summaryrefslogtreecommitdiff
path: root/thirdparty/misc/polypartition.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/misc/polypartition.cpp')
-rw-r--r--thirdparty/misc/polypartition.cpp1849
1 files changed, 1849 insertions, 0 deletions
diff --git a/thirdparty/misc/polypartition.cpp b/thirdparty/misc/polypartition.cpp
new file mode 100644
index 0000000000..5e94793b79
--- /dev/null
+++ b/thirdparty/misc/polypartition.cpp
@@ -0,0 +1,1849 @@
+/*************************************************************************/
+/* Copyright (c) 2011-2021 Ivan Fratric and contributors. */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "polypartition.h"
+
+#include <algorithm>
+
+TPPLPoly::TPPLPoly() {
+ hole = false;
+ numpoints = 0;
+ points = NULL;
+}
+
+TPPLPoly::~TPPLPoly() {
+ if (points) {
+ delete[] points;
+ }
+}
+
+void TPPLPoly::Clear() {
+ if (points) {
+ delete[] points;
+ }
+ hole = false;
+ numpoints = 0;
+ points = NULL;
+}
+
+void TPPLPoly::Init(long numpoints) {
+ Clear();
+ this->numpoints = numpoints;
+ points = new TPPLPoint[numpoints];
+}
+
+void TPPLPoly::Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
+ Init(3);
+ points[0] = p1;
+ points[1] = p2;
+ points[2] = p3;
+}
+
+TPPLPoly::TPPLPoly(const TPPLPoly &src) :
+ TPPLPoly() {
+ hole = src.hole;
+ numpoints = src.numpoints;
+
+ if (numpoints > 0) {
+ points = new TPPLPoint[numpoints];
+ memcpy(points, src.points, numpoints * sizeof(TPPLPoint));
+ }
+}
+
+TPPLPoly &TPPLPoly::operator=(const TPPLPoly &src) {
+ Clear();
+ hole = src.hole;
+ numpoints = src.numpoints;
+
+ if (numpoints > 0) {
+ points = new TPPLPoint[numpoints];
+ memcpy(points, src.points, numpoints * sizeof(TPPLPoint));
+ }
+
+ return *this;
+}
+
+TPPLOrientation TPPLPoly::GetOrientation() const {
+ long i1, i2;
+ tppl_float area = 0;
+ for (i1 = 0; i1 < numpoints; i1++) {
+ i2 = i1 + 1;
+ if (i2 == numpoints) {
+ i2 = 0;
+ }
+ area += points[i1].x * points[i2].y - points[i1].y * points[i2].x;
+ }
+ if (area > 0) {
+ return TPPL_ORIENTATION_CCW;
+ }
+ if (area < 0) {
+ return TPPL_ORIENTATION_CW;
+ }
+ return TPPL_ORIENTATION_NONE;
+}
+
+void TPPLPoly::SetOrientation(TPPLOrientation orientation) {
+ TPPLOrientation polyorientation = GetOrientation();
+ if (polyorientation != TPPL_ORIENTATION_NONE && polyorientation != orientation) {
+ Invert();
+ }
+}
+
+void TPPLPoly::Invert() {
+ std::reverse(points, points + numpoints);
+}
+
+TPPLPartition::PartitionVertex::PartitionVertex() :
+ previous(NULL), next(NULL) {
+}
+
+TPPLPoint TPPLPartition::Normalize(const TPPLPoint &p) {
+ TPPLPoint r;
+ tppl_float n = sqrt(p.x * p.x + p.y * p.y);
+ if (n != 0) {
+ r = p / n;
+ } else {
+ r.x = 0;
+ r.y = 0;
+ }
+ return r;
+}
+
+tppl_float TPPLPartition::Distance(const TPPLPoint &p1, const TPPLPoint &p2) {
+ tppl_float dx, dy;
+ dx = p2.x - p1.x;
+ dy = p2.y - p1.y;
+ return (sqrt(dx * dx + dy * dy));
+}
+
+// Checks if two lines intersect.
+int TPPLPartition::Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22) {
+ if ((p11.x == p21.x) && (p11.y == p21.y)) {
+ return 0;
+ }
+ if ((p11.x == p22.x) && (p11.y == p22.y)) {
+ return 0;
+ }
+ if ((p12.x == p21.x) && (p12.y == p21.y)) {
+ return 0;
+ }
+ if ((p12.x == p22.x) && (p12.y == p22.y)) {
+ return 0;
+ }
+
+ TPPLPoint v1ort, v2ort, v;
+ tppl_float dot11, dot12, dot21, dot22;
+
+ v1ort.x = p12.y - p11.y;
+ v1ort.y = p11.x - p12.x;
+
+ v2ort.x = p22.y - p21.y;
+ v2ort.y = p21.x - p22.x;
+
+ v = p21 - p11;
+ dot21 = v.x * v1ort.x + v.y * v1ort.y;
+ v = p22 - p11;
+ dot22 = v.x * v1ort.x + v.y * v1ort.y;
+
+ v = p11 - p21;
+ dot11 = v.x * v2ort.x + v.y * v2ort.y;
+ v = p12 - p21;
+ dot12 = v.x * v2ort.x + v.y * v2ort.y;
+
+ if (dot11 * dot12 > 0) {
+ return 0;
+ }
+ if (dot21 * dot22 > 0) {
+ return 0;
+ }
+
+ return 1;
+}
+
+// Removes holes from inpolys by merging them with non-holes.
+int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
+ TPPLPolyList polys;
+ TPPLPolyList::Element *holeiter, *polyiter, *iter, *iter2;
+ long i, i2, holepointindex, polypointindex;
+ TPPLPoint holepoint, polypoint, bestpolypoint;
+ TPPLPoint linep1, linep2;
+ TPPLPoint v1, v2;
+ TPPLPoly newpoly;
+ bool hasholes;
+ bool pointvisible;
+ bool pointfound;
+
+ // Check for the trivial case of no holes.
+ hasholes = false;
+ for (iter = inpolys->front(); iter; iter = iter->next()) {
+ if (iter->get().IsHole()) {
+ hasholes = true;
+ break;
+ }
+ }
+ if (!hasholes) {
+ for (iter = inpolys->front(); iter; iter = iter->next()) {
+ outpolys->push_back(iter->get());
+ }
+ return 1;
+ }
+
+ polys = *inpolys;
+
+ while (1) {
+ // Find the hole point with the largest x.
