summaryrefslogtreecommitdiff
path: root/thirdparty/misc/triangulator.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/misc/triangulator.h')
-rw-r--r--thirdparty/misc/triangulator.h306
1 files changed, 306 insertions, 0 deletions
diff --git a/thirdparty/misc/triangulator.h b/thirdparty/misc/triangulator.h
new file mode 100644
index 0000000000..b6dd7e8236
--- /dev/null
+++ b/thirdparty/misc/triangulator.h
@@ -0,0 +1,306 @@
+//Copyright (C) 2011 by Ivan Fratric
+//
+//Permission is hereby granted, free of charge, to any person obtaining a copy
+//of this software and associated documentation files (the "Software"), to deal
+//in the Software without restriction, including without limitation the rights
+//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+//copies of the Software, and to permit persons to whom the Software is
+//furnished to do so, subject to the following conditions:
+//
+//The above copyright notice and this permission notice shall be included in
+//all copies or substantial portions of the Software.
+//
+//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+//THE SOFTWARE.
+
+#ifndef TRIANGULATOR_H
+#define TRIANGULATOR_H
+
+#include "math_2d.h"
+#include "list.h"
+#include "set.h"
+//2D point structure
+
+
+#define TRIANGULATOR_CCW 1
+#define TRIANGULATOR_CW -1
+//Polygon implemented as an array of points with a 'hole' flag
+class TriangulatorPoly {
+protected:
+
+
+
+ Vector2 *points;
+ long numpoints;
+ bool hole;
+
+public:
+
+ //constructors/destructors
+ TriangulatorPoly();
+ ~TriangulatorPoly();
+
+ TriangulatorPoly(const TriangulatorPoly &src);
+ TriangulatorPoly& operator=(const TriangulatorPoly &src);
+
+ //getters and setters
+ long GetNumPoints() {
+ return numpoints;
+ }
+
+ bool IsHole() {
+ return hole;
+ }
+
+ void SetHole(bool hole) {
+ this->hole = hole;
+ }
+
+ Vector2 &GetPoint(long i) {
+ return points[i];
+ }
+
+ Vector2 *GetPoints() {
+ return points;
+ }
+
+ Vector2& operator[] (int i) {
+ return points[i];
+ }
+
+ //clears the polygon points
+ void Clear();
+
+ //inits the polygon with numpoints vertices
+ void Init(long numpoints);
+
+ //creates a triangle with points p1,p2,p3
+ void Triangle(Vector2 &p1, Vector2 &p2, Vector2 &p3);
+
+ //inverts the orfer of vertices
+ void Invert();
+
+ //returns the orientation of the polygon
+ //possible values:
+ // Triangulator_CCW : polygon vertices are in counter-clockwise order
+ // Triangulator_CW : polygon vertices are in clockwise order
+ // 0 : the polygon has no (measurable) area
+ int GetOrientation();
+
+ //sets the polygon orientation
+ //orientation can be
+ // Triangulator_CCW : sets vertices in counter-clockwise order
+ // Triangulator_CW : sets vertices in clockwise order
+ void SetOrientation(int orientation);
+};
+
+class TriangulatorPartition {
+protected:
+ struct PartitionVertex {
+ bool isActive;
+ bool isConvex;
+ bool isEar;
+
+ Vector2 p;
+ real_t angle;
+ PartitionVertex *previous;
+ PartitionVertex *next;
+ };
+
+ struct MonotoneVertex {
+ Vector2 p;
+ long previous;
+ long next;
+ };
+
+ struct VertexSorter{
+ mutable MonotoneVertex *vertices;
+ bool operator() (long index1, long index2) const;
+ };
+
+ struct Diagonal {
+ long index1;
+ long index2;
+ };
+
+ //dynamic programming state for minimum-weight triangulation
+ struct DPState {
+ bool visible;
+ real_t weight;
+ long bestvertex;
+ };
+
+ //dynamic programming state for convex partitioning
+ struct DPState2 {
+ bool visible;
+ long weight;
+ List<Diagonal> pairs;
+ };
+
+ //edge that intersects the scanline
+ struct ScanLineEdge {
+ mutable long index;
+ Vector2 p1;
+ Vector2 p2;
+
+ //determines if the edge is to the left of another edge
+ bool operator< (const ScanLineEdge & other) const;
+
+ bool IsConvex(const Vector2& p1, const Vector2& p2, const Vector2& p3) const;
+ };
+
+ //standard helper functions
+ bool IsConvex(Vector2& p1, Vector2& p2, Vector2& p3);
+ bool IsReflex(Vector2& p1, Vector2& p2, Vector2& p3);
+ bool IsInside(Vector2& p1, Vector2& p2, Vector2& p3, Vector2 &p);
+
+ bool InCone(Vector2 &p1, Vector2 &p2, Vector2 &p3, Vector2 &p);
+ bool InCone(PartitionVertex *v, Vector2 &p);
+
+ int Intersects(Vector2 &p11, Vector2 &p12, Vector2 &p21, Vector2 &p22);
+
+ Vector2 Normalize(const Vector2 &p);
+ real_t Distance(const Vector2 &p1, const Vector2 &p2);
+
+ //helper functions for Triangulate_EC
+ void UpdateVertexReflexity(PartitionVertex *v);
+ void UpdateVertex(PartitionVertex *v,PartitionVertex *vertices, long numvertices);
+
+ //helper functions for ConvexPartition_OPT
+ void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates);
+ void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
+ void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
+
+ //helper functions for MonotonePartition
+ bool Below(Vector2 &p1, Vector2 &p2);
+ void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
+ char *vertextypes, Set<ScanLineEdge>::Element **edgeTreeIterators,
+ Set<ScanLineEdge> *edgeTree, long *helpers);
+
+ //triangulates a monotone polygon, used in Triangulate_MONO
+ int TriangulateMonotone(TriangulatorPoly *inPoly, List<TriangulatorPoly> *triangles);
+
+public:
+
+ //simple heuristic procedure for removing holes from a list of polygons
+ //works by creating a diagonal from the rightmost hole vertex to some visible vertex
