summaryrefslogtreecommitdiff
path: root/thirdparty/misc/polypartition.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/misc/polypartition.h')
-rw-r--r--thirdparty/misc/polypartition.h378
1 files changed, 378 insertions, 0 deletions
diff --git a/thirdparty/misc/polypartition.h b/thirdparty/misc/polypartition.h
new file mode 100644
index 0000000000..b2d905a3ef
--- /dev/null
+++ b/thirdparty/misc/polypartition.h
@@ -0,0 +1,378 @@
+/*************************************************************************/
+/* Copyright (c) 2011-2021 Ivan Fratric and contributors. */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef POLYPARTITION_H
+#define POLYPARTITION_H
+
+#include "core/math/vector2.h"
+#include "core/templates/list.h"
+#include "core/templates/set.h"
+
+typedef double tppl_float;
+
+enum TPPLOrientation {
+ TPPL_ORIENTATION_CW = -1,
+ TPPL_ORIENTATION_NONE = 0,
+ TPPL_ORIENTATION_CCW = 1,
+};
+
+enum TPPLVertexType {
+ TPPL_VERTEXTYPE_REGULAR = 0,
+ TPPL_VERTEXTYPE_START = 1,
+ TPPL_VERTEXTYPE_END = 2,
+ TPPL_VERTEXTYPE_SPLIT = 3,
+ TPPL_VERTEXTYPE_MERGE = 4,
+};
+
+// 2D point structure.
+typedef Vector2 TPPLPoint;
+
+// Polygon implemented as an array of points with a "hole" flag.
+class TPPLPoly {
+ protected:
+ TPPLPoint *points;
+ long numpoints;
+ bool hole;
+
+ public:
+ // Constructors and destructors.
+ TPPLPoly();
+ ~TPPLPoly();
+
+ TPPLPoly(const TPPLPoly &src);
+ TPPLPoly &operator=(const TPPLPoly &src);
+
+ // Getters and setters.
+ long GetNumPoints() const {
+ return numpoints;
+ }
+
+ bool IsHole() const {
+ return hole;
+ }
+
+ void SetHole(bool hole) {
+ this->hole = hole;
+ }
+
+ TPPLPoint &GetPoint(long i) {
+ return points[i];
+ }
+
+ const TPPLPoint &GetPoint(long i) const {
+ return points[i];
+ }
+
+ TPPLPoint *GetPoints() {
+ return points;
+ }
+
+ TPPLPoint &operator[](int i) {
+ return points[i];
+ }
+
+ const TPPLPoint &operator[](int i) const {
+ return points[i];
+ }
+
+ // Clears the polygon points.
+ void Clear();
+
+ // Inits the polygon with numpoints vertices.
+ void Init(long numpoints);
+
+ // Creates a triangle with points p1, p2, and p3.
+ void Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
+
+ // Inverts the orfer of vertices.
+ void Invert();
+
+ // Returns the orientation of the polygon.
+ // Possible values:
+ // TPPL_ORIENTATION_CCW: Polygon vertices are in counter-clockwise order.
+ // TPPL_ORIENTATION_CW: Polygon vertices are in clockwise order.
+ // TPPL_ORIENTATION_NONE: The polygon has no (measurable) area.
+ TPPLOrientation GetOrientation() const;
+
+ // Sets the polygon orientation.
+ // Possible values:
+ // TPPL_ORIENTATION_CCW: Sets vertices in counter-clockwise order.
+ // TPPL_ORIENTATION_CW: Sets vertices in clockwise order.
+ // TPPL_ORIENTATION_NONE: Reverses the orientation of the vertices if there
+ // is one, otherwise does nothing (if orientation is already NONE).
+ void SetOrientation(TPPLOrientation orientation);
+
+ // Checks whether a polygon is valid or not.