+ hasholes = false;
+ for (iter = polys.front(); iter; iter = iter->next()) {
+ if (!iter->get().IsHole()) {
+ continue;
+ }
+
+ if (!hasholes) {
+ hasholes = true;
+ holeiter = iter;
+ holepointindex = 0;
+ }
+
+ for (i = 0; i < iter->get().GetNumPoints(); i++) {
+ if (iter->get().GetPoint(i).x > holeiter->get().GetPoint(holepointindex).x) {
+ holeiter = iter;
+ holepointindex = i;
+ }
+ }
+ }
+ if (!hasholes) {
+ break;
+ }
+ holepoint = holeiter->get().GetPoint(holepointindex);
+
+ pointfound = false;
+ for (iter = polys.front(); iter; iter = iter->next()) {
+ if (iter->get().IsHole()) {
+ continue;
+ }
+ for (i = 0; i < iter->get().GetNumPoints(); i++) {
+ if (iter->get().GetPoint(i).x <= holepoint.x) {
+ continue;
+ }
+ if (!InCone(iter->get().GetPoint((i + iter->get().GetNumPoints() - 1) % (iter->get().GetNumPoints())),
+ iter->get().GetPoint(i),
+ iter->get().GetPoint((i + 1) % (iter->get().GetNumPoints())),
+ holepoint)) {
+ continue;
+ }
+ polypoint = iter->get().GetPoint(i);
+ if (pointfound) {
+ v1 = Normalize(polypoint - holepoint);
+ v2 = Normalize(bestpolypoint - holepoint);
+ if (v2.x > v1.x) {
+ continue;
+ }
+ }
+ pointvisible = true;
+ for (iter2 = polys.front(); iter2; iter2->next()) {
+ if (iter2->get().IsHole()) {
+ continue;
+ }
+ for (i2 = 0; i2 < iter2->get().GetNumPoints(); i2++) {
+ linep1 = iter2->get().GetPoint(i2);
+ linep2 = iter2->get().GetPoint((i2 + 1) % (iter2->get().GetNumPoints()));
+ if (Intersects(holepoint, polypoint, linep1, linep2)) {
+ pointvisible = false;
+ break;
+ }
+ }
+ if (!pointvisible) {
+ break;
+ }
+ }
+ if (pointvisible) {
+ pointfound = true;
+ bestpolypoint = polypoint;
+ polyiter = iter;
+ polypointindex = i;
+ }
+ }
+ }
+
+ if (!pointfound) {
+ return 0;
+ }
+
+ newpoly.Init(holeiter->get().GetNumPoints() + polyiter->get().GetNumPoints() + 2);
+ i2 = 0;
+ for (i = 0; i <= polypointindex; i++) {
+ newpoly[i2] = polyiter->get().GetPoint(i);
+ i2++;
+ }
+ for (i = 0; i <= holeiter->get().GetNumPoints(); i++) {
+ newpoly[i2] = holeiter->get().GetPoint((i + holepointindex) % holeiter->get().GetNumPoints());
+ i2++;
+ }
+ for (i = polypointindex; i < polyiter->get().GetNumPoints(); i++) {
+ newpoly[i2] = polyiter->get().GetPoint(i);
+ i2++;
+ }
+
+ polys.erase(holeiter);
+ polys.erase(polyiter);
+ polys.push_back(newpoly);
+ }
+
+ for (iter = polys.front(); iter; iter = iter->next()) {
+ outpolys->push_back(iter->get());
+ }
+
+ return 1;
+}
+
+bool TPPLPartition::IsConvex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
+ tppl_float tmp;
+ tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y);
+ if (tmp > 0) {
+ return 1;
+ } else {
+ return 0;
+ }
+}
+
+bool TPPLPartition::IsReflex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
+ tppl_float tmp;
+ tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y);
+ if (tmp < 0) {
+ return 1;
+ } else {
+ return 0;
+ }
+}
+
+bool TPPLPartition::IsInside(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p) {
+ if (IsConvex(p1, p, p2)) {
+ return false;
+ }
+ if (IsConvex(p2, p, p3)) {
+ return false;
+ }
+ if (IsConvex(p3, p, p1)) {
+ return false;
+ }
+ return true;
+}
+
+bool TPPLPartition::InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p) {
+ bool convex;
+
+ convex = IsConvex(p1, p2, p3);
+
+ if (convex) {
+ if (!IsConvex(p1, p2, p)) {
+ return false;
+ }
+ if (!IsConvex(p2, p3, p)) {
+ return false;
+ }
+ return true;
+ } else {
+ if (IsConvex(p1, p2, p)) {
+ return true;
+ }
+ if (IsConvex(p2, p3, p)) {
+ return true;
+ }
+ return false;
+ }
+}
+
+bool TPPLPartition::InCone(PartitionVertex *v, TPPLPoint &p) {
+ TPPLPoint p1, p2, p3;
+
+ p1 = v->previous->p;
+ p2 = v->p;
+ p3 = v->next->p;
+
+ return InCone(p1, p2, p3, p);
+}
+
+void TPPLPartition::UpdateVertexReflexity(PartitionVertex *v) {
+ PartitionVertex *v1 = NULL, *v3 = NULL;
+ v1 = v->previous;
+ v3 = v->next;
+ v->isConvex = !IsReflex(v1->p, v->p, v3->p);
+}
+
+void TPPLPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices) {
+ long i;
+ PartitionVertex *v1 = NULL, *v3 = NULL;
+ TPPLPoint vec1, vec3;
+
+ v1 = v->previous;
+ v3 = v->next;
+
+ v->isConvex = IsConvex(v1->p, v->p, v3->p);
+
+ vec1 = Normalize(v1->p - v->p);
+ vec3 = Normalize(v3->p - v->p);
+ v->angle = vec1.x * vec3.x + vec1.y * vec3.y;
+
+ if (v->isConvex) {
+ v->isEar = true;
+ for (i = 0; i < numvertices; i++) {
+ if ((vertices[i].p.x == v->p.x) && (vertices[i].p.y == v->p.y)) {
+ continue;
+ }
+ if ((vertices[i].p.x == v1->p.x) && (vertices[i].p.y == v1->p.y)) {
+ continue;
+ }
+ if ((vertices[i].p.x == v3->p.x) && (vertices[i].p.y == v3->p.y)) {
+ continue;
+ }
+ if (IsInside(v1->p, v->p, v3->p, vertices[i].p)) {
+ v->isEar = false;
+ break;
+ }
+ }
+ } else {
+ v->isEar = false;
+ }
+}
+
+// Triangulation by ear removal.
+int TPPLPartition::Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles) {
+ if (!poly->Valid()) {
+ return 0;
+ }
+
+ long numvertices;
+ PartitionVertex *vertices = NULL;
+ PartitionVertex *ear = NULL;
+ TPPLPoly triangle;
+ long i, j;
+ bool earfound;
+
+ if (poly->GetNumPoints() < 3) {
+ return 0;
+ }
+ if (poly->GetNumPoints() == 3) {
+ triangles->push_back(*poly);
+ return 1;
+ }
+
+ numvertices = poly->GetNumPoints();
+
+ vertices = new PartitionVertex[numvertices];
+ for (i = 0; i < numvertices; i++) {
+ vertices[i].isActive = true;
+ vertices[i].p = poly->GetPoint(i);
+ if (i == (numvertices - 1)) {
+ vertices[i].next = &(vertices[0]);
+ } else {
+ vertices[i].next = &(vertices[i + 1]);
+ }
+ if (i == 0) {
+ vertices[i].previous = &(vertices[numvertices - 1]);
+ } else {
+ vertices[i].previous = &(vertices[i - 1]);
+ }
+ }
+ for (i = 0; i < numvertices; i++) {
+ UpdateVertex(&vertices[i], vertices, numvertices);
+ }
+
+ for (i = 0; i < numvertices - 3; i++) {
+ earfound = false;
+ // Find the most extruded ear.