+ //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // inpolys : a list of polygons that can contain holes
+ // vertices of all non-hole polys have to be in counter-clockwise order
+ // vertices of all hole polys have to be in clockwise order
+ // outpolys : a list of polygons without holes
+ //returns 1 on success, 0 on failure
+ int RemoveHoles(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *outpolys);
+
+ //triangulates a polygon by ear clipping
+ //time complexity O(n^2), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // poly : an input polygon to be triangulated
+ // vertices have to be in counter-clockwise order
+ // triangles : a list of triangles (result)
+ //returns 1 on success, 0 on failure
+ int Triangulate_EC(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles);
+
+ //triangulates a list of polygons that may contain holes by ear clipping algorithm
+ //first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon
+ //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // inpolys : a list of polygons to be triangulated (can contain holes)
+ // vertices of all non-hole polys have to be in counter-clockwise order
+ // vertices of all hole polys have to be in clockwise order
+ // triangles : a list of triangles (result)
+ //returns 1 on success, 0 on failure
+ int Triangulate_EC(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles);
+
+ //creates an optimal polygon triangulation in terms of minimal edge length
+ //time complexity: O(n^3), n is the number of vertices
+ //space complexity: O(n^2)
+ //params:
+ // poly : an input polygon to be triangulated
+ // vertices have to be in counter-clockwise order
+ // triangles : a list of triangles (result)
+ //returns 1 on success, 0 on failure
+ int Triangulate_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles);
+
+ //triangulates a polygons by firstly partitioning it into monotone polygons
+ //time complexity: O(n*log(n)), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // poly : an input polygon to be triangulated
+ // vertices have to be in counter-clockwise order
+ // triangles : a list of triangles (result)
+ //returns 1 on success, 0 on failure
+ int Triangulate_MONO(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles);
+
+ //triangulates a list of polygons by firstly partitioning them into monotone polygons
+ //time complexity: O(n*log(n)), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // inpolys : a list of polygons to be triangulated (can contain holes)
+ // vertices of all non-hole polys have to be in counter-clockwise order
+ // vertices of all hole polys have to be in clockwise order
+ // triangles : a list of triangles (result)
+ //returns 1 on success, 0 on failure
+ int Triangulate_MONO(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles);
+
+ //creates a monotone partition of a list of polygons that can contain holes
+ //time complexity: O(n*log(n)), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // inpolys : a list of polygons to be triangulated (can contain holes)
+ // vertices of all non-hole polys have to be in counter-clockwise order
+ // vertices of all hole polys have to be in clockwise order
+ // monotonePolys : a list of monotone polygons (result)
+ //returns 1 on success, 0 on failure
+ int MonotonePartition(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *monotonePolys);
+
+ //partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm
+ //the algorithm gives at most four times the number of parts as the optimal algorithm
+ //however, in practice it works much better than that and often gives optimal partition
+ //uses triangulation obtained by ear clipping as intermediate result
+ //time complexity O(n^2), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // poly : an input polygon to be partitioned
+ // vertices have to be in counter-clockwise order
+ // parts : resulting list of convex polygons
+ //returns 1 on success, 0 on failure
+ int ConvexPartition_HM(TriangulatorPoly *poly, List<TriangulatorPoly> *parts);
+
+ //partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm
+ //the algorithm gives at most four times the number of parts as the optimal algorithm
+ //however, in practice it works much better than that and often gives optimal partition
+ //uses triangulation obtained by ear clipping as intermediate result
+ //time complexity O(n^2), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // inpolys : an input list of polygons to be partitioned
+ // vertices of all non-hole polys have to be in counter-clockwise order
+ // vertices of all hole polys have to be in clockwise order
+ // parts : resulting list of convex polygons
+ //returns 1 on success, 0 on failure
+ int ConvexPartition_HM(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *parts);
+
+ //optimal convex partitioning (in terms of number of resulting convex polygons)
+ //using the Keil-Snoeyink algorithm
+ //M. Keil, J. Snoeyink, "On the time bound for convex decomposition of simple polygons", 1998
+ //time complexity O(n^3), n is the number of vertices
+ //space complexity: O(n^3)
+ // poly : an input polygon to be partitioned
+ // vertices have to be in counter-clockwise order
+ // parts : resulting list of convex polygons
+ //returns 1 on success, 0 on failure
+ int ConvexPartition_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *parts);
+};
+
+
+#endif