen+abbr)) + )/(brbr*brLen); +} + +SignedDistance LinearSegment::signedDistance(Point2 origin, double ¶m) const { + Vector2 aq = origin-p[0]; + Vector2 ab = p[1]-p[0]; + param = dotProduct(aq, ab)/dotProduct(ab, ab); + Vector2 eq = p[param > .5]-origin; + double endpointDistance = eq.length(); + if (param > 0 && param < 1) { + double orthoDistance = dotProduct(ab.getOrthonormal(false), aq); + if (fabs(orthoDistance) < endpointDistance) + return SignedDistance(orthoDistance, 0); + } + return SignedDistance(nonZeroSign(crossProduct(aq, ab))*endpointDistance, fabs(dotProduct(ab.normalize(), eq.normalize()))); +} + +SignedDistance QuadraticSegment::signedDistance(Point2 origin, double ¶m) const { + Vector2 qa = p[0]-origin; + Vector2 ab = p[1]-p[0]; + Vector2 br = p[2]-p[1]-ab; + double a = dotProduct(br, br); + double b = 3*dotProduct(ab, br); + double c = 2*dotProduct(ab, ab)+dotProduct(qa, br); + double d = dotProduct(qa, ab); + double t[3]; + int solutions = solveCubic(t, a, b, c, d); + + Vector2 epDir = direction(0); + double minDistance = nonZeroSign(crossProduct(epDir, qa))*qa.length(); // distance from A + param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir); + { + epDir = direction(1); + double distance = (p[2]-origin).length(); // distance from B + if (distance < fabs(minDistance)) { + minDistance = nonZeroSign(crossProduct(epDir, p[2]-origin))*distance; + param = dotProduct(origin-p[1], epDir)/dotProduct(epDir, epDir); + } + } + for (int i = 0; i < solutions; ++i) { + if (t[i] > 0 && t[i] < 1) { + Point2 qe = qa+2*t[i]*ab+t[i]*t[i]*br; + double distance = qe.length(); + if (distance <= fabs(minDistance)) { + minDistance = nonZeroSign(crossProduct(ab+t[i]*br, qe))*distance; + param = t[i]; + } + } + } + + if (param >= 0 && param <= 1) + return SignedDistance(minDistance, 0); + if (param < .5) + return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize()))); + else + return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[2]-origin).normalize()))); +} + +SignedDistance CubicSegment::signedDistance(Point2 origin, double ¶m) const { + Vector2 qa = p[0]-origin; + Vector2 ab = p[1]-p[0]; + Vector2 br = p[2]-p[1]-ab; + Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br; + + Vector2 epDir = direction(0); + double minDistance = nonZeroSign(crossProduct(epDir, qa))*qa.length(); // distance from A + param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir); + { + epDir = direction(1); + double distance = (p[3]-origin).length(); // distance from B + if (distance < fabs(minDistance)) { + minDistance = nonZeroSign(crossProduct(epDir, p[3]-origin))*distance; + param = dotProduct(epDir-(p[3]-origin), epDir)/dotProduct(epDir, epDir); + } + } + // Iterative minimum distance search + for (int i = 0; i <= MSDFGEN_CUBIC_SEARCH_STARTS; ++i) { + double t = (double) i/MSDFGEN_CUBIC_SEARCH_STARTS; + Vector2 qe = qa+3*t*ab+3*t*t*br+t*t*t*as; + for (int step = 0; step < MSDFGEN_CUBIC_SEARCH_STEPS; ++step) { + // Improve t + Vector2 d1 = 3*ab+6*t*br+3*t*t*as; + Vector2 d2 = 6*br+6*t*as; + t -= dotProduct(qe, d1)/(dotProduct(d1, d1)+dotProduct(qe, d2)); + if (t <= 0 || t >= 1) + break; + qe = qa+3*t*ab+3*t*t*br+t*t*t*as; + double distance = qe.length(); + if (distance < fabs(minDistance)) { + minDistance = nonZeroSign(crossProduct(d1, qe))*distance; + param = t; + } + } + } + + if (param >= 0 && param <= 1) + return SignedDistance(minDistance, 0); + if (param < .5) + return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize()))); + else + return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[3]-origin).normalize()))); +} + +int LinearSegment::scanlineIntersections(double x[3], int dy[3], double y) const { + if ((y >= p[0].y && y < p[1].y) || (y >= p[1].y && y < p[0].y)) { + double param = (y-p[0].y)/(p[1].y-p[0].y); + x[0] = mix(p[0].x, p[1].x, param); + dy[0] = sign(p[1].y-p[0].y); + return 1; + } + return 0; +} + +int QuadraticSegment::scanlineIntersections(double x[3], int dy[3], double y) const { + int total = 0; + int nextDY = y > p[0].y ? 