diff options
Diffstat (limited to 'thirdparty/misc/triangulator.h')
-rw-r--r-- | thirdparty/misc/triangulator.h | 306 |
1 files changed, 306 insertions, 0 deletions
diff --git a/thirdparty/misc/triangulator.h b/thirdparty/misc/triangulator.h new file mode 100644 index 0000000000..b6dd7e8236 --- /dev/null +++ b/thirdparty/misc/triangulator.h @@ -0,0 +1,306 @@ +//Copyright (C) 2011 by Ivan Fratric +// +//Permission is hereby granted, free of charge, to any person obtaining a copy +//of this software and associated documentation files (the "Software"), to deal +//in the Software without restriction, including without limitation the rights +//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +//copies of the Software, and to permit persons to whom the Software is +//furnished to do so, subject to the following conditions: +// +//The above copyright notice and this permission notice shall be included in +//all copies or substantial portions of the Software. +// +//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +//THE SOFTWARE. + +#ifndef TRIANGULATOR_H +#define TRIANGULATOR_H + +#include "math_2d.h" +#include "list.h" +#include "set.h" +//2D point structure + + +#define TRIANGULATOR_CCW 1 +#define TRIANGULATOR_CW -1 +//Polygon implemented as an array of points with a 'hole' flag +class TriangulatorPoly { +protected: + + + + Vector2 *points; + long numpoints; + bool hole; + +public: + + //constructors/destructors + TriangulatorPoly(); + ~TriangulatorPoly(); + + TriangulatorPoly(const TriangulatorPoly &src); + TriangulatorPoly& operator=(const TriangulatorPoly &src); + + //getters and setters + long GetNumPoints() { + return numpoints; + } + + bool IsHole() { + return hole; + } + + void SetHole(bool hole) { + this->hole = hole; + } + + Vector2 &GetPoint(long i) { + return points[i]; + } + + Vector2 *GetPoints() { + return points; + } + + Vector2& operator[] (int i) { + return points[i]; + } + + //clears the polygon points + void Clear(); + + //inits the polygon with numpoints vertices + void Init(long numpoints); + + //creates a triangle with points p1,p2,p3 + void Triangle(Vector2 &p1, Vector2 &p2, Vector2 &p3); + + //inverts the orfer of vertices + void Invert(); + + //returns the orientation of the polygon + //possible values: + // Triangulator_CCW : polygon vertices are in counter-clockwise order + // Triangulator_CW : polygon vertices are in clockwise order + // 0 : the polygon has no (measurable) area + int GetOrientation(); + + //sets the polygon orientation + //orientation can be + // Triangulator_CCW : sets vertices in counter-clockwise order + // Triangulator_CW : sets vertices in clockwise order + void SetOrientation(int orientation); +}; + +class TriangulatorPartition { +protected: + struct PartitionVertex { + bool isActive; + bool isConvex; + bool isEar; + + Vector2 p; + real_t angle; + PartitionVertex *previous; + PartitionVertex *next; + }; + + struct MonotoneVertex { + Vector2 p; + long previous; + long next; + }; + + struct VertexSorter{ + mutable MonotoneVertex *vertices; + bool operator() (long index1, long index2) const; + }; + + struct Diagonal { + long index1; + long index2; + }; + + //dynamic programming state for minimum-weight triangulation + struct DPState { + bool visible; + real_t weight; + long bestvertex; + }; + + //dynamic programming state for convex partitioning + struct DPState2 { + bool visible; + long weight; + List<Diagonal> pairs; + }; + + //edge that intersects the scanline + struct ScanLineEdge { + mutable long index; + Vector2 p1; + Vector2 p2; + + //determines if the edge is to the left of another edge + bool operator< (const ScanLineEdge & other) const; + + bool IsConvex(const Vector2& p1, const Vector2& p2, const Vector2& p3) const; + }; + + //standard helper functions + bool IsConvex(Vector2& p1, Vector2& p2, Vector2& p3); + bool IsReflex(Vector2& p1, Vector2& p2, Vector2& p3); + bool IsInside(Vector2& p1, Vector2& p2, Vector2& p3, Vector2 &p); + + bool InCone(Vector2 &p1, Vector2 &p2, Vector2 &p3, Vector2 &p); + bool InCone(PartitionVertex *v, Vector2 &p); + + int Intersects(Vector2 &p11, Vector2 &p12, Vector2 &p21, Vector2 &p22); + + Vector2 Normalize(const Vector2 &p); + real_t Distance(const Vector2 &p1, const Vector2 &p2); + + //helper functions for Triangulate_EC + void UpdateVertexReflexity(PartitionVertex *v); + void UpdateVertex(PartitionVertex *v,PartitionVertex *vertices, long numvertices); + + //helper functions for ConvexPartition_OPT + void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates); + void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates); + void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates); + + //helper functions for MonotonePartition + bool Below(Vector2 &p1, Vector2 &p2); + void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2, + char *vertextypes, Set<ScanLineEdge>::Element **edgeTreeIterators, + Set<ScanLineEdge> *edgeTree, long *helpers); + + //triangulates a monotone polygon, used in Triangulate_MONO + int TriangulateMonotone(TriangulatorPoly *inPoly, List<TriangulatorPoly> *triangles); + +public: + + //simple heuristic procedure for removing holes from a list of polygons + //works by creating a diagonal from the rightmost hole vertex to some visible vertex + //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices + //space complexity: O(n) + //params: + // inpolys : a list of polygons that can contain