summaryrefslogtreecommitdiff
path: root/thirdparty/misc
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/misc')
-rw-r--r--thirdparty/misc/open-simplex-noise-LICENSE25
-rw-r--r--thirdparty/misc/open-simplex-noise-no-allocate.patch133
-rw-r--r--thirdparty/misc/open-simplex-noise.c2254
-rw-r--r--thirdparty/misc/open-simplex-noise.h58
4 files changed, 2470 insertions, 0 deletions
diff --git a/thirdparty/misc/open-simplex-noise-LICENSE b/thirdparty/misc/open-simplex-noise-LICENSE
new file mode 100644
index 0000000000..a84c395662
--- /dev/null
+++ b/thirdparty/misc/open-simplex-noise-LICENSE
@@ -0,0 +1,25 @@
+This is free and unencumbered software released into the public domain.
+
+Anyone is free to copy, modify, publish, use, compile, sell, or
+distribute this software, either in source code form or as a compiled
+binary, for any purpose, commercial or non-commercial, and by any
+means.
+
+In jurisdictions that recognize copyright laws, the author or authors
+of this software dedicate any and all copyright interest in the
+software to the public domain. We make this dedication for the benefit
+of the public at large and to the detriment of our heirs and
+successors. We intend this dedication to be an overt act of
+relinquishment in perpetuity of all present and future rights to this
+software under copyright law.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
+OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+OTHER DEALINGS IN THE SOFTWARE.
+
+For more information, please refer to <http://unlicense.org>
+
diff --git a/thirdparty/misc/open-simplex-noise-no-allocate.patch b/thirdparty/misc/open-simplex-noise-no-allocate.patch
new file mode 100644
index 0000000000..fc3abe7d00
--- /dev/null
+++ b/thirdparty/misc/open-simplex-noise-no-allocate.patch
@@ -0,0 +1,133 @@
+diff -u orig/open-simplex-noise.c misc/open-simplex-noise.c
+--- orig/open-simplex-noise.c 2018-09-14 11:11:40.049810000 +0200
++++ misc/open-simplex-noise.c 2018-09-14 11:09:39.726457000 +0200
+@@ -13,6 +13,11 @@
+ * of any particular randomization library, so results
+ * will be the same when ported to other languages.
+ */
++
++// -- GODOT start --
++// Modified to work without allocating memory, also removed some unused function.
++// -- GODOT end --
++
+ #include <math.h>
+ #include <stdlib.h>
+ #include <stdint.h>
+@@ -34,11 +39,12 @@
+
+ #define DEFAULT_SEED (0LL)
+
+-struct osn_context {
++// -- GODOT start --
++/*struct osn_context {
+ int16_t *perm;
+ int16_t *permGradIndex3D;
+-};
+-
++};*/
++// -- GODOT end --
+ #define ARRAYSIZE(x) (sizeof((x)) / sizeof((x)[0]))
+
+ /*
+@@ -126,7 +132,9 @@
+ int xi = (int) x;
+ return x < xi ? xi - 1 : xi;
+ }
+-
++
++// -- GODOT start --
++/*
+ static int allocate_perm(struct osn_context *ctx, int nperm, int ngrad)
+ {
+ if (ctx->perm)
+@@ -154,18 +162,21 @@
+ memcpy(ctx->perm, p, sizeof(*ctx->perm) * nelements);
+
+ for (i = 0; i < 256; i++) {
+- /* Since 3D has 24 gradients, simple bitmask won't work, so precompute modulo array. */
++ // Since 3D has 24 gradients, simple bitmask won't work, so precompute modulo array.
+ ctx->permGradIndex3D[i] = (int16_t)((ctx->perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3);
+ }
+ return 0;
+ }
++*/
++// -- GODOT end --
+
+ /*
+ * Initializes using a permutation array generated from a 64-bit seed.
+ * Generates a proper permutation (i.e. doesn't merely perform N successive pair
+ * swaps on a base array). Uses a simple 64-bit LCG.
+ */
+-int open_simplex_noise(int64_t seed, struct osn_context **ctx)
++// -- GODOT start --
++int open_simplex_noise(int64_t seed, struct osn_context *ctx)
+ {
+ int rc;
+ int16_t source[256];
+@@ -174,20 +185,9 @@
+ int16_t *permGradIndex3D;
+ int r;
+
+- *ctx = (struct osn_context *) malloc(sizeof(**ctx));
+- if (!(*ctx))
+- return -ENOMEM;
+- (*ctx)->perm = NULL;
+- (*ctx)->permGradIndex3D = NULL;
+-
+- rc = allocate_perm(*ctx, 256, 256);
+- if (rc) {
+- free(*ctx);
+- return rc;
+- }
+-
+- perm = (*ctx)->perm;
+- permGradIndex3D = (*ctx)->permGradIndex3D;
++ perm = ctx->perm;
++ permGradIndex3D = ctx->permGradIndex3D;
++// -- GODOT end --
+
+ for (i = 0; i < 256; i++)
+ source[i] = (int16_t) i;
+@@ -206,6 +206,8 @@
+ return 0;
+ }
+
++// -- GODOT start --
++/*
+ void open_simplex_noise_free(struct osn_context *ctx)
+ {
+ if (!ctx)
+@@ -220,6 +222,8 @@
+ }
+ free(ctx);
+ }
++*/
++// -- GODOT end --
+
+ /* 2D OpenSimplex (Simplectic) Noise. */
+ double open_simplex_noise2(struct osn_context *ctx, double x, double y)
+diff -u orig/open-simplex-noise.h misc/open-simplex-noise.h
+--- orig/open-simplex-noise.h 2018-09-14 11:11:19.659807000 +0200
++++ misc/open-simplex-noise.h 2018-09-14 11:10:05.006460000 +0200
+@@ -35,11 +35,18 @@
+ extern "C" {
+ #endif
+
+-struct osn_context;
++// -- GODOT start --
++// Modified to work without allocating memory, also removed some unused function.
+
+-int open_simplex_noise(int64_t seed, struct osn_context **ctx);
++struct osn_context {
++ int16_t perm[256];
++ int16_t permGradIndex3D[256];
++};
++
++int open_simplex_noise(int64_t seed, struct osn_context *ctx);
++//int open_simplex_noise_init_perm(struct osn_context *ctx, int16_t p[], int nelements);
++// -- GODOT end --
+ void open_simplex_noise_free(struct osn_context *ctx);
+-int open_simplex_noise_init_perm(struct osn_context *ctx, int16_t p[], int nelements);
+ double open_simplex_noise2(struct osn_context *ctx, double x, double y);
+ double open_simplex_noise3(struct osn_context *ctx, double x, double y, double z);
+ double open_simplex_noise4(struct osn_context *ctx, double x, double y, double z, double w);
diff --git a/thirdparty/misc/open-simplex-noise.c b/thirdparty/misc/open-simplex-noise.c
new file mode 100644
index 0000000000..42f2fbb5be
--- /dev/null
+++ b/thirdparty/misc/open-simplex-noise.c
@@ -0,0 +1,2254 @@
+/*
+ * OpenSimplex (Simplectic) Noise in C.
+ * Ported by Stephen M. Cameron from Kurt Spencer's java implementation
+ *
+ * v1.1 (October 5, 2014)
+ * - Added 2D and 4D implementations.
+ * - Proper gradient sets for all dimensions, from a
+ * dimensionally-generalizable scheme with an actual
+ * rhyme and reason behind it.
+ * - Removed default permutation array in favor of
+ * default seed.
+ * - Changed seed-based constructor to be independent
+ * of any particular randomization library, so results
+ * will be the same when ported to other languages.
+ */
+
+// -- GODOT start --
+// Modified to work without allocating memory, also removed some unused function.
+// -- GODOT end --
+
+#include <math.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <string.h>
+#include <errno.h>
+
+#include "open-simplex-noise.h"
+
+#define STRETCH_CONSTANT_2D (-0.211324865405187) /* (1 / sqrt(2 + 1) - 1 ) / 2; */
+#define SQUISH_CONSTANT_2D (0.366025403784439) /* (sqrt(2 + 1) -1) / 2; */
+#define STRETCH_CONSTANT_3D (-1.0 / 6.0) /* (1 / sqrt(3 + 1) - 1) / 3; */
+#define SQUISH_CONSTANT_3D (1.0 / 3.0) /* (sqrt(3+1)-1)/3; */
+#define STRETCH_CONSTANT_4D (-0.138196601125011) /* (1 / sqrt(4 + 1) - 1) / 4; */
+#define SQUISH_CONSTANT_4D (0.309016994374947) /* (sqrt(4 + 1) - 1) / 4; */
+
+#define NORM_CONSTANT_2D (47.0)
+#define NORM_CONSTANT_3D (103.0)
+#define NORM_CONSTANT_4D (30.0)
+
+#define DEFAULT_SEED (0LL)
+
+// -- GODOT start --
+/*struct osn_context {
+ int16_t *perm;
+ int16_t *permGradIndex3D;
+};*/
+// -- GODOT end --
+#define ARRAYSIZE(x) (sizeof((x)) / sizeof((x)[0]))
+
+/*
+ * Gradients for 2D. They approximate the directions to the
+ * vertices of an octagon from the center.
+ */
+static const int8_t gradients2D[] = {
+ 5, 2, 2, 5,
+ -5, 2, -2, 5,
+ 5, -2, 2, -5,
+ -5, -2, -2, -5,
+};
+
+/*
+ * Gradients for 3D. They approximate the directions to the
+ * vertices of a rhombicuboctahedron from the center, skewed so
+ * that the triangular and square facets can be inscribed inside
+ * circles of the same radius.
+ */
+static const signed char gradients3D[] = {
+ -11, 4, 4, -4, 11, 4, -4, 4, 11,
+ 11, 4, 4, 4, 11, 4, 4, 4, 11,
+ -11, -4, 4, -4, -11, 4, -4, -4, 11,
+ 11, -4, 4, 4, -11, 4, 4, -4, 11,
+ -11, 4, -4, -4, 11, -4, -4, 4, -11,
+ 11, 4, -4, 4, 11, -4, 4, 4, -11,
+ -11, -4, -4, -4, -11, -4, -4, -4, -11,
+ 11, -4, -4, 4, -11, -4, 4, -4, -11,
+};
+
+/*
+ * Gradients for 4D. They approximate the directions to the
+ * vertices of a disprismatotesseractihexadecachoron from the center,
+ * skewed so that the tetrahedral and cubic facets can be inscribed inside
+ * spheres of the same radius.