1 : -1; + x[total] = p[0].x; + if (p[0].y == y) { + if (p[0].y < p[1].y || (p[0].y == p[1].y && p[0].y < p[2].y)) + dy[total++] = 1; + else + nextDY = 1; + } + { + Vector2 ab = p[1]-p[0]; + Vector2 br = p[2]-p[1]-ab; + double t[2]; + int solutions = solveQuadratic(t, br.y, 2*ab.y, p[0].y-y); + // Sort solutions + double tmp; + if (solutions >= 2 && t[0] > t[1]) + tmp = t[0], t[0] = t[1], t[1] = tmp; + for (int i = 0; i < solutions && total < 2; ++i) { + if (t[i] >= 0 && t[i] <= 1) { + x[total] = p[0].x+2*t[i]*ab.x+t[i]*t[i]*br.x; + if (nextDY*(ab.y+t[i]*br.y) >= 0) { + dy[total++] = nextDY; + nextDY = -nextDY; + } + } + } + } + if (p[2].y == y) { + if (nextDY > 0 && total > 0) { + --total; + nextDY = -1; + } + if ((p[2].y < p[1].y || (p[2].y == p[1].y && p[2].y < p[0].y)) && total < 2) { + x[total] = p[2].x; + if (nextDY < 0) { + dy[total++] = -1; + nextDY = 1; + } + } + } + if (nextDY != (y >= p[2].y ? 1 : -1)) { + if (total > 0) + --total; + else { + if (fabs(p[2].y-y) < fabs(p[0].y-y)) + x[total] = p[2].x; + dy[total++] = nextDY; + } + } + return total; +} + +int CubicSegment::scanlineIntersections(double x[3], int dy[3], double y) const { + int total = 0; + int nextDY = y > p[0].y ? 1 : -1; + x[total] = p[0].x; + if (p[0].y == y) { + if (p[0].y < p[1].y || (p[0].y == p[1].y && (p[0].y < p[2].y || (p[0].y == p[2].y && p[0].y < p[3].y)))) + dy[total++] = 1; + else + nextDY = 1; + } + { + Vector2 ab = p[1]-p[0]; + Vector2 br = p[2]-p[1]-ab; + Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br; + double t[3]; + int solutions = solveCubic(t, as.y, 3*br.y, 3*ab.y, p[0].y-y); + // Sort solutions + double tmp; + if (solutions >= 2) { + if (t[0] > t[1]) + tmp = t[0], t[0] = t[1], t[1] = tmp; + if (solutions >= 3 && t[1] > t[2]) { + tmp = t[1], t[1] = t[2], t[2] = tmp; + if (t[0] > t[1]) + tmp = t[0], t[0] = t[1], t[1] = tmp; + } + } + for (int i = 0; i < solutions && total < 3; ++i) { + if (t[i] >= 0 && t[i] <= 1) { + x[total] = p[0].x+3*t[i]*ab.x+3*t[i]*t[i]*br.x+t[i]*t[i]*t[i]*as.x; + if (nextDY*(ab.y+2*t[i]*br.y+t[i]*t[i]*as.y) >= 0) { + dy[total++] = nextDY; + nextDY = -nextDY; + } + } + } + } + if (p[3].y == y) { + if (nextDY > 0 && total > 0) { + --total; + nextDY = -1; + } + if ((p[3].y < p[2].y || (p[3].y == p[2].y && (p[3].y < p[1].y || (p[3].y == p[1].y && p[3].y < p[0].y)))) && total < 3) { + x[total] = p[3].x; + if (nextDY < 0) { + dy[total++] = -1; + nextDY = 1; + } + } + } + if (nextDY != (y >= p[3].y ? 1 : -1)) { + if (total > 0) + --total; + else { + if (fabs(p[3].y-y) < fabs(p[0].y-y)) + x[total] = p[3].x; + dy[total++] = nextDY; + } + } + return total; +} + +static void pointBounds(Point2 p, double &l, double &b, double &r, double &t) { + if (p.x < l) l = p.x; + if (p.y < b) b = p.y; + if (p.x > r) r = p.x; + if (p.y > t) t = p.y; +} + +void LinearSegment::bound(double &l, double &b, double &r, double &t) const { + pointBounds(p[0], l, b, r, t); + pointBounds(p[1], l, b, r, t); +} + +void QuadraticSegment::bound(double &l, double &b, double &r, double &t) const { + pointBounds(p[0], l, b, r, t); + pointBounds(p[2], l, b, r, t); + Vector2 bot = (p[1]-p[0])-(p[2]-p[1]); + if (bot.x) { + double param = (p[1].x-p[0].x)/bot.x; + if (param > 0 && param < 1) + pointBounds(point(param), l, b, r, t); + } + if (bot.y) { + double param = (p[1].y-p[0].y)/bot.y; + if (param > 0 && param < 