holes + // vertices of all non-hole polys have to be in counter-clockwise order + // vertices of all hole polys have to be in clockwise order + // outpolys : a list of polygons without holes + //returns 1 on success, 0 on failure + int RemoveHoles(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *outpolys); + + //triangulates a polygon by ear clipping + //time complexity O(n^2), n is the number of vertices + //space complexity: O(n) + //params: + // poly : an input polygon to be triangulated + // vertices have to be in counter-clockwise order + // triangles : a list of triangles (result) + //returns 1 on success, 0 on failure + int Triangulate_EC(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles); + + //triangulates a list of polygons that may contain holes by ear clipping algorithm + //first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon + //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices + //space complexity: O(n) + //params: + // inpolys : a list of polygons to be triangulated (can contain holes) + // vertices of all non-hole polys have to be in counter-clockwise order + // vertices of all hole polys have to be in clockwise order + // triangles : a list of triangles (result) + //returns 1 on success, 0 on failure + int Triangulate_EC(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles); + + //creates an optimal polygon triangulation in terms of minimal edge length + //time complexity: O(n^3), n is the number of vertices + //space complexity: O(n^2) + //params: + // poly : an input polygon to be triangulated + // vertices have to be in counter-clockwise order + // triangles : a list of triangles (result) + //returns 1 on success, 0 on failure + int Triangulate_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles); + + //triangulates a polygons by firstly partitioning it into monotone polygons + //time complexity: O(n*log(n)), n is the number of vertices + //space complexity: O(n) + //params: + // poly : an input polygon to be triangulated + // vertices have to be in counter-clockwise order + // triangles : a list of triangles (result) + //returns 1 on success, 0 on failure + int Triangulate_MONO(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles); + + //triangulates a list of polygons by firstly partitioning them into monotone polygons + //time complexity: O(n*log(n)), n is the number of vertices + //space complexity: O(n) + //params: + // inpolys : a list of polygons to be triangulated (can contain holes) + // vertices of all non-hole polys have to be in counter-clockwise order + // vertices of all hole polys have to be in clockwise order + // triangles : a list of triangles (result) + //returns 1 on success, 0 on failure + int Triangulate_MONO(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles); + + //creates a monotone partition of a list of polygons that can contain holes + //time complexity: O(n*log(n)), n is the number of vertices + //space complexity: O(n) + //params: + // inpolys : a list of polygons to be triangulated (can contain holes) + // vertices of all non-hole polys have to be in counter-clockwise order + // vertices of all hole polys have to be in clockwise order + // monotonePolys : a list of monotone polygons (result) + //returns 1 on success, 0 on failure + int MonotonePartition(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *monotonePolys); + + //partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm + //the algorithm gives at most four times the number of parts as the optimal algorithm + //however, in practice it works much better than that and often gives optimal partition + //uses triangulation obtained by ear clipping as intermediate result + //time complexity O(n^2), n is the number of vertices + //space complexity: O(n) + //params: + // poly : an input polygon to be partitioned + // vertices have to be in counter-clockwise order + // parts : resulting list of convex polygons + //returns 1 on success, 0 on failure + int ConvexPartition_HM(TriangulatorPoly *poly, List<TriangulatorPoly> *parts); + + //partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm + //the algorithm gives at most four times the number of parts as the optimal algorithm + //however, in practice it works much better than that and often gives optimal partition + //uses triangulation obtained by ear clipping as intermediate result + //time complexity O(n^2), n is the number of vertices + //space complexity: O(n) + //params: + // inpolys : an input list of polygons to be partitioned + // vertices of all non-hole polys have to be in counter-clockwise order + // vertices of all hole polys have to be in clockwise order + // parts : resulting list of convex polygons + //returns 1 on success, 0 on failure + int ConvexPartition_HM(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *parts); + + //optimal convex partitioning (in terms of number of resulting convex polygons) + //using the Keil-Snoeyink algorithm + //M. Keil, J. Snoeyink, "On the time bound for convex decomposition of simple polygons", 1998 + //time complexity O(n^3), n is the number of vertices + //space complexity: O(n^3) + // poly : an input polygon to be partitioned + // vertices have to be in counter-clockwise order + // parts : resulting list of convex polygons + //returns 1 on success, 0 on failure + int ConvexPartition_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *parts); +}; + + +#endif |