diff options
Diffstat (limited to 'thirdparty/misc/triangulator.h')
-rw-r--r-- | thirdparty/misc/triangulator.h | 306 |
1 files changed, 0 insertions, 306 deletions
diff --git a/thirdparty/misc/triangulator.h b/thirdparty/misc/triangulator.h deleted file mode 100644 index 24b79e7d34..0000000000 --- a/thirdparty/misc/triangulator.h +++ /dev/null @@ -1,306 +0,0 @@ -//Copyright (C) 2011 by Ivan Fratric -// -//Permission is hereby granted, free of charge, to any person obtaining a copy -//of this software and associated documentation files (the "Software"), to deal -//in the Software without restriction, including without limitation the rights -//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -//copies of the Software, and to permit persons to whom the Software is -//furnished to do so, subject to the following conditions: -// -//The above copyright notice and this permission notice shall be included in -//all copies or substantial portions of the Software. -// -//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN -//THE SOFTWARE. - -#ifndef TRIANGULATOR_H -#define TRIANGULATOR_H - -#include "core/templates/list.h" -#include "core/math/vector2.h" -#include "core/templates/set.h" - -//2D point structure - -#define TRIANGULATOR_CCW 1 -#define TRIANGULATOR_CW -1 -//Polygon implemented as an array of points with a 'hole' flag -class TriangulatorPoly { -protected: - - - - Vector2 *points; - long numpoints; - bool hole; - -public: - - //constructors/destructors - TriangulatorPoly(); - ~TriangulatorPoly(); - - TriangulatorPoly(const TriangulatorPoly &src); - TriangulatorPoly& operator=(const TriangulatorPoly &src); - - //getters and setters - long GetNumPoints() { - return numpoints; - } - - bool IsHole() { - return hole; - } - - void SetHole(bool hole) { - this->hole = hole; - } - - Vector2 &GetPoint(long i) { - return points[i]; - } - - Vector2 *GetPoints() { - return points; - } - - Vector2& operator[] (int i) { - return points[i]; - } - - //clears the polygon points - void Clear(); - - //inits the polygon with numpoints vertices - void Init(long numpoints); - - //creates a triangle with points p1,p2,p3 - void Triangle(Vector2 &p1, Vector2 &p2, Vector2 &p3); - - //inverts the orfer of vertices - void Invert(); - - //returns the orientation of the polygon - //possible values: - // Triangulator_CCW : polygon vertices are in counter-clockwise order - // Triangulator_CW : polygon vertices are in clockwise order - // 0 : the polygon has no (measurable) area - int GetOrientation(); - - //sets the polygon orientation - //orientation can be - // Triangulator_CCW : sets vertices in counter-clockwise order - // Triangulator_CW : sets vertices in clockwise order - void SetOrientation(int orientation); -}; - -class TriangulatorPartition { -protected: - struct PartitionVertex { - bool isActive; - bool isConvex; - bool isEar; - - Vector2 p; - real_t angle; - PartitionVertex *previous; - PartitionVertex *next; - }; - - struct MonotoneVertex { - Vector2 p; - long previous; - long next; - }; - - struct VertexSorter{ - mutable MonotoneVertex *vertices; - bool operator() (long index1, long index2) const; - }; - - struct Diagonal { - long index1; - long index2; - }; - - //dynamic programming state for minimum-weight triangulation - struct DPState { - bool visible; - real_t weight; - long bestvertex; - }; - - //dynamic programming state for convex partitioning - struct DPState2 { - bool visible; - long weight; - List<Diagonal> pairs; - }; - - //edge that intersects the scanline - struct ScanLineEdge { - mutable long index; - Vector2 p1; - Vector2 p2; - - //determines if the edge is to the left of another edge - bool operator< (const ScanLineEdge & other) const; - - bool IsConvex(const Vector2& p1, const Vector2& p2, const Vector2& p3) const; - }; - - //standard helper functions - bool IsConvex(Vector2& p1, Vector2& p2, Vector2& p3); - bool IsReflex(Vector2& p1, Vector2& p2, Vector2& p3); - bool IsInside(Vector2& p1, Vector2& p2, Vector2& p3, Vector2 &p); - - bool InCone(Vector2 &p1, Vector2 &p2, Vector2 &p3, Vector2 &p); - bool InCone(PartitionVertex *v, Vector2 &p); - - int Intersects(Vector2 &p11, Vector2 &p12, Vector2 &p21, Vector2 &p22); - - Vector2 Normalize(const Vector2 &p); - real_t Distance(const Vector2 &p1, const Vector2 &p2); - - //helper functions for Triangulate_EC - void UpdateVertexReflexity(PartitionVertex *v); - void UpdateVertex(PartitionVertex *v,PartitionVertex *vertices, long numvertices); - - //helper functions for ConvexPartition_OPT - void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates); - void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates); - void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates); - - //helper functions for MonotonePartition - bool Below(Vector2 &p1, Vector2 &p2); - void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2, - char *vertextypes, Set<ScanLineEdge>::Element **edgeTreeIterators, - Set<ScanLineEdge> *edgeTree, long *helpers); - - //triangulates a monotone polygon, used in Triangulate_MONO - int TriangulateMonotone(TriangulatorPoly *inPoly, List<TriangulatorPoly> *triangles); - -public: - - //simple heuristic procedure for removing holes from a list of polygons - //works by creating a diagonal from the rightmost hole vertex to some visible vertex - //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices - //space complexity: O(n) - //params: - // inpolys : a list of polygons