+ */
+static const signed char gradients4D[] = {
+ 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3,
+ -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3,
+ 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3,
+ -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3,
+ 3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3,
+ -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3,
+ 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3,
+ -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3,
+ 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3,
+ -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3,
+ 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3,
+ -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3,
+ 3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3,
+ -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3,
+ 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3,
+ -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3,
+};
+
+static double extrapolate2(struct osn_context *ctx, int xsb, int ysb, double dx, double dy)
+{
+ int16_t *perm = ctx->perm;
+ int index = perm[(perm[xsb & 0xFF] + ysb) & 0xFF] & 0x0E;
+ return gradients2D[index] * dx
+ + gradients2D[index + 1] * dy;
+}
+
+static double extrapolate3(struct osn_context *ctx, int xsb, int ysb, int zsb, double dx, double dy, double dz)
+{
+ int16_t *perm = ctx->perm;
+ int16_t *permGradIndex3D = ctx->permGradIndex3D;
+ int index = permGradIndex3D[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF];
+ return gradients3D[index] * dx
+ + gradients3D[index + 1] * dy
+ + gradients3D[index + 2] * dz;
+}
+
+static double extrapolate4(struct osn_context *ctx, int xsb, int ysb, int zsb, int wsb, double dx, double dy, double dz, double dw)
+{
+ int16_t *perm = ctx->perm;
+ int index = perm[(perm[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF] + wsb) & 0xFF] & 0xFC;
+ return gradients4D[index] * dx
+ + gradients4D[index + 1] * dy
+ + gradients4D[index + 2] * dz
+ + gradients4D[index + 3] * dw;
+}
+
+static INLINE int fastFloor(double x) {
+ int xi = (int) x;
+ return x < xi ? xi - 1 : xi;
+}
+
+// -- GODOT start --
+/*
+static int allocate_perm(struct osn_context *ctx, int nperm, int ngrad)
+{
+ if (ctx->perm)
+ free(ctx->perm);
+ if (ctx->permGradIndex3D)
+ free(ctx->permGradIndex3D);
+ ctx->perm = (int16_t *) malloc(sizeof(*ctx->perm) * nperm);
+ if (!ctx->perm)
+ return -ENOMEM;
+ ctx->permGradIndex3D = (int16_t *) malloc(sizeof(*ctx->permGradIndex3D) * ngrad);
+ if (!ctx->permGradIndex3D) {
+ free(ctx->perm);
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+int open_simplex_noise_init_perm(struct osn_context *ctx, int16_t p[], int nelements)
+{
+ int i, rc;
+
+ rc = allocate_perm(ctx, nelements, 256);
+ if (rc)
+ return rc;
+ memcpy(ctx->perm, p, sizeof(*ctx->perm) * nelements);
+
+ for (i = 0; i < 256; i++) {
+ // Since 3D has 24 gradients, simple bitmask won't work, so precompute modulo array.
+ ctx->permGradIndex3D[i] = (int16_t)((ctx->perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3);
+ }
+ return 0;
+}
+*/
+// -- GODOT end --
+
+/*
+ * Initializes using a permutation array generated from a 64-bit seed.
+ * Generates a proper permutation (i.e. doesn't merely perform N successive pair
+ * swaps on a base array). Uses a simple 64-bit LCG.
+ */
+// -- GODOT start --
+int open_simplex_noise(int64_t seed, struct osn_context *ctx)
+{
+ int rc;
+ int16_t source[256];
+ int i;
+ int16_t *perm;
+ int16_t *permGradIndex3D;
+ int r;
+
+ perm = ctx->perm;
+ permGradIndex3D = ctx->permGradIndex3D;
+// -- GODOT end --
+
+ for (i = 0; i < 256; i++)
+ source[i] = (int16_t) i;
+ seed = seed * 6364136223846793005LL + 1442695040888963407LL;
+ seed = seed * 6364136223846793005LL + 1442695040888963407LL;
+ seed = seed * 6364136223846793005LL + 1442695040888963407LL;
+ for (i = 255; i >= 0; i--) {
+ seed = seed * 6364136223846793005LL + 1442695040888963407LL;
+ r = (int)((seed + 31) % (i + 1));
+ if (r < 0)
+ r += (i + 1);
+ perm[i] = source[r];
+ permGradIndex3D[i] = (short)((perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3);
+ source[r] = source[i];
+ }
+ return 0;
+}
+
+// -- GODOT start --
+/*
+void open_simplex_noise_free(struct osn_context *ctx)
+{
+ if (!ctx)
+ return;
+ if (ctx->perm) {
+ free(ctx->perm);
+ ctx->perm = NULL;
+ }
+ if (ctx->permGradIndex3D) {
+ free(ctx->permGradIndex3D);
+ ctx->permGradIndex3D = NULL;
+ }
+ free(ctx);
+}
+*/
+// -- GODOT end --
+
+/* 2D OpenSimplex (Simplectic) Noise. */
+double open_simplex_noise2(struct osn_context *ctx, double x, double y)
+{
+
+ /* Place input coordinates onto grid. */
+ double stretchOffset = (x + y) * STRETCH_CONSTANT_2D;
+ double xs = x + stretchOffset;
+ double ys = y + stretchOffset;
+
+ /* Floor to get grid coordinates of rhombus (stretched square) super-cell origin. */
+ int xsb = fastFloor(xs);
+ int ysb = fastFloor(ys);
+
+ /* Skew out to get actual coordinates of rhombus origin. We'll need these later. */
+ double squishOffset = (xsb + ysb) * SQUISH_CONSTANT_2D;
+ double xb = xsb + squishOffset;
+ double yb = ysb + squishOffset;
+
+ /* Compute grid coordinates relative to rhombus origin. */
+ double xins = xs - xsb;
+ double yins = ys - ysb;
+
+ /* Sum those together to get a value that determines which region we're in. */
+ double inSum = xins + yins;
+
+ /* Positions relative to origin point. */
+ double dx0 = x - xb;
+ double dy0 = y - yb;
+
+ /* We'll be defining these inside the next block and using them afterwards. */
+ double dx_ext, dy_ext;
+ int xsv_ext, ysv_ext;
+
+ double dx1;
+ double dy1;
+ double attn1;
+ double dx2;
+ double dy2;
+ double attn2;
+ double zins;
+ double attn0;
+ double attn_ext;
+
+ double value = 0;
+
+ /* Contribution (1,0) */
+ dx1 = dx0 - 1 - SQUISH_CONSTANT_2D;
+ dy1 = dy0 - 0 - SQUISH_CONSTANT_2D;
+ attn1 = 2 - dx1 * dx1 - dy1 * dy1;
+ if (attn1 > 0) {
+ attn1 *= attn1;
+ value += attn1 * attn1 * extrapolate2(ctx, xsb + 1, ysb + 0, dx1, dy1);
+ }
+
+ /* Contribution (0,1) */
+ dx2 = dx0 - 0 - SQUISH_CONSTANT_2D;
+ dy2 = dy0 - 1 - SQUISH_CONSTANT_2D;
+ attn2 = 2 - dx2 * dx2 - dy2 * dy2;
+ if (attn2 > 0) {
+ attn2 *= attn2;
+ value += attn2 * attn2 * extrapolate2(ctx, xsb + 0, ysb + 1, dx2, dy2);
+ }
+
+ if (inSum <= 1) { /* We're inside the triangle (2-Simplex) at (0,0) */
+ zins = 1 - inSum;
+ if (zins > xins || zins > yins) { /* (0,0) is one of the closest two triangular vertices */
+ if (xins > yins) {
+ xsv_ext = xsb + 1;
+ ysv_ext = ysb - 1;
+ dx_ext = dx0 - 1;
+ dy_ext = dy0 + 1;
+ } else {
+ xsv_ext = xsb - 1;
+ ysv_ext = ysb + 1;
+ dx_ext = dx0 + 1;
+ dy_ext = dy0 - 1;
+ }
+ } else { /* (1,0) and (0,1) are the closest two vertices. */
+ xsv_ext = xsb + 1;
+ ysv_ext = ysb + 1;
+ dx_ext = dx0 - 1 - 2 * SQUISH_CONSTANT_2D;
+ dy_ext = dy0 - 1 - 2 * SQUISH_CONSTANT_2D;
+ }
+ } else { /* We're inside the triangle (2-Simplex) at (1,1) */
+ zins = 2 - inSum;
+ if (zins < xins || zins < yins) { /* (0,0) is one of the closest two triangular vertices */
+ if (xins > yins) {
+ xsv_ext = xsb + 2;
+ ysv_ext = ysb + 0;
+ dx_ext = dx0 - 2 - 2 * SQUISH_CONSTANT_2D;
+ dy_ext = dy0 + 0 - 2 * SQUISH_CONSTANT_2D;
+ } else {
+ xsv_ext = xsb + 0;
+ ysv_ext = ysb + 2;
+ dx_ext = dx0 + 0 - 2 * SQUISH_CONSTANT_2D;
+ dy_ext = dy0 - 2 - 2 * SQUISH_CONSTANT_2D;
+ }
+ } else { /* (1,0) and (0,1) are the closest two vertices. */
+ dx_ext = dx0;
+ dy_ext = dy0;
+ xsv_ext = xsb;
+ ysv_ext = ysb;
+ }
+ xsb += 1;
+ ysb += 1;
+ dx0 = dx0 - 1 - 2 * SQUISH_CONSTANT_2D;
+ dy0 = dy0 - 1 - 2 * SQUISH_CONSTANT_2D;
+ }
+
+ /* Contribution (0,0) or (1,1) */
+ attn0 = 2 - dx0 * dx0 - dy0 * dy0;
+ if (attn0 > 0) {
+ attn0 *= attn0;
+ value += attn0 * attn0 * extrapolate2(ctx, xsb, ysb, dx0, dy0);
+ }
+
+ /* Extra Vertex */
+ attn_ext = 2 - dx_ext * dx_ext - dy_ext * dy_ext;
+ if (attn_ext > 0) {
+ attn_ext *= attn_ext;
+ value += attn_ext * attn_ext * extrapolate2(ctx, xsv_ext, ysv_ext, dx_ext, dy_ext);
+ }
+
+ return value / NORM_CONSTANT_2D;
+}
+
+/*
+ * 3D OpenSimplex (Simplectic) Noise
+ */
+double open_simplex_noise3(struct osn_context *ctx, double x, double y, double z)
+{
+
+ /* Place input coordinates on simplectic honeycomb. */
+ double stretchOffset = (x + y + z) * STRETCH_CONSTANT_3D;
+ double xs = x + stretchOffset;
+ double ys = y + stretchOffset;
+ double zs = z + stretchOffset;
+
+ /* Floor to get simplectic honeycomb coordinates of rhombohedron (stretched cube) super-cell origin. */
+ int xsb = fastFloor(xs);
+ int ysb = fastFloor(ys);
+ int zsb = fastFloor(zs);
+
+ /* Skew out to get actual coordinates of rhombohedron origin. We'll need these later. */
+ double squishOffset = (xsb + ysb + zsb) * SQUISH_CONSTANT_3D;
+ double xb = xsb + squishOffset;
+ double yb = ysb + squishOffset;
+ double zb = zsb + squishOffset;
+
+ /* Compute simplectic honeycomb coordinates relative to rhombohedral origin. */
+ double xins = xs - xsb;
+ double yins = ys - ysb;
+ double zins = zs - zsb;
+
+ /* Sum those together to get a value that determines which region we're in. */
+ double inSum = xins + yins + zins;
+
+ /* Positions relative to origin point. */
+ double dx0 = x - xb;
+ double dy0 = y - yb;
+ double dz0 = z - zb;
+
+ /* We'll be defining these inside the next block and using them afterwards. */
+ double dx_ext0, dy_ext0, dz_ext0;
+ double dx_ext1, dy_ext1, dz_ext1;
+ int xsv_ext0, ysv_ext0, zsv_ext0;
+ int xsv_ext1, ysv_ext1, zsv_ext1;
+
+ double wins;
+ int8_t c, c1, c2;
+ int8_t aPoint, bPoint;
+ double aScore, bScore;
+ int aIsFurtherSide;
+ int bIsFurtherSide;
+ double p1, p2, p3;
+ double score;
+ double attn0, attn1, attn2, attn3, attn4, attn5, attn6;
+ double dx1, dy1, dz1;
+ double dx2, dy2, dz2;
+ double dx3, dy3, dz3;
+ double dx4, dy4, dz4;
+ double dx5, dy5, dz5;
+ double dx6, dy6, dz6;
+ double attn_ext0, attn_ext1;
+
+ double value = 0;
+ if (inSum <= 1) { /* We're inside the tetrahedron (3-Simplex) at (0,0,0) */
+
+ /* Determine which two of (0,0,1), (0,1,0), (1,0,0) are closest. */
+ aPoint = 0x01;
+ aScore = xins;
+ bPoint = 0x02;
+ bScore = yins;
+ if (aScore >= bScore && zins > bScore) {
+ bScore = zins;
+ bPoint = 0x04;
+ } else if (aScore < bScore && zins > aScore) {
+ aScore = zins;
+ aPoint = 0x04;
+ }
+
+ /* Now we determine the two lattice points not part of the tetrahedron that may contribute.