+ for (j = 0; j < numvertices; j++) {
+ if (!vertices[j].isActive) {
+ continue;
+ }
+ if (!vertices[j].isEar) {
+ continue;
+ }
+ if (!earfound) {
+ earfound = true;
+ ear = &(vertices[j]);
+ } else {
+ if (vertices[j].angle > ear->angle) {
+ ear = &(vertices[j]);
+ }
+ }
+ }
+ if (!earfound) {
+ delete[] vertices;
+ return 0;
+ }
+
+ triangle.Triangle(ear->previous->p, ear->p, ear->next->p);
+ triangles->push_back(triangle);
+
+ ear->isActive = false;
+ ear->previous->next = ear->next;
+ ear->next->previous = ear->previous;
+
+ if (i == numvertices - 4) {
+ break;
+ }
+
+ UpdateVertex(ear->previous, vertices, numvertices);
+ UpdateVertex(ear->next, vertices, numvertices);
+ }
+ for (i = 0; i < numvertices; i++) {
+ if (vertices[i].isActive) {
+ triangle.Triangle(vertices[i].previous->p, vertices[i].p, vertices[i].next->p);
+ triangles->push_back(triangle);
+ break;
+ }
+ }
+
+ delete[] vertices;
+
+ return 1;
+}
+
+int TPPLPartition::Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
+ TPPLPolyList outpolys;
+ TPPLPolyList::Element *iter;
+
+ if (!RemoveHoles(inpolys, &outpolys)) {
+ return 0;
+ }
+ for (iter = outpolys.front(); iter; iter = iter->next()) {
+ if (!Triangulate_EC(&(iter->get()), triangles)) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
+ if (!poly->Valid()) {
+ return 0;
+ }
+
+ TPPLPolyList triangles;
+ TPPLPolyList::Element *iter1, *iter2;
+ TPPLPoly *poly1 = NULL, *poly2 = NULL;
+ TPPLPoly newpoly;
+ TPPLPoint d1, d2, p1, p2, p3;
+ long i11, i12, i21, i22, i13, i23, j, k;
+ bool isdiagonal;
+ long numreflex;
+
+ // Check if the poly is already convex.
+ numreflex = 0;
+ for (i11 = 0; i11 < poly->GetNumPoints(); i11++) {
+ if (i11 == 0) {
+ i12 = poly->GetNumPoints() - 1;
+ } else {
+ i12 = i11 - 1;
+ }
+ if (i11 == (poly->GetNumPoints() - 1)) {
+ i13 = 0;
+ } else {
+ i13 = i11 + 1;
+ }
+ if (IsReflex(poly->GetPoint(i12), poly->GetPoint(i11), poly->GetPoint(i13))) {
+ numreflex = 1;
+ break;
+ }
+ }
+ if (numreflex == 0) {
+ parts->push_back(*poly);
+ return 1;
+ }
+
+ if (!Triangulate_EC(poly, &triangles)) {
+ return 0;
+ }
+
+ for (iter1 = triangles.front(); iter1; iter1 = iter1->next()) {
+ poly1 = &(iter1->get());
+ for (i11 = 0; i11 < poly1->GetNumPoints(); i11++) {
+ d1 = poly1->GetPoint(i11);
+ i12 = (i11 + 1) % (poly1->GetNumPoints());
+ d2 = poly1->GetPoint(i12);
+
+ isdiagonal = false;
+ for (iter2 = iter1; iter2; iter2 = iter2->next()) {
+ if (iter1 == iter2) {
+ continue;
+ }
+ poly2 = &(iter2->get());
+
+ for (i21 = 0; i21 < poly2->GetNumPoints(); i21++) {
+ if ((d2.x != poly2->GetPoint(i21).x) || (d2.y != poly2->GetPoint(i21).y)) {
+ continue;
+ }
+ i22 = (i21 + 1) % (poly2->GetNumPoints());
+ if ((d1.x != poly2->GetPoint(i22).x) || (d1.y != poly2->GetPoint(i22).y)) {
+ continue;
+ }
+ isdiagonal = true;
+ break;
+ }
+ if (isdiagonal) {
+ break;
+ }
+ }
+
+ if (!isdiagonal) {
+ continue;
+ }
+
+ p2 = poly1->GetPoint(i11);
+ if (i11 == 0) {
+ i13 = poly1->GetNumPoints() - 1;
+ } else {
+ i13 = i11 - 1;
+ }
+ p1 = poly1->GetPoint(i13);
+ if (i22 == (poly2->GetNumPoints() - 1)) {
+ i23 = 0;
+ } else {
+ i23 = i22 + 1;
+ }
+ p3 = poly2->GetPoint(i23);
+
+ if (!IsConvex(p1, p2, p3)) {
+ continue;
+ }
+
+ p2 = poly1->GetPoint(i12);
+ if (i12 == (poly1->GetNumPoints() - 1)) {
+ i13 = 0;
+ } else {
+ i13 = i12 + 1;
+ }
+ p3 = poly1->GetPoint(i13);
+ if (i21 == 0) {
+ i23 = poly2->GetNumPoints() - 1;
+ } else {
+ i23 = i21 - 1;
+ }
+ p1 = poly2->GetPoint(i23);
+
+ if (!IsConvex(p1, p2, p3)) {
+ continue;
+ }
+
+ newpoly.Init(poly1->GetNumPoints() + poly2->GetNumPoints() - 2);
+ k = 0;
+ for (j = i12; j != i11; j = (j + 1) % (poly1->GetNumPoints())) {
+ newpoly[k] = poly1->GetPoint(j);
+ k++;
+ }
+ for (j = i22; j != i21; j = (j + 1) % (poly2->GetNumPoints())) {
+ newpoly[k] = poly2->GetPoint(j);
+ k++;
+ }
+
+ triangles.erase(iter2);
+ iter1->get() = newpoly;
+ poly1 = &(iter1->get());
+ i11 = -1;
+
+ continue;
+ }
+ }
+
+ for (iter1 = triangles.front(); iter1; iter1 = iter1->next()) {
+ parts->push_back(iter1->get());
+ }
+
+ return 1;
+}
+
+int TPPLPartition::ConvexPartition_HM(TPPLPolyList *inpolys, TPPLPolyList *parts) {
+ TPPLPolyList outpolys;
+ TPPLPolyList::Element *iter;
+
+ if (!RemoveHoles(inpolys, &outpolys)) {
+ return 0;
+ }
+ for (iter = outpolys.front(); iter; iter = iter->next()) {
+ if (!ConvexPartition_HM(&(iter->get()), parts)) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+// Minimum-weight polygon triangulation by dynamic programming.
+// Time complexity: O(n^3)
+// Space complexity: O(n^2)
+int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles) {
+ if (!poly->Valid()) {
+ return 0;
+ }
+
+ long i, j, k, gap, n;
+ DPState **dpstates = NULL;
+ TPPLPoint p1, p2, p3, p4;
+ long bestvertex;
+ tppl_float weight, minweight, d1, d2;
+ Diagonal diagonal, newdiagonal;
+ DiagonalList diagonals;
+ TPPLPoly triangle;
+ int ret = 1;
+
+ n = poly->GetNumPoints();
+ dpstates = new DPState *[n];
+ for (i = 1; i < n; i++) {
+ dpstates[i] = new DPState[i];
+ }
+
+ // Initialize states and visibility.
+ for (i = 0; i < (n - 1); i++) {
+ p1 = poly->GetPoint(i);
+ for (j = i + 1; j < n; j++) {
+ dpstates[j][i].visible = true;
+ dpstates[j][i].weight = 0;
+ dpstates[j][i].bestvertex = -1;
+ if (j != (i + 1)) {
+ p2 = poly->GetPoint(j);
+
+ // Visibility check.