1) + pointBounds(point(param), l, b, r, t); + } +} + +void CubicSegment::bound(double &l, double &b, double &r, double &t) const { + pointBounds(p[0], l, b, r, t); + pointBounds(p[3], l, b, r, t); + Vector2 a0 = p[1]-p[0]; + Vector2 a1 = 2*(p[2]-p[1]-a0); + Vector2 a2 = p[3]-3*p[2]+3*p[1]-p[0]; + double params[2]; + int solutions; + solutions = solveQuadratic(params, a2.x, a1.x, a0.x); + for (int i = 0; i < solutions; ++i) + if (params[i] > 0 && params[i] < 1) + pointBounds(point(params[i]), l, b, r, t); + solutions = solveQuadratic(params, a2.y, a1.y, a0.y); + for (int i = 0; i < solutions; ++i) + if (params[i] > 0 && params[i] < 1) + pointBounds(point(params[i]), l, b, r, t); +} + +void LinearSegment::reverse() { + Point2 tmp = p[0]; + p[0] = p[1]; + p[1] = tmp; +} + +void QuadraticSegment::reverse() { + Point2 tmp = p[0]; + p[0] = p[2]; + p[2] = tmp; +} + +void CubicSegment::reverse() { + Point2 tmp = p[0]; + p[0] = p[3]; + p[3] = tmp; + tmp = p[1]; + p[1] = p[2]; + p[2] = tmp; +} + +void LinearSegment::moveStartPoint(Point2 to) { + p[0] = to; +} + +void QuadraticSegment::moveStartPoint(Point2 to) { + Vector2 origSDir = p[0]-p[1]; + Point2 origP1 = p[1]; + p[1] += crossProduct(p[0]-p[1], to-p[0])/crossProduct(p[0]-p[1], p[2]-p[1])*(p[2]-p[1]); + p[0] = to; + if (dotProduct(origSDir, p[0]-p[1]) < 0) + p[1] = origP1; +} + +void CubicSegment::moveStartPoint(Point2 to) { + p[1] += to-p[0]; + p[0] = to; +} + +void LinearSegment::moveEndPoint(Point2 to) { + p[1] = to; +} + +void QuadraticSegment::moveEndPoint(Point2 to) { + Vector2 origEDir = p[2]-p[1]; + Point2 origP1 = p[1]; + p[1] += crossProduct(p[2]-p[1], to-p[2])/crossProduct(p[2]-p[1], p[0]-p[1])*(p[0]-p[1]); + p[2] = to; + if (dotProduct(origEDir, p[2]-p[1]) < 0) + p[1] = origP1; +} + +void CubicSegment::moveEndPoint(Point2 to) { + p[2] += to-p[3]; + p[3] = to; +} + +void LinearSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const { + part1 = new LinearSegment(p[0], point(1/3.), color); + part2 = new LinearSegment(point(1/3.), point(2/3.), color); + part3 = new LinearSegment(point(2/3.), p[1], color); +} + +void QuadraticSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const { + part1 = new QuadraticSegment(p[0], mix(p[0], p[1], 1/3.), point(1/3.), color); + part2 = new QuadraticSegment(point(1/3.), mix(mix(p[0], p[1], 5/9.), mix(p[1], p[2], 4/9.), .5), point(2/3.), color); + part3 = new QuadraticSegment(point(2/3.), mix(p[1], p[2], 2/3.), p[2], color); +} + +void CubicSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const { + part1 = new CubicSegment(p[0], p[0] == p[1] ? p[0] : mix(p[0], p[1], 1/3.), mix(mix(p[0], p[1], 1/3.), mix(p[1], p[2], 1/3.), 1/3.), point(1/3.), color); + part2 = new CubicSegment(point(1/3.), + mix(mix(mix(p[0], p[1], 1/3.), mix(p[1], p[2], 1/3.), 1/3.), mix(mix(p[1], p[2], 1/3.), mix(p[2], p[3], 1/3.), 1/3.), 2/3.), + mix(mix(mix(p[0], p[1], 2/3.), mix(p[1], p[2], 2/3.), 2/3.), mix(mix(p[1], p[2], 2/3.), mix(p[2], p[3], 2/3.), 2/3.), 1/3.), + point(2/3.), color); + part3 = new CubicSegment(point(2/3.), mix(mix(p[1], p[2], 2/3.), mix(p[2], p[3], 2/3.), 2/3.), p[2] == p[3] ? p[3] : mix(p[2], p[3], 2/3.), p[3], color); +} + +EdgeSegment * QuadraticSegment::convertToCubic() const { + return new CubicSegment(p[0], mix(p[0], p[1], 2/3.), mix(p[1], p[2], 1/3.), p[2], color); +} + +void CubicSegment::deconverge(int param, double amount) { + Vector2 dir = direction(param); + Vector2 normal = dir.getOrthonormal(); + double h = dotProduct(directionChange(param)-dir, normal); + switch (param) { + case 0: + p[1] += amount*(dir+sign(h)*sqrt(fabs(h))*normal); + break; + case 1: + p[2] -= amount*(dir-sign(h)*sqrt(fabs(h))*normal); + break; + } +} + +} |