+ This depends on the closest two tetrahedral vertices, including (0,0,0) */
+ wins = 1 - inSum;
+ if (wins > aScore || wins > bScore) { /* (0,0,0) is one of the closest two tetrahedral vertices. */
+ c = (bScore > aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
+
+ if ((c & 0x01) == 0) {
+ xsv_ext0 = xsb - 1;
+ xsv_ext1 = xsb;
+ dx_ext0 = dx0 + 1;
+ dx_ext1 = dx0;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsb + 1;
+ dx_ext0 = dx_ext1 = dx0 - 1;
+ }
+
+ if ((c & 0x02) == 0) {
+ ysv_ext0 = ysv_ext1 = ysb;
+ dy_ext0 = dy_ext1 = dy0;
+ if ((c & 0x01) == 0) {
+ ysv_ext1 -= 1;
+ dy_ext1 += 1;
+ } else {
+ ysv_ext0 -= 1;
+ dy_ext0 += 1;
+ }
+ } else {
+ ysv_ext0 = ysv_ext1 = ysb + 1;
+ dy_ext0 = dy_ext1 = dy0 - 1;
+ }
+
+ if ((c & 0x04) == 0) {
+ zsv_ext0 = zsb;
+ zsv_ext1 = zsb - 1;
+ dz_ext0 = dz0;
+ dz_ext1 = dz0 + 1;
+ } else {
+ zsv_ext0 = zsv_ext1 = zsb + 1;
+ dz_ext0 = dz_ext1 = dz0 - 1;
+ }
+ } else { /* (0,0,0) is not one of the closest two tetrahedral vertices. */
+ c = (int8_t)(aPoint | bPoint); /* Our two extra vertices are determined by the closest two. */
+
+ if ((c & 0x01) == 0) {
+ xsv_ext0 = xsb;
+ xsv_ext1 = xsb - 1;
+ dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_3D;
+ dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsb + 1;
+ dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
+ dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
+ }
+
+ if ((c & 0x02) == 0) {
+ ysv_ext0 = ysb;
+ ysv_ext1 = ysb - 1;
+ dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D;
+ } else {
+ ysv_ext0 = ysv_ext1 = ysb + 1;
+ dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
+ }
+
+ if ((c & 0x04) == 0) {
+ zsv_ext0 = zsb;
+ zsv_ext1 = zsb - 1;
+ dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D;
+ } else {
+ zsv_ext0 = zsv_ext1 = zsb + 1;
+ dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
+ }
+ }
+
+ /* Contribution (0,0,0) */
+ attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0;
+ if (attn0 > 0) {
+ attn0 *= attn0;
+ value += attn0 * attn0 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 0, dx0, dy0, dz0);
+ }
+
+ /* Contribution (1,0,0) */
+ dx1 = dx0 - 1 - SQUISH_CONSTANT_3D;
+ dy1 = dy0 - 0 - SQUISH_CONSTANT_3D;
+ dz1 = dz0 - 0 - SQUISH_CONSTANT_3D;
+ attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
+ if (attn1 > 0) {
+ attn1 *= attn1;
+ value += attn1 * attn1 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1);
+ }
+
+ /* Contribution (0,1,0) */
+ dx2 = dx0 - 0 - SQUISH_CONSTANT_3D;
+ dy2 = dy0 - 1 - SQUISH_CONSTANT_3D;
+ dz2 = dz1;
+ attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
+ if (attn2 > 0) {
+ attn2 *= attn2;
+ value += attn2 * attn2 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2);
+ }
+
+ /* Contribution (0,0,1) */
+ dx3 = dx2;
+ dy3 = dy1;
+ dz3 = dz0 - 1 - SQUISH_CONSTANT_3D;
+ attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
+ if (attn3 > 0) {
+ attn3 *= attn3;
+ value += attn3 * attn3 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3);
+ }
+ } else if (inSum >= 2) { /* We're inside the tetrahedron (3-Simplex) at (1,1,1) */
+
+ /* Determine which two tetrahedral vertices are the closest, out of (1,1,0), (1,0,1), (0,1,1) but not (1,1,1). */
+ aPoint = 0x06;
+ aScore = xins;
+ bPoint = 0x05;
+ bScore = yins;
+ if (aScore <= bScore && zins < bScore) {
+ bScore = zins;
+ bPoint = 0x03;
+ } else if (aScore > bScore && zins < aScore) {
+ aScore = zins;
+ aPoint = 0x03;
+ }
+
+ /* Now we determine the two lattice points not part of the tetrahedron that may contribute.
+ This depends on the closest two tetrahedral vertices, including (1,1,1) */
+ wins = 3 - inSum;
+ if (wins < aScore || wins < bScore) { /* (1,1,1) is one of the closest two tetrahedral vertices. */
+ c = (bScore < aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
+
+ if ((c & 0x01) != 0) {
+ xsv_ext0 = xsb + 2;
+ xsv_ext1 = xsb + 1;
+ dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_3D;
+ dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsb;
+ dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_3D;
+ }
+
+ if ((c & 0x02) != 0) {
+ ysv_ext0 = ysv_ext1 = ysb + 1;
+ dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
+ if ((c & 0x01) != 0) {
+ ysv_ext1 += 1;
+ dy_ext1 -= 1;
+ } else {
+ ysv_ext0 += 1;
+ dy_ext0 -= 1;
+ }
+ } else {
+ ysv_ext0 = ysv_ext1 = ysb;
+ dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_3D;
+ }
+
+ if ((c & 0x04) != 0) {
+ zsv_ext0 = zsb + 1;
+ zsv_ext1 = zsb + 2;
+ dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 - 2 - 3 * SQUISH_CONSTANT_3D;
+ } else {
+ zsv_ext0 = zsv_ext1 = zsb;
+ dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_3D;
+ }
+ } else { /* (1,1,1) is not one of the closest two tetrahedral vertices. */
+ c = (int8_t)(aPoint & bPoint); /* Our two extra vertices are determined by the closest two. */
+
+ if ((c & 0x01) != 0) {
+ xsv_ext0 = xsb + 1;
+ xsv_ext1 = xsb + 2;
+ dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
+ dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsb;
+ dx_ext0 = dx0 - SQUISH_CONSTANT_3D;
+ dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
+ }
+
+ if ((c & 0x02) != 0) {
+ ysv_ext0 = ysb + 1;
+ ysv_ext1 = ysb + 2;
+ dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D;
+ } else {
+ ysv_ext0 = ysv_ext1 = ysb;
+ dy_ext0 = dy0 - SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
+ }
+
+ if ((c & 0x04) != 0) {
+ zsv_ext0 = zsb + 1;
+ zsv_ext1 = zsb + 2;
+ dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D;
+ } else {
+ zsv_ext0 = zsv_ext1 = zsb;
+ dz_ext0 = dz0 - SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
+ }
+ }
+
+ /* Contribution (1,1,0) */
+ dx3 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
+ dy3 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
+ dz3 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D;
+ attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
+ if (attn3 > 0) {
+ attn3 *= attn3;
+ value += attn3 * attn3 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 0, dx3, dy3, dz3);
+ }
+
+ /* Contribution (1,0,1) */
+ dx2 = dx3;
+ dy2 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D;
+ dz2 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
+ attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
+ if (attn2 > 0) {
+ attn2 *= attn2;
+ value += attn2 * attn2 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 1, dx2, dy2, dz2);
+ }
+
+ /* Contribution (0,1,1) */
+ dx1 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D;
+ dy1 = dy3;
+ dz1 = dz2;
+ attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
+ if (attn1 > 0) {
+ attn1 *= attn1;
+ value += attn1 * attn1 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 1, dx1, dy1, dz1);
+ }
+
+ /* Contribution (1,1,1) */
+ dx0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
+ dy0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
+ dz0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
+ attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0;
+ if (attn0 > 0) {
+ attn0 *= attn0;
+ value += attn0 * attn0 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 1, dx0, dy0, dz0);
+ }
+ } else { /* We're inside the octahedron (Rectified 3-Simplex) in between.