+ if (i == 0) {
+ p3 = poly->GetPoint(n - 1);
+ } else {
+ p3 = poly->GetPoint(i - 1);
+ }
+ if (i == (n - 1)) {
+ p4 = poly->GetPoint(0);
+ } else {
+ p4 = poly->GetPoint(i + 1);
+ }
+ if (!InCone(p3, p1, p4, p2)) {
+ dpstates[j][i].visible = false;
+ continue;
+ }
+
+ if (j == 0) {
+ p3 = poly->GetPoint(n - 1);
+ } else {
+ p3 = poly->GetPoint(j - 1);
+ }
+ if (j == (n - 1)) {
+ p4 = poly->GetPoint(0);
+ } else {
+ p4 = poly->GetPoint(j + 1);
+ }
+ if (!InCone(p3, p2, p4, p1)) {
+ dpstates[j][i].visible = false;
+ continue;
+ }
+
+ for (k = 0; k < n; k++) {
+ p3 = poly->GetPoint(k);
+ if (k == (n - 1)) {
+ p4 = poly->GetPoint(0);
+ } else {
+ p4 = poly->GetPoint(k + 1);
+ }
+ if (Intersects(p1, p2, p3, p4)) {
+ dpstates[j][i].visible = false;
+ break;
+ }
+ }
+ }
+ }
+ }
+ dpstates[n - 1][0].visible = true;
+ dpstates[n - 1][0].weight = 0;
+ dpstates[n - 1][0].bestvertex = -1;
+
+ for (gap = 2; gap < n; gap++) {
+ for (i = 0; i < (n - gap); i++) {
+ j = i + gap;
+ if (!dpstates[j][i].visible) {
+ continue;
+ }
+ bestvertex = -1;
+ for (k = (i + 1); k < j; k++) {
+ if (!dpstates[k][i].visible) {
+ continue;
+ }
+ if (!dpstates[j][k].visible) {
+ continue;
+ }
+
+ if (k <= (i + 1)) {
+ d1 = 0;
+ } else {
+ d1 = Distance(poly->GetPoint(i), poly->GetPoint(k));
+ }
+ if (j <= (k + 1)) {
+ d2 = 0;
+ } else {
+ d2 = Distance(poly->GetPoint(k), poly->GetPoint(j));
+ }
+
+ weight = dpstates[k][i].weight + dpstates[j][k].weight + d1 + d2;
+
+ if ((bestvertex == -1) || (weight < minweight)) {
+ bestvertex = k;
+ minweight = weight;
+ }
+ }
+ if (bestvertex == -1) {
+ for (i = 1; i < n; i++) {
+ delete[] dpstates[i];
+ }
+ delete[] dpstates;
+
+ return 0;
+ }
+
+ dpstates[j][i].bestvertex = bestvertex;
+ dpstates[j][i].weight = minweight;
+ }
+ }
+
+ newdiagonal.index1 = 0;
+ newdiagonal.index2 = n - 1;
+ diagonals.push_back(newdiagonal);
+ while (!diagonals.is_empty()) {
+ diagonal = diagonals.front()->get();
+ diagonals.pop_front();
+ bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex;
+ if (bestvertex == -1) {
+ ret = 0;
+ break;
+ }
+ triangle.Triangle(poly->GetPoint(diagonal.index1), poly->GetPoint(bestvertex), poly->GetPoint(diagonal.index2));
+ triangles->push_back(triangle);
+ if (bestvertex > (diagonal.index1 + 1)) {
+ newdiagonal.index1 = diagonal.index1;
+ newdiagonal.index2 = bestvertex;
+ diagonals.push_back(newdiagonal);
+ }
+ if (diagonal.index2 > (bestvertex + 1)) {
+ newdiagonal.index1 = bestvertex;
+ newdiagonal.index2 = diagonal.index2;
+ diagonals.push_back(newdiagonal);
+ }
+ }
+
+ for (i = 1; i < n; i++) {
+ delete[] dpstates[i];
+ }
+ delete[] dpstates;
+
+ return ret;
+}
+
+void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) {
+ Diagonal newdiagonal;
+ DiagonalList *pairs = NULL;
+ long w2;
+
+ w2 = dpstates[a][b].weight;
+ if (w > w2) {
+ return;
+ }
+
+ pairs = &(dpstates[a][b].pairs);
+ newdiagonal.index1 = i;
+ newdiagonal.index2 = j;
+
+ if (w < w2) {
+ pairs->clear();
+ pairs->push_front(newdiagonal);
+ dpstates[a][b].weight = w;
+ } else {
+ if ((!pairs->is_empty()) && (i <= pairs->front()->get().index1)) {
+ return;
+ }
+ while ((!pairs->is_empty()) && (pairs->front()->get().index2 >= j)) {
+ pairs->pop_front();
+ }
+ pairs->push_front(newdiagonal);
+ }
+}
+
+void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
+ DiagonalList *pairs = NULL;
+ DiagonalList::Element *iter, *lastiter;
+ long top;
+ long w;
+
+ if (!dpstates[i][j].visible) {
+ return;
+ }
+ top = j;
+ w = dpstates[i][j].weight;
+ if (k - j > 1) {
+ if (!dpstates[j][k].visible) {
+ return;
+ }
+ w += dpstates[j][k].weight + 1;
+ }
+ if (j - i > 1) {
+ pairs = &(dpstates[i][j].pairs);
+ iter = pairs->back();
+ lastiter = pairs->back();
+ while (iter != pairs->front()) {
+ iter--;
+ if (!IsReflex(vertices[iter->get().index2].p, vertices[j].p, vertices[k].p)) {
+ lastiter = iter;
+ } else {
+ break;
+ }
+ }
+ if (lastiter == pairs->back()) {
+ w++;
+ } else {
+ if (IsReflex(vertices[k].p, vertices[i].p, vertices[lastiter->get().index1].p)) {
+ w++;
+ } else {
+ top = lastiter->get().index1;
+ }
+ }
+ }
+ UpdateState(i, k, w, top, j, dpstates);
+}
+
+void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
+ DiagonalList *pairs = NULL;
+ DiagonalList::Element *iter, *lastiter;
+ long top;
+ long w;
+
+ if (!dpstates[j][k].visible) {
+ return;
+ }
+ top = j;
+ w = dpstates[j][k].weight;
+
+ if (j - i > 1) {
+ if (!dpstates[i][j].visible) {
+ return;
+ }
+ w += dpstates[i][j].weight + 1;
+ }
+ if (k - j > 1) {
+ pairs = &(dpstates[j][k].pairs);
+
+ iter = pairs->front();
+ if ((!pairs->is_empty()) && (!IsReflex(vertices[i].p, vertices[j].p, vertices[iter->get().index1].p))) {
+ lastiter = iter;
+ while (iter) {
+ if (!IsReflex(vertices[i].p, vertices[j].p, vertices[iter->get().index1].p)) {
+ lastiter = iter;
+ iter = iter->next();
+ } else {
+ break;
+ }
+ }
+ if (IsReflex(vertices[lastiter->get().index2].p, vertices[k].p, vertices[i].p)) {
+ w++;
+ } else {
+ top = lastiter->get().index2;
+ }
+ } else {
+ w++;
+ }
+ }
+ UpdateState(i, k, w, j, top, dpstates);
+}
+
+int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
+ if (!poly->Valid()) {
+ return 0;
+ }
+
+ TPPLPoint p1, p2, p3, p4;
+ PartitionVertex *vertices = NULL;
+ DPState2 **dpstates = NULL;
+ long i, j, k, n, gap;
+ DiagonalList diagonals, diagonals2;
+ Diagonal diagonal, newdiagonal;
+ DiagonalList *pairs = NULL, *pairs2 = NULL;
+ DiagonalList::Element *iter, *iter2;
+ int ret;
+ TPPLPoly newpoly;
+ List<long> indices;
+ List<long>::Element *iiter;
+ bool ijreal, jkreal;
+
+ n = poly->GetNumPoints();
+ vertices = new PartitionVertex[n];
+
+ dpstates = new DPState2 *[n];
+ for (i = 0; i < n; i++) {
+ dpstates[i] = new DPState2[n];
+ }
+
+ // Initialize vertex information.