+ inline bool Valid() const { return this->numpoints >= 3; }
+};
+
+#ifdef TPPL_ALLOCATOR
+typedef List<TPPLPoly, TPPL_ALLOCATOR(TPPLPoly)> TPPLPolyList;
+#else
+typedef List<TPPLPoly> TPPLPolyList;
+#endif
+
+class TPPLPartition {
+ protected:
+ struct PartitionVertex {
+ bool isActive;
+ bool isConvex;
+ bool isEar;
+
+ TPPLPoint p;
+ tppl_float angle;
+ PartitionVertex *previous;
+ PartitionVertex *next;
+
+ PartitionVertex();
+ };
+
+ struct MonotoneVertex {
+ TPPLPoint p;
+ long previous;
+ long next;
+ };
+
+ class VertexSorter {
+ MonotoneVertex *vertices;
+
+public:
+ VertexSorter(MonotoneVertex *v) :
+ vertices(v) {}
+ bool operator()(long index1, long index2);
+ };
+
+ struct Diagonal {
+ long index1;
+ long index2;
+ };
+
+#ifdef TPPL_ALLOCATOR
+ typedef List<Diagonal, TPPL_ALLOCATOR(Diagonal)> DiagonalList;
+#else
+ typedef List<Diagonal> DiagonalList;
+#endif
+
+ // Dynamic programming state for minimum-weight triangulation.
+ struct DPState {
+ bool visible;
+ tppl_float weight;
+ long bestvertex;
+ };
+
+ // Dynamic programming state for convex partitioning.
+ struct DPState2 {
+ bool visible;
+ long weight;
+ DiagonalList pairs;
+ };
+
+ // Edge that intersects the scanline.
+ struct ScanLineEdge {
+ mutable long index;
+ TPPLPoint p1;
+ TPPLPoint p2;
+
+ // Determines if the edge is to the left of another edge.
+ bool operator<(const ScanLineEdge &other) const;
+
+ bool IsConvex(const TPPLPoint &p1, const TPPLPoint &p2, const TPPLPoint &p3) const;
+ };
+
+ // Standard helper functions.
+ bool IsConvex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
+ bool IsReflex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
+ bool IsInside(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p);
+
+ bool InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p);
+ bool InCone(PartitionVertex *v, TPPLPoint &p);
+
+ int Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22);
+
+ TPPLPoint Normalize(const TPPLPoint &p);
+ tppl_float Distance(const TPPLPoint &p1, const TPPLPoint &p2);
+
+ // Helper functions for Triangulate_EC.
+ void UpdateVertexReflexity(PartitionVertex *v);
+ void UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices);
+
+ // Helper functions for ConvexPartition_OPT.
+ void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates);
+ void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
+ void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
+
+ // Helper functions for MonotonePartition.
+ bool Below(TPPLPoint &p1, TPPLPoint &p2);
+ void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
+ TPPLVertexType *vertextypes, Set<ScanLineEdge>::Element **edgeTreeIterators,
+ Set<ScanLineEdge> *edgeTree, long *helpers);
+
+ // Triangulates a monotone polygon, used in Triangulate_MONO.
+ int TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles);
+
+ public:
+ // Simple heuristic procedure for removing holes from a list of polygons.
+ // It works by creating a diagonal from the right-most hole vertex
+ // to some other visible vertex.
+ // Time complexity: O(h*(n^2)), h is the # of holes, n is the # of vertices.
+ // Space complexity: O(n)
+ // params:
+ // inpolys:
+ // A list of polygons that can contain holes.
+ // Vertices of all non-hole polys have to be in counter-clockwise order.
+ // Vertices of all hole polys have to be in clockwise order.
+ // outpolys:
+ // A list of polygons without holes.
+ // Returns 1 on success, 0 on failure.
+ int RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys);
+
+ // Triangulates a polygon by ear clipping.
+ // Time complexity: O(n^2), n is the number of vertices.
+ // Space complexity: O(n)
+ // params:
+ // poly:
+ // An input polygon to be triangulated.
+ // Vertices have to be in counter-clockwise order.
+ // triangles:
+ // A list of triangles (result).
+ // Returns 1 on success, 0 on failure.
+ int Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles);
+
+ // Triangulates a list of polygons that may contain holes by ear clipping
+ // algorithm. It first calls RemoveHoles to get rid of the holes, and then
+ // calls Triangulate_EC for each resulting polygon.
+ // Time complexity: O(h*(n^2)), h is the # of holes, n is the # of vertices.
+ // Space complexity: O(n)
+ // params:
+ // inpolys:
+ // A list of polygons to be triangulated (can contain holes).
+ // Vertices of all non-hole polys have to be in counter-clockwise order.
+ // Vertices of all hole polys have to be in clockwise order.
+ // triangles:
+ // A list of triangles (result).
+ // Returns 1 on success, 0 on failure.