+ Decide between point (0,0,1) and (1,1,0) as closest */
+ p1 = xins + yins;
+ if (p1 > 1) {
+ aScore = p1 - 1;
+ aPoint = 0x03;
+ aIsFurtherSide = 1;
+ } else {
+ aScore = 1 - p1;
+ aPoint = 0x04;
+ aIsFurtherSide = 0;
+ }
+
+ /* Decide between point (0,1,0) and (1,0,1) as closest */
+ p2 = xins + zins;
+ if (p2 > 1) {
+ bScore = p2 - 1;
+ bPoint = 0x05;
+ bIsFurtherSide = 1;
+ } else {
+ bScore = 1 - p2;
+ bPoint = 0x02;
+ bIsFurtherSide = 0;
+ }
+
+ /* The closest out of the two (1,0,0) and (0,1,1) will replace the furthest out of the two decided above, if closer. */
+ p3 = yins + zins;
+ if (p3 > 1) {
+ score = p3 - 1;
+ if (aScore <= bScore && aScore < score) {
+ aScore = score;
+ aPoint = 0x06;
+ aIsFurtherSide = 1;
+ } else if (aScore > bScore && bScore < score) {
+ bScore = score;
+ bPoint = 0x06;
+ bIsFurtherSide = 1;
+ }
+ } else {
+ score = 1 - p3;
+ if (aScore <= bScore && aScore < score) {
+ aScore = score;
+ aPoint = 0x01;
+ aIsFurtherSide = 0;
+ } else if (aScore > bScore && bScore < score) {
+ bScore = score;
+ bPoint = 0x01;
+ bIsFurtherSide = 0;
+ }
+ }
+
+ /* Where each of the two closest points are determines how the extra two vertices are calculated. */
+ if (aIsFurtherSide == bIsFurtherSide) {
+ if (aIsFurtherSide) { /* Both closest points on (1,1,1) side */
+
+ /* One of the two extra points is (1,1,1) */
+ dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
+ dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
+ dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
+ xsv_ext0 = xsb + 1;
+ ysv_ext0 = ysb + 1;
+ zsv_ext0 = zsb + 1;
+
+ /* Other extra point is based on the shared axis. */
+ c = (int8_t)(aPoint & bPoint);
+ if ((c & 0x01) != 0) {
+ dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
+ xsv_ext1 = xsb + 2;
+ ysv_ext1 = ysb;
+ zsv_ext1 = zsb;
+ } else if ((c & 0x02) != 0) {
+ dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
+ xsv_ext1 = xsb;
+ ysv_ext1 = ysb + 2;
+ zsv_ext1 = zsb;
+ } else {
+ dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D;
+ xsv_ext1 = xsb;
+ ysv_ext1 = ysb;
+ zsv_ext1 = zsb + 2;
+ }
+ } else { /* Both closest points on (0,0,0) side */
+
+ /* One of the two extra points is (0,0,0) */
+ dx_ext0 = dx0;
+ dy_ext0 = dy0;
+ dz_ext0 = dz0;
+ xsv_ext0 = xsb;
+ ysv_ext0 = ysb;
+ zsv_ext0 = zsb;
+
+ /* Other extra point is based on the omitted axis. */
+ c = (int8_t)(aPoint | bPoint);
+ if ((c & 0x01) == 0) {
+ dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
+ xsv_ext1 = xsb - 1;
+ ysv_ext1 = ysb + 1;
+ zsv_ext1 = zsb + 1;
+ } else if ((c & 0x02) == 0) {
+ dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
+ xsv_ext1 = xsb + 1;
+ ysv_ext1 = ysb - 1;
+ zsv_ext1 = zsb + 1;
+ } else {
+ dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D;
+ xsv_ext1 = xsb + 1;
+ ysv_ext1 = ysb + 1;
+ zsv_ext1 = zsb - 1;
+ }
+ }
+ } else { /* One point on (0,0,0) side, one point on (1,1,1) side */
+ if (aIsFurtherSide) {
+ c1 = aPoint;
+ c2 = bPoint;
+ } else {
+ c1 = bPoint;
+ c2 = aPoint;
+ }
+
+ /* One contribution is a permutation of (1,1,-1) */
+ if ((c1 & 0x01) == 0) {
+ dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_3D;
+ dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
+ dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
+ xsv_ext0 = xsb - 1;
+ ysv_ext0 = ysb + 1;
+ zsv_ext0 = zsb + 1;
+ } else if ((c1 & 0x02) == 0) {
+ dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
+ dy_ext0 = dy0 + 1 - SQUISH_CONSTANT_3D;
+ dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
+ xsv_ext0 = xsb + 1;
+ ysv_ext0 = ysb - 1;
+ zsv_ext0 = zsb + 1;
+ } else {
+ dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
+ dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
+ dz_ext0 = dz0 + 1 - SQUISH_CONSTANT_3D;
+ xsv_ext0 = xsb + 1;
+ ysv_ext0 = ysb + 1;
+ zsv_ext0 = zsb - 1;
+ }
+
+ /* One contribution is a permutation of (0,0,2) */
+ dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
+ dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
+ dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
+ xsv_ext1 = xsb;
+ ysv_ext1 = ysb;
+ zsv_ext1 = zsb;
+ if ((c2 & 0x01) != 0) {
+ dx_ext1 -= 2;
+ xsv_ext1 += 2;
+ } else if ((c2 & 0x02) != 0) {
+ dy_ext1 -= 2;
+ ysv_ext1 += 2;
+ } else {
+ dz_ext1 -= 2;
+ zsv_ext1 += 2;
+ }
+ }
+
+ /* Contribution (1,0,0) */
+ dx1 = dx0 - 1 - SQUISH_CONSTANT_3D;
+ dy1 = dy0 - 0 - SQUISH_CONSTANT_3D;
+ dz1 = dz0 - 0 - SQUISH_CONSTANT_3D;
+ attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
+ if (attn1 > 0) {
+ attn1 *= attn1;
+ value += attn1 * attn1 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1);
+ }
+
+ /* Contribution (0,1,0) */
+ dx2 = dx0 - 0 - SQUISH_CONSTANT_3D;
+ dy2 = dy0 - 1 - SQUISH_CONSTANT_3D;
+ dz2 = dz1;
+ attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
+ if (attn2 > 0) {
+ attn2 *= attn2;
+ value += attn2 * attn2 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2);
+ }
+
+ /* Contribution (0,0,1) */
+ dx3 = dx2;
+ dy3 = dy1;
+ dz3 = dz0 - 1 - SQUISH_CONSTANT_3D;
+ attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
+ if (attn3 > 0) {
+ attn3 *= attn3;
+ value += attn3 * attn3 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3);
+ }
+
+ /* Contribution (1,1,0) */
+ dx4 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
+ dy4 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
+ dz4 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D;
+ attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4;
+ if (attn4 > 0) {
+ attn4 *= attn4;
+ value += attn4 * attn4 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 0, dx4, dy4, dz4);
+ }
+
+ /* Contribution (1,0,1) */
+ dx5 = dx4;
+ dy5 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D;
+ dz5 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
+ attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5;
+ if (attn5 > 0) {
+ attn5 *= attn5;
+ value += attn5 * attn5 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 1, dx5, dy5, dz5);
+ }
+
+ /* Contribution (0,1,1) */
+ dx6 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D;
+ dy6 = dy4;
+ dz6 = dz5;
+ attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6;
+ if (attn6 > 0) {
+ attn6 *= attn6;
+ value += attn6 * attn6 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 1, dx6, dy6, dz6);
+ }
+ }
+
+ /* First extra vertex */
+ attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0;
+ if (attn_ext0 > 0)
+ {
+ attn_ext0 *= attn_ext0;
+ value += attn_ext0 * attn_ext0 * extrapolate3(ctx, xsv_ext0, ysv_ext0, zsv_ext0, dx_ext0, dy_ext0, dz_ext0);
+ }
+
+ /* Second extra vertex */
+ attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1;
+ if (attn_ext1 > 0)
+ {
+ attn_ext1 *= attn_ext1;
+ value += attn_ext1 * attn_ext1 * extrapolate3(ctx, xsv_ext1, ysv_ext1, zsv_ext1, dx_ext1, dy_ext1, dz_ext1);
+ }
+
+ return value / NORM_CONSTANT_3D;
+}
+
+/*
+ * 4D OpenSimplex (Simplectic) Noise.
+ */
+double open_simplex_noise4(struct osn_context *ctx, double x, double y, double z, double w)
+{
+ double uins;
+ double dx1, dy1, dz1, dw1;
+ double dx2, dy2, dz2, dw2;
+ double dx3, dy3, dz3, dw3;
+ double dx4, dy4, dz4, dw4;
+ double dx5, dy5, dz5, dw5;
+ double dx6, dy6, dz6, dw6;
+ double dx7, dy7, dz7, dw7;
+ double dx8, dy8, dz8, dw8;
+ double dx9, dy9, dz9, dw9;
+ double dx10, dy10, dz10, dw10;
+ double attn0, attn1, attn2, attn3, attn4;
+ double attn5, attn6, attn7, attn8, attn9, attn10;
+ double attn_ext0, attn_ext1, attn_ext2;
+ int8_t c, c1, c2;
+ int8_t aPoint, bPoint;
+ double aScore, bScore;
+ int aIsBiggerSide;
+ int bIsBiggerSide;
+ double p1, p2, p3, p4;
+ double score;
+
+ /* Place input coordinates on simplectic honeycomb. */
+ double stretchOffset = (x + y + z + w) * STRETCH_CONSTANT_4D;
+ double xs = x + stretchOffset;
+ double ys = y + stretchOffset;
+ double zs = z + stretchOffset;
+ double ws = w + stretchOffset;
+
+ /* Floor to get simplectic honeycomb coordinates of rhombo-hypercube super-cell origin. */
+ int xsb = fastFloor(xs);
+ int ysb = fastFloor(ys);
+ int zsb = fastFloor(zs);
+ int wsb = fastFloor(ws);
+
+ /* Skew out to get actual coordinates of stretched rhombo-hypercube origin. We'll need these later. */
+ double squishOffset = (xsb + ysb + zsb + wsb) * SQUISH_CONSTANT_4D;
+ double xb = xsb + squishOffset;
+ double yb = ysb + squishOffset;
+ double zb = zsb + squishOffset;
+ double wb = wsb + squishOffset;
+
+ /* Compute simplectic honeycomb coordinates relative to rhombo-hypercube origin. */
+ double xins = xs - xsb;
+ double yins = ys - ysb;
+ double zins = zs - zsb;
+ double wins = ws - wsb;
+
+ /* Sum those together to get a value that determines which region we're in. */
+ double inSum = xins + yins + zins + wins;
+
+ /* Positions relative to origin point. */
+ double dx0 = x - xb;
+ double dy0 = y - yb;
+ double dz0 = z - zb;
+ double dw0 = w - wb;
+
+ /* We'll be defining these inside the next block and using them afterwards. */
+ double dx_ext0, dy_ext0, dz_ext0, dw_ext0;
+ double dx_ext1, dy_ext1, dz_ext1, dw_ext1;
+ double dx_ext2, dy_ext2, dz_ext2, dw_ext2;
+ int xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0;
+ int xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1;
+ int xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2;
+
+ double value = 0;
+ if (inSum <= 1) { /* We're inside the pentachoron (4-Simplex) at (0,0,0,0) */
+
+ /* Determine which two of (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0) are closest. */
+ aPoint = 0x01;
+ aScore = xins;
+ bPoint = 0x02;
+ bScore = yins;
+ if (aScore >= bScore && zins > bScore) {
+ bScore = zins;
+ bPoint = 0x04;
+ } else if (aScore < bScore && zins > aScore) {
+ aScore = zins;
+ aPoint = 0x04;
+ }
+ if (aScore >= bScore && wins > bScore) {
+ bScore = wins;
+ bPoint = 0x08;
+ } else if (aScore < bScore && wins > aScore) {
+ aScore = wins;
+ aPoint = 0x08;
+ }
+
+ /* Now we determine the three lattice points not part of the pentachoron that may contribute.