+ for (i = 0; i < n; i++) {
+ vertices[i].p = poly->GetPoint(i);
+ vertices[i].isActive = true;
+ if (i == 0) {
+ vertices[i].previous = &(vertices[n - 1]);
+ } else {
+ vertices[i].previous = &(vertices[i - 1]);
+ }
+ if (i == (poly->GetNumPoints() - 1)) {
+ vertices[i].next = &(vertices[0]);
+ } else {
+ vertices[i].next = &(vertices[i + 1]);
+ }
+ }
+ for (i = 1; i < n; i++) {
+ UpdateVertexReflexity(&(vertices[i]));
+ }
+
+ // Initialize states and visibility.
+ for (i = 0; i < (n - 1); i++) {
+ p1 = poly->GetPoint(i);
+ for (j = i + 1; j < n; j++) {
+ dpstates[i][j].visible = true;
+ if (j == i + 1) {
+ dpstates[i][j].weight = 0;
+ } else {
+ dpstates[i][j].weight = 2147483647;
+ }
+ if (j != (i + 1)) {
+ p2 = poly->GetPoint(j);
+
+ // Visibility check.
+ if (!InCone(&vertices[i], p2)) {
+ dpstates[i][j].visible = false;
+ continue;
+ }
+ if (!InCone(&vertices[j], p1)) {
+ dpstates[i][j].visible = false;
+ continue;
+ }
+
+ for (k = 0; k < n; k++) {
+ p3 = poly->GetPoint(k);
+ if (k == (n - 1)) {
+ p4 = poly->GetPoint(0);
+ } else {
+ p4 = poly->GetPoint(k + 1);
+ }
+ if (Intersects(p1, p2, p3, p4)) {
+ dpstates[i][j].visible = false;
+ break;
+ }
+ }
+ }
+ }
+ }
+ for (i = 0; i < (n - 2); i++) {
+ j = i + 2;
+ if (dpstates[i][j].visible) {
+ dpstates[i][j].weight = 0;
+ newdiagonal.index1 = i + 1;
+ newdiagonal.index2 = i + 1;
+ dpstates[i][j].pairs.push_back(newdiagonal);
+ }
+ }
+
+ dpstates[0][n - 1].visible = true;
+ vertices[0].isConvex = false; // By convention.
+
+ for (gap = 3; gap < n; gap++) {
+ for (i = 0; i < n - gap; i++) {
+ if (vertices[i].isConvex) {
+ continue;
+ }
+ k = i + gap;
+ if (dpstates[i][k].visible) {
+ if (!vertices[k].isConvex) {
+ for (j = i + 1; j < k; j++) {
+ TypeA(i, j, k, vertices, dpstates);
+ }
+ } else {
+ for (j = i + 1; j < (k - 1); j++) {
+ if (vertices[j].isConvex) {
+ continue;
+ }
+ TypeA(i, j, k, vertices, dpstates);
+ }
+ TypeA(i, k - 1, k, vertices, dpstates);
+ }
+ }
+ }
+ for (k = gap; k < n; k++) {
+ if (vertices[k].isConvex) {
+ continue;
+ }
+ i = k - gap;
+ if ((vertices[i].isConvex) && (dpstates[i][k].visible)) {
+ TypeB(i, i + 1, k, vertices, dpstates);
+ for (j = i + 2; j < k; j++) {
+ if (vertices[j].isConvex) {
+ continue;
+ }
+ TypeB(i, j, k, vertices, dpstates);
+ }
+ }
+ }
+ }
+
+ // Recover solution.
+ ret = 1;
+ newdiagonal.index1 = 0;
+ newdiagonal.index2 = n - 1;
+ diagonals.push_front(newdiagonal);
+ while (!diagonals.is_empty()) {
+ diagonal = diagonals.front()->get();
+ diagonals.pop_front();
+ if ((diagonal.index2 - diagonal.index1) <= 1) {
+ continue;
+ }
+ pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
+ if (pairs->is_empty()) {
+ ret = 0;
+ break;
+ }
+ if (!vertices[diagonal.index1].isConvex) {
+ iter = pairs->back();
+ iter--;
+ j = iter->get().index2;
+ newdiagonal.index1 = j;
+ newdiagonal.index2 = diagonal.index2;
+ diagonals.push_front(newdiagonal);
+ if ((j - diagonal.index1) > 1) {
+ if (iter->get().index1 != iter->get().index2) {
+ pairs2 = &(dpstates[diagonal.index1][j].pairs);
+ while (1) {
+ if (pairs2->is_empty()) {
+ ret = 0;
+ break;
+ }
+ iter2 = pairs2->back();
+ iter2--;
+ if (iter->get().index1 != iter2->get().index1) {
+ pairs2->pop_back();
+ } else {
+ break;
+ }
+ }
+ if (ret == 0) {
+ break;
+ }
+ }
+ newdiagonal.index1 = diagonal.index1;
+ newdiagonal.index2 = j;
+ diagonals.push_front(newdiagonal);
+ }
+ } else {
+ iter = pairs->front();
+ j = iter->get().index1;
+ newdiagonal.index1 = diagonal.index1;
+ newdiagonal.index2 = j;
+ diagonals.push_front(newdiagonal);
+ if ((diagonal.index2 - j) > 1) {
+ if (iter->get().index1 != iter->get().index2) {
+ pairs2 = &(dpstates[j][diagonal.index2].pairs);
+ while (1) {
+ if (pairs2->is_empty()) {
+ ret = 0;
+ break;
+ }
+ iter2 = pairs2->front();
+ if (iter->get().index2 != iter2->get().index2) {
+ pairs2->pop_front();
+ } else {
+ break;
+ }
+ }
+ if (ret == 0) {
+ break;
+ }
+ }
+ newdiagonal.index1 = j;
+ newdiagonal.index2 = diagonal.index2;
+ diagonals.push_front(newdiagonal);
+ }
+ }
+ }
+
+ if (ret == 0) {
+ for (i = 0; i < n; i++) {
+ delete[] dpstates[i];
+ }
+ delete[] dpstates;
+ delete[] vertices;
+
+ return ret;
+ }
+
+ newdiagonal.index1 = 0;
+ newdiagonal.index2 = n - 1;
+ diagonals.push_front(newdiagonal);
+ while (!diagonals.is_empty()) {
+ diagonal = diagonals.front()->get();
+ diagonals.pop_front();
+ if ((diagonal.index2 - diagonal.index1) <= 1) {
+ continue;
+ }
+
+ indices.clear();
+ diagonals2.clear();
+ indices.push_back(diagonal.index1);
+ indices.push_back(diagonal.index2);
+ diagonals2.push_front(diagonal);
+
+ while (!diagonals2.is_empty()) {
+ diagonal = diagonals2.front()->get();
+ diagonals2.pop_front();
+ if ((diagonal.index2 - diagonal.index1) <= 1) {
+ continue;
+ }
+ ijreal = true;
+ jkreal = true;
+ pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
+ if (!vertices[diagonal.index1].isConvex) {
+ iter = pairs->back();
+ iter--;
+ j = iter->get().index2;
+ if (iter->get().index1 != iter->get().index2) {
+ ijreal = false;
+ }
+ } else {
+ iter = pairs->front();
+ j = iter->get().index1;
+ if (iter->get().index1 != iter->get().index2) {
+ jkreal = false;
+ }
+ }
+
+ newdiagonal.index1 = diagonal.index1;
+ newdiagonal.index2 = j;
+ if (ijreal) {
+ diagonals.push_back(newdiagonal);
+ } else {
+ diagonals2.push_back(newdiagonal);
+ }
+
+ newdiagonal.index1 = j;
+ newdiagonal.index2 = diagonal.index2;
+ if (jkreal) {
+ diagonals.push_back(newdiagonal);
+ } else {
+ diagonals2.push_back(newdiagonal);
+ }
+
+ indices.push_back(j);
+ }
+
+ //std::sort(indices.begin(), indices.end());
+ indices.sort();
+ newpoly.Init((long)indices.size());
+ k = 0;
+ for (iiter = indices.front(); iiter != indices.back(); iiter = iiter->next()) {
+ newpoly[k] = vertices[iiter->get()].p;
+ k++;
+ }
+ parts->push_back(newpoly);
+ }
+
+ for (i = 0; i < n; i++) {
+ delete[] dpstates[i];
+ }
+ delete[] dpstates;
+ delete[] vertices;
+
+ return ret;
+}
+
+// Creates a monotone partition of a list of polygons that
+// can contain holes. Triangulates a set of polygons by
+// first partitioning them into monotone polygons.