that can contain holes - // vertices of all non-hole polys have to be in counter-clockwise order - // vertices of all hole polys have to be in clockwise order - // outpolys : a list of polygons without holes - //returns 1 on success, 0 on failure - int RemoveHoles(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *outpolys); - - //triangulates a polygon by ear clipping - //time complexity O(n^2), n is the number of vertices - //space complexity: O(n) - //params: - // poly : an input polygon to be triangulated - // vertices have to be in counter-clockwise order - // triangles : a list of triangles (result) - //returns 1 on success, 0 on failure - int Triangulate_EC(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles); - - //triangulates a list of polygons that may contain holes by ear clipping algorithm - //first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon - //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices - //space complexity: O(n) - //params: - // inpolys : a list of polygons to be triangulated (can contain holes) - // vertices of all non-hole polys have to be in counter-clockwise order - // vertices of all hole polys have to be in clockwise order - // triangles : a list of triangles (result) - //returns 1 on success, 0 on failure - int Triangulate_EC(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles); - - //creates an optimal polygon triangulation in terms of minimal edge length - //time complexity: O(n^3), n is the number of vertices - //space complexity: O(n^2) - //params: - // poly : an input polygon to be triangulated - // vertices have to be in counter-clockwise order - // triangles : a list of triangles (result) - //returns 1 on success, 0 on failure - int Triangulate_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles); - - //triangulates a polygons by firstly partitioning it into monotone polygons - //time complexity: O(n*log(n)), n is the number of vertices - //space complexity: O(n) - //params: - // poly : an input polygon to be triangulated - // vertices have to be in counter-clockwise order - // triangles : a list of triangles (result) - //returns 1 on success, 0 on failure - int Triangulate_MONO(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles); - - //triangulates a list of polygons by firstly partitioning them into monotone polygons - //time complexity: O(n*log(n)), n is the number of vertices - //space complexity: O(n) - //params: - // inpolys : a list of polygons to be triangulated (can contain holes) - // vertices of all non-hole polys have to be in counter-clockwise order - // vertices of all hole polys have to be in clockwise order - // triangles : a list of triangles (result) - //returns 1 on success, 0 on failure - int Triangulate_MONO(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles); - - //creates a monotone partition of a list of polygons that can contain holes - //time complexity: O(n*log(n)), n is the number of vertices - //space complexity: O(n) - //params: - // inpolys : a list of polygons to be triangulated (can contain holes) - // vertices of all non-hole polys have to be in counter-clockwise order - // vertices of all hole polys have to be in clockwise order - // monotonePolys : a list of monotone polygons (result) - //returns 1 on success, 0 on failure - int MonotonePartition(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *monotonePolys); - - //partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm - //the algorithm gives at most four times the number of parts as the optimal algorithm - //however, in practice it works much better than that and often gives optimal partition - //uses triangulation obtained by ear clipping as intermediate result - //time complexity O(n^2), n is the number of vertices - //space complexity: O(n) - //params: - // poly : an input polygon to be partitioned - // vertices have to be in counter-clockwise order - // parts : resulting list of convex polygons - //returns 1 on success, 0 on failure - int ConvexPartition_HM(TriangulatorPoly *poly, List<TriangulatorPoly> *parts); - - //partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm - //the algorithm gives at most four times the number of parts as the optimal algorithm - //however, in practice it works much better than that and often gives optimal partition - //uses triangulation obtained by ear clipping as intermediate result - //time complexity O(n^2), n is the number of vertices - //space complexity: O(n) - //params: - // inpolys : an input list of polygons to be partitioned - // vertices of all non-hole polys have to be in counter-clockwise order - // vertices of all hole polys have to be in clockwise order - // parts : resulting list of convex polygons - //returns 1 on success, 0 on failure - int ConvexPartition_HM(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *parts); - - //optimal convex partitioning (in terms of number of resulting convex polygons) - //using the Keil-Snoeyink algorithm - //M. Keil, J. Snoeyink, "On the time bound for convex decomposition of simple polygons", 1998 - //time complexity O(n^3), n is the number of vertices - //space complexity: O(n^3) - // poly : an input polygon to be partitioned - // vertices have to be in counter-clockwise order - // parts : resulting list of convex polygons - //returns 1 on success, 0 on failure - int ConvexPartition_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *parts); -}; - - -#endif |