+ This depends on the closest two pentachoron vertices, including (0,0,0,0) */
+ uins = 1 - inSum;
+ if (uins > aScore || uins > bScore) { /* (0,0,0,0) is one of the closest two pentachoron vertices. */
+ c = (bScore > aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
+ if ((c & 0x01) == 0) {
+ xsv_ext0 = xsb - 1;
+ xsv_ext1 = xsv_ext2 = xsb;
+ dx_ext0 = dx0 + 1;
+ dx_ext1 = dx_ext2 = dx0;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1;
+ dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 1;
+ }
+
+ if ((c & 0x02) == 0) {
+ ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
+ dy_ext0 = dy_ext1 = dy_ext2 = dy0;
+ if ((c & 0x01) == 0x01) {
+ ysv_ext0 -= 1;
+ dy_ext0 += 1;
+ } else {
+ ysv_ext1 -= 1;
+ dy_ext1 += 1;
+ }
+ } else {
+ ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
+ dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1;
+ }
+
+ if ((c & 0x04) == 0) {
+ zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
+ dz_ext0 = dz_ext1 = dz_ext2 = dz0;
+ if ((c & 0x03) != 0) {
+ if ((c & 0x03) == 0x03) {
+ zsv_ext0 -= 1;
+ dz_ext0 += 1;
+ } else {
+ zsv_ext1 -= 1;
+ dz_ext1 += 1;
+ }
+ } else {
+ zsv_ext2 -= 1;
+ dz_ext2 += 1;
+ }
+ } else {
+ zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
+ dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1;
+ }
+
+ if ((c & 0x08) == 0) {
+ wsv_ext0 = wsv_ext1 = wsb;
+ wsv_ext2 = wsb - 1;
+ dw_ext0 = dw_ext1 = dw0;
+ dw_ext2 = dw0 + 1;
+ } else {
+ wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1;
+ dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 1;
+ }
+ } else { /* (0,0,0,0) is not one of the closest two pentachoron vertices. */
+ c = (int8_t)(aPoint | bPoint); /* Our three extra vertices are determined by the closest two. */
+
+ if ((c & 0x01) == 0) {
+ xsv_ext0 = xsv_ext2 = xsb;
+ xsv_ext1 = xsb - 1;
+ dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D;
+ dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_4D;
+ dx_ext2 = dx0 - SQUISH_CONSTANT_4D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1;
+ dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dx_ext1 = dx_ext2 = dx0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x02) == 0) {
+ ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
+ dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D;
+ dy_ext1 = dy_ext2 = dy0 - SQUISH_CONSTANT_4D;
+ if ((c & 0x01) == 0x01) {
+ ysv_ext1 -= 1;
+ dy_ext1 += 1;
+ } else {
+ ysv_ext2 -= 1;
+ dy_ext2 += 1;
+ }
+ } else {
+ ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
+ dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dy_ext1 = dy_ext2 = dy0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x04) == 0) {
+ zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
+ dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D;
+ dz_ext1 = dz_ext2 = dz0 - SQUISH_CONSTANT_4D;
+ if ((c & 0x03) == 0x03) {
+ zsv_ext1 -= 1;
+ dz_ext1 += 1;
+ } else {
+ zsv_ext2 -= 1;
+ dz_ext2 += 1;
+ }
+ } else {
+ zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
+ dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dz_ext1 = dz_ext2 = dz0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x08) == 0) {
+ wsv_ext0 = wsv_ext1 = wsb;
+ wsv_ext2 = wsb - 1;
+ dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D;
+ dw_ext1 = dw0 - SQUISH_CONSTANT_4D;
+ dw_ext2 = dw0 + 1 - SQUISH_CONSTANT_4D;
+ } else {
+ wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1;
+ dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dw_ext1 = dw_ext2 = dw0 - 1 - SQUISH_CONSTANT_4D;
+ }
+ }
+
+ /* Contribution (0,0,0,0) */
+ attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0;
+ if (attn0 > 0) {
+ attn0 *= attn0;
+ value += attn0 * attn0 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 0, dx0, dy0, dz0, dw0);
+ }
+
+ /* Contribution (1,0,0,0) */
+ dx1 = dx0 - 1 - SQUISH_CONSTANT_4D;
+ dy1 = dy0 - 0 - SQUISH_CONSTANT_4D;
+ dz1 = dz0 - 0 - SQUISH_CONSTANT_4D;
+ dw1 = dw0 - 0 - SQUISH_CONSTANT_4D;
+ attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
+ if (attn1 > 0) {
+ attn1 *= attn1;
+ value += attn1 * attn1 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1);
+ }
+
+ /* Contribution (0,1,0,0) */
+ dx2 = dx0 - 0 - SQUISH_CONSTANT_4D;
+ dy2 = dy0 - 1 - SQUISH_CONSTANT_4D;
+ dz2 = dz1;
+ dw2 = dw1;
+ attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
+ if (attn2 > 0) {
+ attn2 *= attn2;
+ value += attn2 * attn2 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2);
+ }
+
+ /* Contribution (0,0,1,0) */
+ dx3 = dx2;
+ dy3 = dy1;
+ dz3 = dz0 - 1 - SQUISH_CONSTANT_4D;
+ dw3 = dw1;
+ attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
+ if (attn3 > 0) {
+ attn3 *= attn3;
+ value += attn3 * attn3 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3);
+ }
+
+ /* Contribution (0,0,0,1) */
+ dx4 = dx2;
+ dy4 = dy1;
+ dz4 = dz1;
+ dw4 = dw0 - 1 - SQUISH_CONSTANT_4D;
+ attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
+ if (attn4 > 0) {
+ attn4 *= attn4;
+ value += attn4 * attn4 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4);
+ }
+ } else if (inSum >= 3) { /* We're inside the pentachoron (4-Simplex) at (1,1,1,1)
+ Determine which two of (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1) are closest. */
+ aPoint = 0x0E;
+ aScore = xins;
+ bPoint = 0x0D;
+ bScore = yins;
+ if (aScore <= bScore && zins < bScore) {
+ bScore = zins;
+ bPoint = 0x0B;
+ } else if (aScore > bScore && zins < aScore) {
+ aScore = zins;
+ aPoint = 0x0B;
+ }
+ if (aScore <= bScore && wins < bScore) {
+ bScore = wins;
+ bPoint = 0x07;
+ } else if (aScore > bScore && wins < aScore) {
+ aScore = wins;
+ aPoint = 0x07;
+ }
+
+ /* Now we determine the three lattice points not part of the pentachoron that may contribute.