+// Time complexity: O(n*log(n)), n is the number of vertices.
+// Space complexity: O(n)
+// The algorithm used here is outlined in the book
+// "Computational Geometry: Algorithms and Applications"
+// by Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
+int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monotonePolys) {
+ TPPLPolyList::Element *iter;
+ MonotoneVertex *vertices = NULL;
+ long i, numvertices, vindex, vindex2, newnumvertices, maxnumvertices;
+ long polystartindex, polyendindex;
+ TPPLPoly *poly = NULL;
+ MonotoneVertex *v = NULL, *v2 = NULL, *vprev = NULL, *vnext = NULL;
+ ScanLineEdge newedge;
+ bool error = false;
+
+ numvertices = 0;
+ for (iter = inpolys->front(); iter; iter = iter->next()) {
+ numvertices += iter->get().GetNumPoints();
+ }
+
+ maxnumvertices = numvertices * 3;
+ vertices = new MonotoneVertex[maxnumvertices];
+ newnumvertices = numvertices;
+
+ polystartindex = 0;
+ for (iter = inpolys->front(); iter; iter = iter->next()) {
+ poly = &(iter->get());
+ polyendindex = polystartindex + poly->GetNumPoints() - 1;
+ for (i = 0; i < poly->GetNumPoints(); i++) {
+ vertices[i + polystartindex].p = poly->GetPoint(i);
+ if (i == 0) {
+ vertices[i + polystartindex].previous = polyendindex;
+ } else {
+ vertices[i + polystartindex].previous = i + polystartindex - 1;
+ }
+ if (i == (poly->GetNumPoints() - 1)) {
+ vertices[i + polystartindex].next = polystartindex;
+ } else {
+ vertices[i + polystartindex].next = i + polystartindex + 1;
+ }
+ }
+ polystartindex = polyendindex + 1;
+ }
+
+ // Construct the priority queue.
+ long *priority = new long[numvertices];
+ for (i = 0; i < numvertices; i++) {
+ priority[i] = i;
+ }
+ std::sort(priority, &(priority[numvertices]), VertexSorter(vertices));
+
+ // Determine vertex types.
+ TPPLVertexType *vertextypes = new TPPLVertexType[maxnumvertices];
+ for (i = 0; i < numvertices; i++) {
+ v = &(vertices[i]);
+ vprev = &(vertices[v->previous]);
+ vnext = &(vertices[v->next]);
+
+ if (Below(vprev->p, v->p) && Below(vnext->p, v->p)) {
+ if (IsConvex(vnext->p, vprev->p, v->p)) {
+ vertextypes[i] = TPPL_VERTEXTYPE_START;
+ } else {
+ vertextypes[i] = TPPL_VERTEXTYPE_SPLIT;
+ }
+ } else if (Below(v->p, vprev->p) && Below(v->p, vnext->p)) {
+ if (IsConvex(vnext->p, vprev->p, v->p)) {
+ vertextypes[i] = TPPL_VERTEXTYPE_END;
+ } else {
+ vertextypes[i] = TPPL_VERTEXTYPE_MERGE;
+ }
+ } else {
+ vertextypes[i] = TPPL_VERTEXTYPE_REGULAR;
+ }
+ }
+
+ // Helpers.
+ long *helpers = new long[maxnumvertices];
+
+ // Binary search tree that holds edges intersecting the scanline.
+ // Note that while set doesn't actually have to be implemented as
+ // a tree, complexity requirements for operations are the same as
+ // for the balanced binary search tree.
+ Set<ScanLineEdge> edgeTree;
+ // Store iterators to the edge tree elements.
+ // This makes deleting existing edges much faster.
+ Set<ScanLineEdge>::Element **edgeTreeIterators, *edgeIter;
+ edgeTreeIterators = new Set<ScanLineEdge>::Element *[maxnumvertices];
+ //Pair<Set<ScanLineEdge>::iterator, bool> edgeTreeRet;
+ for (i = 0; i < numvertices; i++) {
+ edgeTreeIterators[i] = nullptr;
+ }
+
+ // For each vertex.
+ for (i = 0; i < numvertices; i++) {
+ vindex = priority[i];
+ v = &(vertices[vindex]);
+ vindex2 = vindex;
+ v2 = v;
+
+ // Depending on the vertex type, do the appropriate action.
+ // Comments in the following sections are copied from
+ // "Computational Geometry: Algorithms and Applications".
+ // Notation: e_i = e subscript i, v_i = v subscript i, etc.
+ switch (vertextypes[vindex]) {
+ case TPPL_VERTEXTYPE_START:
+ // Insert e_i in T and set helper(e_i) to v_i.
+ newedge.p1 = v->p;
+ newedge.p2 = vertices[v->next].p;
+ newedge.index = vindex;
+ //edgeTreeRet = edgeTree.insert(newedge);
+ //edgeTreeIterators[vindex] = edgeTreeRet.first;
+ edgeTreeIterators[vindex] = edgeTree.insert(newedge);
+ helpers[vindex] = vindex;
+ break;
+
+ case TPPL_VERTEXTYPE_END:
+ if (edgeTreeIterators[v->previous] == edgeTree.back()) {
+ error = true;
+ break;
+ }
+ // If helper(e_i - 1) is a merge vertex
+ if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) {
+ // Insert the diagonal connecting vi to helper(e_i - 1) in D.
+ AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ }
+ // Delete e_i - 1 from T
+ edgeTree.erase(edgeTreeIterators[v->previous]);
+ break;
+
+ case TPPL_VERTEXTYPE_SPLIT:
+ // Search in T to find the edge e_j directly left of v_i.