+ int Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles);
+
+ // Creates an optimal polygon triangulation in terms of minimal edge length.
+ // Time complexity: O(n^3), n is the number of vertices
+ // Space complexity: O(n^2)
+ // params:
+ // poly:
+ // An input polygon to be triangulated.
+ // Vertices have to be in counter-clockwise order.
+ // triangles:
+ // A list of triangles (result).
+ // Returns 1 on success, 0 on failure.
+ int Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles);
+
+ // Triangulates a polygon by first partitioning it into monotone polygons.
+ // Time complexity: O(n*log(n)), n is the number of vertices.
+ // Space complexity: O(n)
+ // params:
+ // poly:
+ // An input polygon to be triangulated.
+ // Vertices have to be in counter-clockwise order.
+ // triangles:
+ // A list of triangles (result).
+ // Returns 1 on success, 0 on failure.
+ int Triangulate_MONO(TPPLPoly *poly, TPPLPolyList *triangles);
+
+ // Triangulates a list of polygons by first
+ // partitioning them into monotone polygons.
+ // Time complexity: O(n*log(n)), n is the number of vertices.
+ // Space complexity: O(n)
+ // params:
+ // inpolys:
+ // A list of polygons to be triangulated (can contain holes).
+ // Vertices of all non-hole polys have to be in counter-clockwise order.
+ // Vertices of all hole polys have to be in clockwise order.
+ // triangles:
+ // A list of triangles (result).
+ // Returns 1 on success, 0 on failure.
+ int Triangulate_MONO(TPPLPolyList *inpolys, TPPLPolyList *triangles);
+
+ // Creates a monotone partition of a list of polygons that
+ // can contain holes. Triangulates a set of polygons by
+ // first partitioning them into monotone polygons.
+ // Time complexity: O(n*log(n)), n is the number of vertices.
+ // Space complexity: O(n)
+ // params:
+ // inpolys:
+ // A list of polygons to be triangulated (can contain holes).
+ // Vertices of all non-hole polys have to be in counter-clockwise order.
+ // Vertices of all hole polys have to be in clockwise order.
+ // monotonePolys:
+ // A list of monotone polygons (result).
+ // Returns 1 on success, 0 on failure.
+ int MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monotonePolys);
+
+ // Partitions a polygon into convex polygons by using the
+ // Hertel-Mehlhorn algorithm. The algorithm gives at most four times
+ // the number of parts as the optimal algorithm, however, in practice
+ // it works much better than that and often gives optimal partition.
+ // It uses triangulation obtained by ear clipping as intermediate result.
+ // Time complexity O(n^2), n is the number of vertices.
+ // Space complexity: O(n)
+ // params:
+ // poly:
+ // An input polygon to be partitioned.
+ // Vertices have to be in counter-clockwise order.
+ // parts:
+ // Resulting list of convex polygons.
+ // Returns 1 on success, 0 on failure.
+ int ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts);
+
+ // Partitions a list of polygons into convex parts by using the
+ // Hertel-Mehlhorn algorithm. The algorithm gives at most four times
+ // the number of parts as the optimal algorithm, however, in practice
+ // it works much better than that and often gives optimal partition.
+ // It uses triangulation obtained by ear clipping as intermediate result.
+ // Time complexity O(n^2), n is the number of vertices.
+ // Space complexity: O(n)
+ // params:
+ // inpolys:
+ // An input list of polygons to be partitioned. Vertices of
+ // all non-hole polys have to be in counter-clockwise order.
+ // Vertices of all hole polys have to be in clockwise order.
+ // parts:
+ // Resulting list of convex polygons.
+ // Returns 1 on success, 0 on failure.
+ int ConvexPartition_HM(TPPLPolyList *inpolys, TPPLPolyList *parts);
+
+ // Optimal convex partitioning (in terms of number of resulting
+ // convex polygons) using the Keil-Snoeyink algorithm.
+ // For reference, see M. Keil, J. Snoeyink, "On the time bound for
+ // convex decomposition of simple polygons", 1998.
+ // Time complexity O(n^3), n is the number of vertices.
+ // Space complexity: O(n^3)
+ // params:
+ // poly:
+ // An input polygon to be partitioned.
+ // Vertices have to be in counter-clockwise order.
+ // parts:
+ // Resulting list of convex polygons.
+ // Returns 1 on success, 0 on failure.
+ int ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts);
+};
+
+#endif