+ This depends on the closest two pentachoron vertices, including (0,0,0,0) */
+ uins = 4 - inSum;
+ if (uins < aScore || uins < bScore) { /* (1,1,1,1) is one of the closest two pentachoron vertices. */
+ c = (bScore < aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
+
+ if ((c & 0x01) != 0) {
+ xsv_ext0 = xsb + 2;
+ xsv_ext1 = xsv_ext2 = xsb + 1;
+ dx_ext0 = dx0 - 2 - 4 * SQUISH_CONSTANT_4D;
+ dx_ext1 = dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb;
+ dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 4 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x02) != 0) {
+ ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
+ dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ if ((c & 0x01) != 0) {
+ ysv_ext1 += 1;
+ dy_ext1 -= 1;
+ } else {
+ ysv_ext0 += 1;
+ dy_ext0 -= 1;
+ }
+ } else {
+ ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
+ dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 4 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x04) != 0) {
+ zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
+ dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ if ((c & 0x03) != 0x03) {
+ if ((c & 0x03) == 0) {
+ zsv_ext0 += 1;
+ dz_ext0 -= 1;
+ } else {
+ zsv_ext1 += 1;
+ dz_ext1 -= 1;
+ }
+ } else {
+ zsv_ext2 += 1;
+ dz_ext2 -= 1;
+ }
+ } else {
+ zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
+ dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 4 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x08) != 0) {
+ wsv_ext0 = wsv_ext1 = wsb + 1;
+ wsv_ext2 = wsb + 2;
+ dw_ext0 = dw_ext1 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ dw_ext2 = dw0 - 2 - 4 * SQUISH_CONSTANT_4D;
+ } else {
+ wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb;
+ dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 4 * SQUISH_CONSTANT_4D;
+ }
+ } else { /* (1,1,1,1) is not one of the closest two pentachoron vertices. */
+ c = (int8_t)(aPoint & bPoint); /* Our three extra vertices are determined by the closest two. */
+
+ if ((c & 0x01) != 0) {
+ xsv_ext0 = xsv_ext2 = xsb + 1;
+ xsv_ext1 = xsb + 2;
+ dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dx_ext1 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
+ dx_ext2 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb;
+ dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D;
+ dx_ext1 = dx_ext2 = dx0 - 3 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x02) != 0) {
+ ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
+ dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dy_ext1 = dy_ext2 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ if ((c & 0x01) != 0) {
+ ysv_ext2 += 1;
+ dy_ext2 -= 1;
+ } else {
+ ysv_ext1 += 1;
+ dy_ext1 -= 1;
+ }
+ } else {
+ ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
+ dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D;
+ dy_ext1 = dy_ext2 = dy0 - 3 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x04) != 0) {
+ zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
+ dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dz_ext1 = dz_ext2 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ if ((c & 0x03) != 0) {
+ zsv_ext2 += 1;
+ dz_ext2 -= 1;
+ } else {
+ zsv_ext1 += 1;
+ dz_ext1 -= 1;
+ }
+ } else {
+ zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
+ dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D;
+ dz_ext1 = dz_ext2 = dz0 - 3 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x08) != 0) {
+ wsv_ext0 = wsv_ext1 = wsb + 1;
+ wsv_ext2 = wsb + 2;
+ dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dw_ext1 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dw_ext2 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
+ } else {
+ wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb;
+ dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D;
+ dw_ext1 = dw_ext2 = dw0 - 3 * SQUISH_CONSTANT_4D;
+ }
+ }
+
+ /* Contribution (1,1,1,0) */
+ dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dw4 = dw0 - 3 * SQUISH_CONSTANT_4D;
+ attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
+ if (attn4 > 0) {
+ attn4 *= attn4;
+ value += attn4 * attn4 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4);
+ }
+
+ /* Contribution (1,1,0,1) */
+ dx3 = dx4;
+ dy3 = dy4;
+ dz3 = dz0 - 3 * SQUISH_CONSTANT_4D;
+ dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
+ if (attn3 > 0) {
+ attn3 *= attn3;
+ value += attn3 * attn3 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3);
+ }
+
+ /* Contribution (1,0,1,1) */
+ dx2 = dx4;
+ dy2 = dy0 - 3 * SQUISH_CONSTANT_4D;
+ dz2 = dz4;
+ dw2 = dw3;
+ attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
+ if (attn2 > 0) {
+ attn2 *= attn2;
+ value += attn2 * attn2 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2);
+ }
+
+ /* Contribution (0,1,1,1) */
+ dx1 = dx0 - 3 * SQUISH_CONSTANT_4D;
+ dz1 = dz4;
+ dy1 = dy4;
+ dw1 = dw3;
+ attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
+ if (attn1 > 0) {
+ attn1 *= attn1;
+ value += attn1 * attn1 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1);
+ }
+
+ /* Contribution (1,1,1,1) */
+ dx0 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ dy0 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ dz0 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ dw0 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0;
+ if (attn0 > 0) {
+ attn0 *= attn0;
+ value += attn0 * attn0 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 1, dx0, dy0, dz0, dw0);
+ }
+ } else if (inSum <= 2) { /* We're inside the first dispentachoron (Rectified 4-Simplex) */
+ aIsBiggerSide = 1;
+ bIsBiggerSide = 1;
+
+ /* Decide between (1,1,0,0) and (0,0,1,1) */
+ if (xins + yins > zins + wins) {
+ aScore = xins + yins;
+ aPoint = 0x03;
+ } else {
+ aScore = zins + wins;
+ aPoint = 0x0C;
+ }
+
+ /* Decide between (1,0,1,0) and (0,1,0,1) */
+ if (xins + zins > yins + wins) {
+ bScore = xins + zins;
+ bPoint = 0x05;
+ } else {
+ bScore = yins + wins;
+ bPoint = 0x0A;
+ }
+
+ /* Closer between (1,0,0,1) and (0,1,1,0) will replace the further of a and b, if closer. */
+ if (xins + wins > yins + zins) {
+ score = xins + wins;
+ if (aScore >= bScore && score > bScore) {
+ bScore = score;
+ bPoint = 0x09;
+ } else if (aScore < bScore && score > aScore) {
+ aScore = score;
+ aPoint = 0x09;
+ }
+ } else {
+ score = yins + zins;
+ if (aScore >= bScore && score > bScore) {
+ bScore = score;
+ bPoint = 0x06;
+ } else if (aScore < bScore && score > aScore) {
+ aScore = score;
+ aPoint = 0x06;
+ }
+ }
+
+ /* Decide if (1,0,0,0) is closer. */
+ p1 = 2 - inSum + xins;
+ if (aScore >= bScore && p1 > bScore) {
+ bScore = p1;
+ bPoint = 0x01;
+ bIsBiggerSide = 0;
+ } else if (aScore < bScore && p1 > aScore) {
+ aScore = p1;
+ aPoint = 0x01;
+ aIsBiggerSide = 0;
+ }
+
+ /* Decide if (0,1,0,0) is closer. */
+ p2 = 2 - inSum + yins;
+ if (aScore >= bScore && p2 > bScore) {
+ bScore = p2;
+ bPoint = 0x02;
+ bIsBiggerSide = 0;
+ } else if (aScore < bScore && p2 > aScore) {
+ aScore = p2;
+ aPoint = 0x02;
+ aIsBiggerSide = 0;
+ }
+
+ /* Decide if (0,0,1,0) is closer. */
+ p3 = 2 - inSum + zins;
+ if (aScore >= bScore && p3 > bScore) {
+ bScore = p3;
+ bPoint = 0x04;
+ bIsBiggerSide = 0;
+ } else if (aScore < bScore && p3 > aScore) {
+ aScore = p3;
+ aPoint = 0x04;
+ aIsBiggerSide = 0;
+ }
+
+ /* Decide if (0,0,0,1) is closer. */
+ p4 = 2 - inSum + wins;
+ if (aScore >= bScore && p4 > bScore) {
+ bScore = p4;
+ bPoint = 0x08;
+ bIsBiggerSide = 0;
+ } else if (aScore < bScore && p4 > aScore) {
+ aScore = p4;
+ aPoint = 0x08;
+ aIsBiggerSide = 0;
+ }
+
+ /* Where each of the two closest points are determines how the extra three vertices are calculated. */
+ if (aIsBiggerSide == bIsBiggerSide) {
+ if (aIsBiggerSide) { /* Both closest points on the bigger side */
+ c1 = (int8_t)(aPoint | bPoint);
+ c2 = (int8_t)(aPoint & bPoint);
+ if ((c1 & 0x01) == 0) {
+ xsv_ext0 = xsb;
+ xsv_ext1 = xsb - 1;
+ dx_ext0 = dx0 - 3 * SQUISH_CONSTANT_4D;
+ dx_ext1 = dx0 + 1 - 2 * SQUISH_CONSTANT_4D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsb + 1;
+ dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dx_ext1 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c1 & 0x02) == 0) {
+ ysv_ext0 = ysb;
+ ysv_ext1 = ysb - 1;
+ dy_ext0 = dy0 - 3 * SQUISH_CONSTANT_4D;
+ dy_ext1 = dy0 + 1 - 2 * SQUISH_CONSTANT_4D;
+ } else {
+ ysv_ext0 = ysv_ext1 = ysb + 1;
+ dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dy_ext1 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c1 & 0x04) == 0) {
+ zsv_ext0 = zsb;
+ zsv_ext1 = zsb - 1;
+ dz_ext0 = dz0 - 3 * SQUISH_CONSTANT_4D;
+ dz_ext1 = dz0 + 1 - 2 * SQUISH_CONSTANT_4D;
+ } else {
+ zsv_ext0 = zsv_ext1 = zsb + 1;
+ dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dz_ext1 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c1 & 0x08) == 0) {
+ wsv_ext0 = wsb;
+ wsv_ext1 = wsb - 1;
+ dw_ext0 = dw0 - 3 * SQUISH_CONSTANT_4D;
+ dw_ext1 = dw0 + 1 - 2 * SQUISH_CONSTANT_4D;
+ } else {
+ wsv_ext0 = wsv_ext1 = wsb + 1;
+ dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dw_ext1 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ }
+
+ /* One combination is a permutation of (0,0,0,2) based on c2 */
+ xsv_ext2 = xsb;
+ ysv_ext2 = ysb;
+ zsv_ext2 = zsb;
+ wsv_ext2 = wsb;
+ dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D;
+ dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D;
+ dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D;
+ dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D;
+ if ((c2 & 0x01) != 0) {
+ xsv_ext2 += 2;
+ dx_ext2 -= 2;