+ newedge.p1 = v->p;
+ newedge.p2 = v->p;
+ edgeIter = edgeTree.lower_bound(newedge);
+ if (edgeIter == nullptr || edgeIter == edgeTree.front()) {
+ error = true;
+ break;
+ }
+ edgeIter--;
+ // Insert the diagonal connecting vi to helper(e_j) in D.
+ AddDiagonal(vertices, &newnumvertices, vindex, helpers[edgeIter->get().index],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ vindex2 = newnumvertices - 2;
+ v2 = &(vertices[vindex2]);
+ // helper(e_j) in v_i.
+ helpers[edgeIter->get().index] = vindex;
+ // Insert e_i in T and set helper(e_i) to v_i.
+ newedge.p1 = v2->p;
+ newedge.p2 = vertices[v2->next].p;
+ newedge.index = vindex2;
+ //edgeTreeRet = edgeTree.insert(newedge);
+ //edgeTreeIterators[vindex2] = edgeTreeRet.first;
+ edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
+ helpers[vindex2] = vindex2;
+ break;
+
+ case TPPL_VERTEXTYPE_MERGE:
+ if (edgeTreeIterators[v->previous] == edgeTree.back()) {
+ error = true;
+ break;
+ }
+ // if helper(e_i - 1) is a merge vertex
+ if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) {
+ // Insert the diagonal connecting vi to helper(e_i - 1) in D.
+ AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ vindex2 = newnumvertices - 2;
+ v2 = &(vertices[vindex2]);
+ }
+ // Delete e_i - 1 from T.
+ edgeTree.erase(edgeTreeIterators[v->previous]);
+ // Search in T to find the edge e_j directly left of v_i.
+ newedge.p1 = v->p;
+ newedge.p2 = v->p;
+ edgeIter = edgeTree.lower_bound(newedge);
+ if (edgeIter == nullptr || edgeIter == edgeTree.front()) {
+ error = true;
+ break;
+ }
+ edgeIter--;
+ // If helper(e_j) is a merge vertex.
+ if (vertextypes[helpers[edgeIter->get().index]] == TPPL_VERTEXTYPE_MERGE) {
+ // Insert the diagonal connecting v_i to helper(e_j) in D.
+ AddDiagonal(vertices, &newnumvertices, vindex2, helpers[edgeIter->get().index],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ }
+ // helper(e_j) <- v_i
+ helpers[edgeIter->get().index] = vindex2;
+ break;
+
+ case TPPL_VERTEXTYPE_REGULAR:
+ // If the interior of P lies to the right of v_i.
+ if (Below(v->p, vertices[v->previous].p)) {
+ if (edgeTreeIterators[v->previous] == edgeTree.back()) {
+ error = true;
+ break;
+ }
+ // If helper(e_i - 1) is a merge vertex.
+ if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) {
+ // Insert the diagonal connecting v_i to helper(e_i - 1) in D.
+ AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ vindex2 = newnumvertices - 2;
+ v2 = &(vertices[vindex2]);
+ }
+ // Delete e_i - 1 from T.
+ edgeTree.erase(edgeTreeIterators[v->previous]);
+ // Insert e_i in T and set helper(e_i) to v_i.
+ newedge.p1 = v2->p;
+ newedge.p2 = vertices[v2->next].p;
+ newedge.index = vindex2;
+ //edgeTreeRet = edgeTree.insert(newedge);
+ //edgeTreeIterators[vindex2] = edgeTreeRet.first;
+ edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
+ helpers[vindex2] = vindex;
+ } else {
+ // Search in T to find the edge e_j directly left of v_i.
+ newedge.p1 = v->p;
+ newedge.p2 = v->p;
+ edgeIter = edgeTree.lower_bound(newedge);
+ if (edgeIter == nullptr || edgeIter == edgeTree.front()) {
+ error = true;
+ break;
+ }
+ edgeIter = edgeIter->prev();
+ // If helper(e_j) is a merge vertex.
+ if (vertextypes[helpers[edgeIter->get().index]] == TPPL_VERTEXTYPE_MERGE) {
+ // Insert the diagonal connecting v_i to helper(e_j) in D.
+ AddDiagonal(vertices, &newnumvertices, vindex, helpers[edgeIter->get().index],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ }
+ // helper(e_j) <- v_i.
+ helpers[edgeIter->get().index] = vindex;
+ }
+ break;
+ }
+
+ if (error)
+ break;
+ }
+
+ char *used = new char[newnumvertices];
+ memset(used, 0, newnumvertices * sizeof(char));
+
+ if (!error) {
+ // Return result.
+ long size;
+ TPPLPoly mpoly;
+ for (i = 0; i < newnumvertices; i++) {
+ if (used[i]) {
+ continue;
+ }
+ v = &(vertices[i]);
+ vnext = &(vertices[v->next]);
+ size = 1;
+ while (vnext != v) {
+ vnext = &(vertices[vnext->next]);
+ size++;
+ }
+ mpoly.Init(size);
+ v = &(vertices[i]);
+ mpoly[0] = v->p;
+ vnext = &(vertices[v->next]);
+ size = 1;
+ used[i] = 1;
+ used[v->next] = 1;
+ while (vnext != v) {
+ mpoly[size] = vnext->p;
+ used[vnext->next] = 1;
+ vnext = &(vertices[vnext->next]);
+ size++;
+ }
+ monotonePolys->push_back(mpoly);
+ }
+ }
+
+ // Cleanup.
+ delete[] vertices;
+ delete[] priority;
+ delete[] vertextypes;
+ delete[] edgeTreeIterators;
+ delete[] helpers;
+ delete[] used;
+
+ if (error) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+// Adds a diagonal to the doubly-connected list of vertices.
+void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
+ TPPLVertexType *vertextypes, Set<ScanLineEdge>::Element **edgeTreeIterators,
+ Set<ScanLineEdge> *edgeTree, long *helpers) {
+ long newindex1, newindex2;
+
+ newindex1 = *numvertices;
+ (*numvertices)++;
+ newindex2 = *numvertices;
+ (*numvertices)++;
+
+ vertices[newindex1].p = vertices[index1].p;
+ vertices[newindex2].p = vertices[index2].p;
+
+ vertices[newindex2].next = vertices[index2].next;
+ vertices[newindex1].next = vertices[index1].next;
+
+ vertices[vertices[index2].next].previous = newindex2;
+ vertices[vertices[index1].next].previous = newindex1;
+
+ vertices[index1].next = newindex2;
+ vertices[newindex2].previous = index1;
+
+ vertices[index2].next = newindex1;
+ vertices[newindex1].previous = index2;
+
+ // Update all relevant structures.
+ vertextypes[newindex1] = vertextypes[index1];
+ edgeTreeIterators[newindex1] = edgeTreeIterators[index1];
+ helpers[newindex1] = helpers[index1];
+ if (edgeTreeIterators[newindex1] != edgeTree->back()) {
+ edgeTreeIterators[newindex1]->get().index = newindex1;
+ }
+ vertextypes[newindex2] = vertextypes[index2];
+ edgeTreeIterators[newindex2] = edgeTreeIterators[index2];
+ helpers[newindex2] = helpers[index2];
+ if (edgeTreeIterators[newindex2] != edgeTree->back()) {
+ edgeTreeIterators[newindex2]->get().index = newindex2;
+ }
+}
+
+bool TPPLPartition::Below(TPPLPoint &p1, TPPLPoint &p2) {
+ if (p1.y < p2.y) {
+ return true;
+ } else if (p1.y == p2.y) {
+ if (p1.x < p2.x) {
+ return true;
+ }
+ }
+ return false;
+}
+
+// Sorts in the falling order of y values, if y is equal, x is used instead.