+ } else if ((c2 & 0x02) != 0) {
+ ysv_ext2 += 2;
+ dy_ext2 -= 2;
+ } else if ((c2 & 0x04) != 0) {
+ zsv_ext2 += 2;
+ dz_ext2 -= 2;
+ } else {
+ wsv_ext2 += 2;
+ dw_ext2 -= 2;
+ }
+
+ } else { /* Both closest points on the smaller side */
+ /* One of the two extra points is (0,0,0,0) */
+ xsv_ext2 = xsb;
+ ysv_ext2 = ysb;
+ zsv_ext2 = zsb;
+ wsv_ext2 = wsb;
+ dx_ext2 = dx0;
+ dy_ext2 = dy0;
+ dz_ext2 = dz0;
+ dw_ext2 = dw0;
+
+ /* Other two points are based on the omitted axes. */
+ c = (int8_t)(aPoint | bPoint);
+
+ if ((c & 0x01) == 0) {
+ xsv_ext0 = xsb - 1;
+ xsv_ext1 = xsb;
+ dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D;
+ dx_ext1 = dx0 - SQUISH_CONSTANT_4D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsb + 1;
+ dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x02) == 0) {
+ ysv_ext0 = ysv_ext1 = ysb;
+ dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D;
+ if ((c & 0x01) == 0x01)
+ {
+ ysv_ext0 -= 1;
+ dy_ext0 += 1;
+ } else {
+ ysv_ext1 -= 1;
+ dy_ext1 += 1;
+ }
+ } else {
+ ysv_ext0 = ysv_ext1 = ysb + 1;
+ dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x04) == 0) {
+ zsv_ext0 = zsv_ext1 = zsb;
+ dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D;
+ if ((c & 0x03) == 0x03)
+ {
+ zsv_ext0 -= 1;
+ dz_ext0 += 1;
+ } else {
+ zsv_ext1 -= 1;
+ dz_ext1 += 1;
+ }
+ } else {
+ zsv_ext0 = zsv_ext1 = zsb + 1;
+ dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x08) == 0)
+ {
+ wsv_ext0 = wsb;
+ wsv_ext1 = wsb - 1;
+ dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
+ dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D;
+ } else {
+ wsv_ext0 = wsv_ext1 = wsb + 1;
+ dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ }
+ } else { /* One point on each "side" */
+ if (aIsBiggerSide) {
+ c1 = aPoint;
+ c2 = bPoint;
+ } else {
+ c1 = bPoint;
+ c2 = aPoint;
+ }
+
+ /* Two contributions are the bigger-sided point with each 0 replaced with -1. */
+ if ((c1 & 0x01) == 0) {
+ xsv_ext0 = xsb - 1;
+ xsv_ext1 = xsb;
+ dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D;
+ dx_ext1 = dx0 - SQUISH_CONSTANT_4D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsb + 1;
+ dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ if ((c1 & 0x02) == 0) {
+ ysv_ext0 = ysv_ext1 = ysb;
+ dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D;
+ if ((c1 & 0x01) == 0x01) {
+ ysv_ext0 -= 1;
+ dy_ext0 += 1;
+ } else {
+ ysv_ext1 -= 1;
+ dy_ext1 += 1;
+ }
+ } else {
+ ysv_ext0 = ysv_ext1 = ysb + 1;
+ dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ if ((c1 & 0x04) == 0) {
+ zsv_ext0 = zsv_ext1 = zsb;
+ dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D;
+ if ((c1 & 0x03) == 0x03) {
+ zsv_ext0 -= 1;
+ dz_ext0 += 1;
+ } else {
+ zsv_ext1 -= 1;
+ dz_ext1 += 1;
+ }
+ } else {
+ zsv_ext0 = zsv_ext1 = zsb + 1;
+ dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ if ((c1 & 0x08) == 0) {
+ wsv_ext0 = wsb;
+ wsv_ext1 = wsb - 1;
+ dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
+ dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D;
+ } else {
+ wsv_ext0 = wsv_ext1 = wsb + 1;
+ dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D;
+ }
+
+ /* One contribution is a permutation of (0,0,0,2) based on the smaller-sided point */
+ xsv_ext2 = xsb;
+ ysv_ext2 = ysb;
+ zsv_ext2 = zsb;
+ wsv_ext2 = wsb;
+ dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D;
+ dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D;
+ dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D;
+ dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D;
+ if ((c2 & 0x01) != 0) {
+ xsv_ext2 += 2;
+ dx_ext2 -= 2;
+ } else if ((c2 & 0x02) != 0) {
+ ysv_ext2 += 2;
+ dy_ext2 -= 2;
+ } else if ((c2 & 0x04) != 0) {
+ zsv_ext2 += 2;
+ dz_ext2 -= 2;
+ } else {
+ wsv_ext2 += 2;
+ dw_ext2 -= 2;
+ }
+ }
+
+ /* Contribution (1,0,0,0) */
+ dx1 = dx0 - 1 - SQUISH_CONSTANT_4D;
+ dy1 = dy0 - 0 - SQUISH_CONSTANT_4D;
+ dz1 = dz0 - 0 - SQUISH_CONSTANT_4D;
+ dw1 = dw0 - 0 - SQUISH_CONSTANT_4D;
+ attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
+ if (attn1 > 0) {
+ attn1 *= attn1;
+ value += attn1 * attn1 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1);
+ }
+
+ /* Contribution (0,1,0,0) */
+ dx2 = dx0 - 0 - SQUISH_CONSTANT_4D;
+ dy2 = dy0 - 1 - SQUISH_CONSTANT_4D;
+ dz2 = dz1;
+ dw2 = dw1;
+ attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
+ if (attn2 > 0) {
+ attn2 *= attn2;
+ value += attn2 * attn2 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2);
+ }
+
+ /* Contribution (0,0,1,0) */
+ dx3 = dx2;
+ dy3 = dy1;
+ dz3 = dz0 - 1 - SQUISH_CONSTANT_4D;
+ dw3 = dw1;
+ attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
+ if (attn3 > 0) {
+ attn3 *= attn3;
+ value += attn3 * attn3 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3);
+ }
+
+ /* Contribution (0,0,0,1) */
+ dx4 = dx2;
+ dy4 = dy1;
+ dz4 = dz1;
+ dw4 = dw0 - 1 - SQUISH_CONSTANT_4D;
+ attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
+ if (attn4 > 0) {
+ attn4 *= attn4;
+ value += attn4 * attn4 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4);
+ }
+
+ /* Contribution (1,1,0,0) */
+ dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5;
+ if (attn5 > 0) {
+ attn5 *= attn5;
+ value += attn5 * attn5 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5);
+ }
+
+ /* Contribution (1,0,1,0) */
+ dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6;
+ if (attn6 > 0) {
+ attn6 *= attn6;
+ value += attn6 * attn6 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6);
+ }
+
+ /* Contribution (1,0,0,1) */
+ dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7;
+ if (attn7 > 0) {
+ attn7 *= attn7;
+ value += attn7 * attn7 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7);
+ }
+
+ /* Contribution (0,1,1,0) */
+ dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8;
+ if (attn8 > 0) {
+ attn8 *= attn8;
+ value += attn8 * attn8 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8);
+ }
+
+ /* Contribution (0,1,0,1) */
+ dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9;
+ if (attn9 > 0) {
+ attn9 *= attn9;
+ value += attn9 * attn9 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9);
+ }
+
+ /* Contribution (0,0,1,1) */
+ dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10;
+ if (attn10 > 0) {
+ attn10 *= attn10;
+ value += attn10 * attn10 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10);
+ }
+ } else { /* We're inside the second dispentachoron (Rectified 4-Simplex) */
+ aIsBiggerSide = 1;
+ bIsBiggerSide = 1;
+
+ /* Decide between (0,0,1,1) and (1,1,0,0) */
+ if (xins + yins < zins + wins) {
+ aScore = xins + yins;
+ aPoint = 0x0C;
+ } else {
+ aScore = zins + wins;
+ aPoint = 0x03;
+ }
+
+ /* Decide between (0,1,0,1) and (1,0,1,0) */
+ if (xins + zins < yins + wins) {
+ bScore = xins + zins;
+ bPoint = 0x0A;
+ } else {
+ bScore = yins + wins;
+ bPoint = 0x05;
+ }
+
+ /* Closer between (0,1,1,0) and (1,0,0,1) will replace the further of a and b, if closer. */
+ if (xins + wins < yins + zins) {
+ score = xins + wins;
+ if (aScore <= bScore && score < bScore) {
+ bScore = score;
+ bPoint = 0x06;
+ } else if (aScore > bScore && score < aScore) {
+ aScore = score;
+ aPoint = 0x06;
+ }
+ } else {
+ score = yins + zins;
+ if (aScore <= bScore && score < bScore) {
+ bScore = score;
+ bPoint = 0x09;
+ } else if (aScore > bScore && score < aScore) {
+ aScore = score;
+ aPoint = 0x09;
+ }
+ }
+
+ /* Decide if (0,1,1,1) is closer. */
+ p1 = 3 - inSum + xins;
+ if (aScore <= bScore && p1 < bScore) {
+ bScore = p1;
+ bPoint = 0x0E;
+ bIsBiggerSide = 0;
+ } else if (aScore > bScore && p1 < aScore) {
+ aScore = p1;
+ aPoint = 0x0E;
+ aIsBiggerSide = 0;
+ }
+
+ /* Decide if (1,0,1,1) is closer. */
+ p2 = 3 - inSum + yins;
+ if (aScore <= bScore && p2 < bScore) {
+ bScore = p2;
+ bPoint = 0x0D;
+ bIsBiggerSide = 0;
+ } else if (aScore > bScore && p2 < aScore) {
+ aScore = p2;
+ aPoint = 0x0D;
+ aIsBiggerSide = 0;
+ }
+
+ /* Decide if (1,1,0,1) is closer. */
+ p3 = 3 - inSum + zins;
+ if (aScore <= bScore && p3 < bScore) {
+ bScore = p3;
+ bPoint = 0x0B;
+ bIsBiggerSide = 0;
+ } else if (aScore > bScore && p3 < aScore) {
+ aScore = p3;
+ aPoint = 0x0B;
+ aIsBiggerSide = 0;
+ }
+
+ /* Decide if (1,1,1,0) is closer. */
+ p4 = 3 - inSum + wins;
+ if (aScore <= bScore && p4 < bScore) {
+ bScore = p4;
+ bPoint = 0x07;
+ bIsBiggerSide = 0;
+ } else if (aScore > bScore && p4 < aScore) {
+ aScore = p4;
+ aPoint = 0x07;
+ aIsBiggerSide = 0;
+ }
+
+ /* Where each of the two closest points are determines how the extra three vertices are calculated. */
+ if (aIsBiggerSide == bIsBiggerSide) {
+ if (aIsBiggerSide) { /* Both closest points on the bigger side */
+ c1 = (int8_t)(aPoint & bPoint);
+ c2 = (int8_t)(aPoint | bPoint);
+
+ /* Two contributions are permutations of (0,0,0,1) and (0,0,0,2) based on c1 */
+ xsv_ext0 = xsv_ext1 = xsb;
+ ysv_ext0 = ysv_ext1 = ysb;
+ zsv_ext0 = zsv_ext1 = zsb;
+ wsv_ext0 = wsv_ext1 = wsb;
+ dx_ext0 = dx0 - SQUISH_CONSTANT_4D;
+ dy_ext0 = dy0 - SQUISH_CONSTANT_4D;
+ dz_ext0 = dz0 - SQUISH_CONSTANT_4D;
+ dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
+ dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_4D;
+ dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_4D;
+ dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_4D;
+ dw_ext1 = dw0 - 2 * SQUISH_CONSTANT_4D;
+ if ((c1 & 0x01) != 0) {
+ xsv_ext0 += 1;
+ dx_ext0 -= 1;
+ xsv_ext1 += 2;
+ dx_ext1 -= 2;
+ } else if ((c1 & 0x02) != 0) {
+ ysv_ext0 += 1;
+ dy_ext0 -= 1;
+ ysv_ext1 += 2;
+ dy_ext1 -= 2;
+ } else if ((c1 & 0x04) != 0) {
+ zsv_ext0 += 1;