+bool TPPLPartition::VertexSorter::operator()(long index1, long index2) {
+ if (vertices[index1].p.y > vertices[index2].p.y) {
+ return true;
+ } else if (vertices[index1].p.y == vertices[index2].p.y) {
+ if (vertices[index1].p.x > vertices[index2].p.x) {
+ return true;
+ }
+ }
+ return false;
+}
+
+bool TPPLPartition::ScanLineEdge::IsConvex(const TPPLPoint &p1, const TPPLPoint &p2, const TPPLPoint &p3) const {
+ tppl_float tmp;
+ tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y);
+ if (tmp > 0) {
+ return 1;
+ }
+
+ return 0;
+}
+
+bool TPPLPartition::ScanLineEdge::operator<(const ScanLineEdge &other) const {
+ if (other.p1.y == other.p2.y) {
+ if (p1.y == p2.y) {
+ return (p1.y < other.p1.y);
+ }
+ return IsConvex(p1, p2, other.p1);
+ } else if (p1.y == p2.y) {
+ return !IsConvex(other.p1, other.p2, p1);
+ } else if (p1.y < other.p1.y) {
+ return !IsConvex(other.p1, other.p2, p1);
+ } else {
+ return IsConvex(p1, p2, other.p1);
+ }
+}
+
+// Triangulates monotone polygon.
+// Time complexity: O(n)
+// Space complexity: O(n)
+int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles) {
+ if (!inPoly->Valid()) {
+ return 0;
+ }
+
+ long i, i2, j, topindex, bottomindex, leftindex, rightindex, vindex;
+ TPPLPoint *points = NULL;
+ long numpoints;
+ TPPLPoly triangle;
+
+ numpoints = inPoly->GetNumPoints();
+ points = inPoly->GetPoints();
+
+ // Trivial case.
+ if (numpoints == 3) {
+ triangles->push_back(*inPoly);
+ return 1;
+ }
+
+ topindex = 0;
+ bottomindex = 0;
+ for (i = 1; i < numpoints; i++) {
+ if (Below(points[i], points[bottomindex])) {
+ bottomindex = i;
+ }
+ if (Below(points[topindex], points[i])) {
+ topindex = i;
+ }
+ }
+
+ // Check if the poly is really monotone.
+ i = topindex;
+ while (i != bottomindex) {
+ i2 = i + 1;
+ if (i2 >= numpoints) {
+ i2 = 0;
+ }
+ if (!Below(points[i2], points[i])) {
+ return 0;
+ }
+ i = i2;
+ }
+ i = bottomindex;
+ while (i != topindex) {
+ i2 = i + 1;
+ if (i2 >= numpoints) {
+ i2 = 0;
+ }
+ if (!Below(points[i], points[i2])) {
+ return 0;
+ }
+ i = i2;
+ }
+
+ char *vertextypes = new char[numpoints];
+ long *priority = new long[numpoints];
+
+ // Merge left and right vertex chains.
+ priority[0] = topindex;
+ vertextypes[topindex] = 0;
+ leftindex = topindex + 1;
+ if (leftindex >= numpoints) {
+ leftindex = 0;
+ }
+ rightindex = topindex - 1;
+ if (rightindex < 0) {
+ rightindex = numpoints - 1;
+ }
+ for (i = 1; i < (numpoints - 1); i++) {
+ if (leftindex == bottomindex) {
+ priority[i] = rightindex;
+ rightindex--;
+ if (rightindex < 0) {
+ rightindex = numpoints - 1;
+ }
+ vertextypes[priority[i]] = -1;
+ } else if (rightindex == bottomindex) {
+ priority[i] = leftindex;
+ leftindex++;
+ if (leftindex >= numpoints) {
+ leftindex = 0;
+ }
+ vertextypes[priority[i]] = 1;
+ } else {
+ if (Below(points[leftindex], points[rightindex])) {
+ priority[i] = rightindex;
+ rightindex--;
+ if (rightindex < 0) {
+ rightindex = numpoints - 1;
+ }
+ vertextypes[priority[i]] = -1;
+ } else {
+ priority[i] = leftindex;
+ leftindex++;
+ if (leftindex >= numpoints) {
+ leftindex = 0;
+ }
+ vertextypes[priority[i]] = 1;
+ }
+ }
+ }
+ priority[i] = bottomindex;
+ vertextypes[bottomindex] = 0;
+
+ long *stack = new long[numpoints];
+ long stackptr = 0;
+
+ stack[0] = priority[0];
+ stack[1] = priority[1];
+ stackptr = 2;
+
+ // For each vertex from top to bottom trim as many triangles as possible.
+ for (i = 2; i < (numpoints - 1); i++) {
+ vindex = priority[i];
+ if (vertextypes[vindex] != vertextypes[stack[stackptr - 1]]) {
+ for (j = 0; j < (stackptr - 1); j++) {
+ if (vertextypes[vindex] == 1) {
+ triangle.Triangle(points[stack[j + 1]], points[stack[j]], points[vindex]);
+ } else {
+ triangle.Triangle(points[stack[j]], points[stack[j + 1]], points[vindex]);
+ }
+ triangles->push_back(triangle);
+ }
+ stack[0] = priority[i - 1];
+ stack[1] = priority[i];
+ stackptr = 2;
+ } else {
+ stackptr--;
+ while (stackptr > 0) {
+ if (vertextypes[vindex] == 1) {
+ if (IsConvex(points[vindex], points[stack[stackptr - 1]], points[stack[stackptr]])) {
+ triangle.Triangle(points[vindex], points[stack[stackptr - 1]], points[stack[stackptr]]);
+ triangles->push_back(triangle);
+ stackptr--;
+ } else {
+ break;
+ }
+ } else {
+ if (IsConvex(points[vindex], points[stack[stackptr]], points[stack[stackptr - 1]])) {
+ triangle.Triangle(points[vindex], points[stack[stackptr]], points[stack[stackptr - 1]]);
+ triangles->push_back(triangle);
+ stackptr--;
+ } else {
+ break;
+ }
+ }
+ }
+ stackptr++;
+ stack[stackptr] = vindex;
+ stackptr++;
+ }
+ }
+ vindex = priority[i];
+ for (j = 0; j < (stackptr - 1); j++) {
+ if (vertextypes[stack[j + 1]] == 1) {
+ triangle.Triangle(points[stack[j]], points[stack[j + 1]], points[vindex]);
+ } else {
+ triangle.Triangle(points[stack[j + 1]], points[stack[j]], points[vindex]);
+ }
+ triangles->push_back(triangle);
+ }
+
+ delete[] priority;
+ delete[] vertextypes;
+ delete[] stack;
+
+ return 1;
+}
+
+int TPPLPartition::Triangulate_MONO(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
+ TPPLPolyList monotone;
+ TPPLPolyList::Element *iter;
+
+ if (!MonotonePartition(inpolys, &monotone)) {
+ return 0;
+ }
+ for (iter = monotone.front(); iter; iter = iter->next()) {
+ if (!TriangulateMonotone(&(iter->get()), triangles)) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+int TPPLPartition::Triangulate_MONO(TPPLPoly *poly, TPPLPolyList *triangles) {
+ TPPLPolyList polys;
+ polys.push_back(*poly);
+
+ return Triangulate_MONO(&polys, triangles);
+}