+ dz_ext0 -= 1;
+ zsv_ext1 += 2;
+ dz_ext1 -= 2;
+ } else {
+ wsv_ext0 += 1;
+ dw_ext0 -= 1;
+ wsv_ext1 += 2;
+ dw_ext1 -= 2;
+ }
+
+ /* One contribution is a permutation of (1,1,1,-1) based on c2 */
+ xsv_ext2 = xsb + 1;
+ ysv_ext2 = ysb + 1;
+ zsv_ext2 = zsb + 1;
+ wsv_ext2 = wsb + 1;
+ dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ if ((c2 & 0x01) == 0) {
+ xsv_ext2 -= 2;
+ dx_ext2 += 2;
+ } else if ((c2 & 0x02) == 0) {
+ ysv_ext2 -= 2;
+ dy_ext2 += 2;
+ } else if ((c2 & 0x04) == 0) {
+ zsv_ext2 -= 2;
+ dz_ext2 += 2;
+ } else {
+ wsv_ext2 -= 2;
+ dw_ext2 += 2;
+ }
+ } else { /* Both closest points on the smaller side */
+ /* One of the two extra points is (1,1,1,1) */
+ xsv_ext2 = xsb + 1;
+ ysv_ext2 = ysb + 1;
+ zsv_ext2 = zsb + 1;
+ wsv_ext2 = wsb + 1;
+ dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
+ dw_ext2 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
+
+ /* Other two points are based on the shared axes. */
+ c = (int8_t)(aPoint & bPoint);
+
+ if ((c & 0x01) != 0) {
+ xsv_ext0 = xsb + 2;
+ xsv_ext1 = xsb + 1;
+ dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
+ dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsb;
+ dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x02) != 0) {
+ ysv_ext0 = ysv_ext1 = ysb + 1;
+ dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ if ((c & 0x01) == 0)
+ {
+ ysv_ext0 += 1;
+ dy_ext0 -= 1;
+ } else {
+ ysv_ext1 += 1;
+ dy_ext1 -= 1;
+ }
+ } else {
+ ysv_ext0 = ysv_ext1 = ysb;
+ dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x04) != 0) {
+ zsv_ext0 = zsv_ext1 = zsb + 1;
+ dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ if ((c & 0x03) == 0)
+ {
+ zsv_ext0 += 1;
+ dz_ext0 -= 1;
+ } else {
+ zsv_ext1 += 1;
+ dz_ext1 -= 1;
+ }
+ } else {
+ zsv_ext0 = zsv_ext1 = zsb;
+ dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c & 0x08) != 0)
+ {
+ wsv_ext0 = wsb + 1;
+ wsv_ext1 = wsb + 2;
+ dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
+ } else {
+ wsv_ext0 = wsv_ext1 = wsb;
+ dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D;
+ }
+ }
+ } else { /* One point on each "side" */
+ if (aIsBiggerSide) {
+ c1 = aPoint;
+ c2 = bPoint;
+ } else {
+ c1 = bPoint;
+ c2 = aPoint;
+ }
+
+ /* Two contributions are the bigger-sided point with each 1 replaced with 2. */
+ if ((c1 & 0x01) != 0) {
+ xsv_ext0 = xsb + 2;
+ xsv_ext1 = xsb + 1;
+ dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
+ dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ } else {
+ xsv_ext0 = xsv_ext1 = xsb;
+ dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c1 & 0x02) != 0) {
+ ysv_ext0 = ysv_ext1 = ysb + 1;
+ dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ if ((c1 & 0x01) == 0) {
+ ysv_ext0 += 1;
+ dy_ext0 -= 1;
+ } else {
+ ysv_ext1 += 1;
+ dy_ext1 -= 1;
+ }
+ } else {
+ ysv_ext0 = ysv_ext1 = ysb;
+ dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c1 & 0x04) != 0) {
+ zsv_ext0 = zsv_ext1 = zsb + 1;
+ dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ if ((c1 & 0x03) == 0) {
+ zsv_ext0 += 1;
+ dz_ext0 -= 1;
+ } else {
+ zsv_ext1 += 1;
+ dz_ext1 -= 1;
+ }
+ } else {
+ zsv_ext0 = zsv_ext1 = zsb;
+ dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D;
+ }
+
+ if ((c1 & 0x08) != 0) {
+ wsv_ext0 = wsb + 1;
+ wsv_ext1 = wsb + 2;
+ dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
+ } else {
+ wsv_ext0 = wsv_ext1 = wsb;
+ dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D;
+ }
+
+ /* One contribution is a permutation of (1,1,1,-1) based on the smaller-sided point */
+ xsv_ext2 = xsb + 1;
+ ysv_ext2 = ysb + 1;
+ zsv_ext2 = zsb + 1;
+ wsv_ext2 = wsb + 1;
+ dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ if ((c2 & 0x01) == 0) {
+ xsv_ext2 -= 2;
+ dx_ext2 += 2;
+ } else if ((c2 & 0x02) == 0) {
+ ysv_ext2 -= 2;
+ dy_ext2 += 2;
+ } else if ((c2 & 0x04) == 0) {
+ zsv_ext2 -= 2;
+ dz_ext2 += 2;
+ } else {
+ wsv_ext2 -= 2;
+ dw_ext2 += 2;
+ }
+ }
+
+ /* Contribution (1,1,1,0) */
+ dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ dw4 = dw0 - 3 * SQUISH_CONSTANT_4D;
+ attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
+ if (attn4 > 0) {
+ attn4 *= attn4;
+ value += attn4 * attn4 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4);
+ }
+
+ /* Contribution (1,1,0,1) */
+ dx3 = dx4;
+ dy3 = dy4;
+ dz3 = dz0 - 3 * SQUISH_CONSTANT_4D;
+ dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
+ attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
+ if (attn3 > 0) {
+ attn3 *= attn3;
+ value += attn3 * attn3 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3);
+ }
+
+ /* Contribution (1,0,1,1) */
+ dx2 = dx4;
+ dy2 = dy0 - 3 * SQUISH_CONSTANT_4D;
+ dz2 = dz4;
+ dw2 = dw3;
+ attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
+ if (attn2 > 0) {
+ attn2 *= attn2;
+ value += attn2 * attn2 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2);
+ }
+
+ /* Contribution (0,1,1,1) */
+ dx1 = dx0 - 3 * SQUISH_CONSTANT_4D;
+ dz1 = dz4;
+ dy1 = dy4;
+ dw1 = dw3;
+ attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
+ if (attn1 > 0) {
+ attn1 *= attn1;
+ value += attn1 * attn1 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1);
+ }
+
+ /* Contribution (1,1,0,0) */
+ dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5;
+ if (attn5 > 0) {
+ attn5 *= attn5;
+ value += attn5 * attn5 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5);
+ }
+
+ /* Contribution (1,0,1,0) */
+ dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6;
+ if (attn6 > 0) {
+ attn6 *= attn6;
+ value += attn6 * attn6 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6);
+ }
+
+ /* Contribution (1,0,0,1) */
+ dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7;
+ if (attn7 > 0) {
+ attn7 *= attn7;
+ value += attn7 * attn7 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7);
+ }
+
+ /* Contribution (0,1,1,0) */
+ dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8;
+ if (attn8 > 0) {
+ attn8 *= attn8;
+ value += attn8 * attn8 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8);
+ }
+
+ /* Contribution (0,1,0,1) */
+ dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9;
+ if (attn9 > 0) {
+ attn9 *= attn9;
+ value += attn9 * attn9 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9);
+ }
+
+ /* Contribution (0,0,1,1) */
+ dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
+ dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
+ attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10;
+ if (attn10 > 0) {
+ attn10 *= attn10;
+ value += attn10 * attn10 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10);
+ }
+ }
+
+ /* First extra vertex */
+ attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0 - dw_ext0 * dw_ext0;
+ if (attn_ext0 > 0)
+ {
+ attn_ext0 *= attn_ext0;
+ value += attn_ext0 * attn_ext0 * extrapolate4(ctx, xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0, dx_ext0, dy_ext0, dz_ext0, dw_ext0);
+ }
+
+ /* Second extra vertex */
+ attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1 - dw_ext1 * dw_ext1;
+ if (attn_ext1 > 0)
+ {
+ attn_ext1 *= attn_ext1;
+ value += attn_ext1 * attn_ext1 * extrapolate4(ctx, xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1, dx_ext1, dy_ext1, dz_ext1, dw_ext1);
+ }
+
+ /* Third extra vertex */
+ attn_ext2 = 2 - dx_ext2 * dx_ext2 - dy_ext2 * dy_ext2 - dz_ext2 * dz_ext2 - dw_ext2 * dw_ext2;
+ if (attn_ext2 > 0)
+ {
+ attn_ext2 *= attn_ext2;
+ value += attn_ext2 * attn_ext2 * extrapolate4(ctx, xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2, dx_ext2, dy_ext2, dz_ext2, dw_ext2);
+ }
+
+ return value / NORM_CONSTANT_4D;
+}
+
diff --git a/thirdparty/misc/open-simplex-noise.h b/thirdparty/misc/open-simplex-noise.h
new file mode 100644
index 0000000000..89e0df8218
--- /dev/null
+++ b/thirdparty/misc/open-simplex-noise.h
@@ -0,0 +1,58 @@
+#ifndef OPEN_SIMPLEX_NOISE_H__
+#define OPEN_SIMPLEX_NOISE_H__
+
+/*
+ * OpenSimplex (Simplectic) Noise in C.
+ * Ported to C from Kurt Spencer's java implementation by Stephen M. Cameron
+ *
+ * v1.1 (October 6, 2014)
+ * - Ported to C
+ *
+ * v1.1 (October 5, 2014)
+ * - Added 2D and 4D implementations.
+ * - Proper gradient sets for all dimensions, from a
+ * dimensionally-generalizable scheme with an actual
+ * rhyme and reason behind it.
+ * - Removed default permutation array in favor of
+ * default seed.
+ * - Changed seed-based constructor to be independent
+ * of any particular randomization library, so results
+ * will be the same when ported to other languages.
+ */
+
+#if ((__GNUC_STDC_INLINE__) || (__STDC_VERSION__ >= 199901L))
+ #include <stdint.h>
+ #define INLINE inline
+#elif (defined (_MSC_VER) || defined (__GNUC_GNU_INLINE__))
+ #include <stdint.h>
+ #define INLINE __inline
+#else
+ /* ANSI C doesn't have inline or stdint.h. */
+ #define INLINE
+#endif
+
+#ifdef __cplusplus
+ extern "C" {
+#endif
+
+// -- GODOT start --
+// Modified to work without allocating memory, also removed some unused function.
+
+struct osn_context {
+ int16_t perm[256];
+ int16_t permGradIndex3D[256];
+};
+
+int open_simplex_noise(int64_t seed, struct osn_context *ctx);
+//int open_simplex_noise_init_perm(struct osn_context *ctx, int16_t p[], int nelements);
+// -- GODOT end --
+void open_simplex_noise_free(struct osn_context *ctx);
+double open_simplex_noise2(struct osn_context *ctx, double x, double y);
+double open_simplex_noise3(struct osn_context *ctx, double x, double y, double z);
+double open_simplex_noise4(struct osn_context *ctx, double x, double y, double z, double w);
+
+#ifdef __cplusplus
+ }
+#endif
+
+#endif