summaryrefslogtreecommitdiff
path: root/thirdparty/meshoptimizer/vcacheoptimizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/meshoptimizer/vcacheoptimizer.cpp')
-rw-r--r--thirdparty/meshoptimizer/vcacheoptimizer.cpp473
1 files changed, 473 insertions, 0 deletions
diff --git a/thirdparty/meshoptimizer/vcacheoptimizer.cpp b/thirdparty/meshoptimizer/vcacheoptimizer.cpp
new file mode 100644
index 0000000000..fb8ade4b77
--- /dev/null
+++ b/thirdparty/meshoptimizer/vcacheoptimizer.cpp
@@ -0,0 +1,473 @@
+// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
+#include "meshoptimizer.h"
+
+#include <assert.h>
+#include <string.h>
+
+// This work is based on:
+// Tom Forsyth. Linear-Speed Vertex Cache Optimisation. 2006
+// Pedro Sander, Diego Nehab and Joshua Barczak. Fast Triangle Reordering for Vertex Locality and Reduced Overdraw. 2007
+namespace meshopt
+{
+
+const size_t kCacheSizeMax = 16;
+const size_t kValenceMax = 8;
+
+struct VertexScoreTable
+{
+ float cache[1 + kCacheSizeMax];
+ float live[1 + kValenceMax];
+};
+
+// Tuned to minimize the ACMR of a GPU that has a cache profile similar to NVidia and AMD
+static const VertexScoreTable kVertexScoreTable = {
+ {0.f, 0.779f, 0.791f, 0.789f, 0.981f, 0.843f, 0.726f, 0.847f, 0.882f, 0.867f, 0.799f, 0.642f, 0.613f, 0.600f, 0.568f, 0.372f, 0.234f},
+ {0.f, 0.995f, 0.713f, 0.450f, 0.404f, 0.059f, 0.005f, 0.147f, 0.006f},
+};
+
+// Tuned to minimize the encoded index buffer size
+static const VertexScoreTable kVertexScoreTableStrip = {
+ {0.f, 1.000f, 1.000f, 1.000f, 0.453f, 0.561f, 0.490f, 0.459f, 0.179f, 0.526f, 0.000f, 0.227f, 0.184f, 0.490f, 0.112f, 0.050f, 0.131f},
+ {0.f, 0.956f, 0.786f, 0.577f, 0.558f, 0.618f, 0.549f, 0.499f, 0.489f},
+};
+
+struct TriangleAdjacency
+{
+ unsigned int* counts;
+ unsigned int* offsets;
+ unsigned int* data;
+};
+
+static void buildTriangleAdjacency(TriangleAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
+{
+ size_t face_count = index_count / 3;
+
+ // allocate arrays
+ adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
+ adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
+ adjacency.data = allocator.allocate<unsigned int>(index_count);
+
+ // fill triangle counts
+ memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
+
+ for (size_t i = 0; i < index_count; ++i)
+ {
+ assert(indices[i] < vertex_count);
+
+ adjacency.counts[indices[i]]++;
+ }
+
+ // fill offset table
+ unsigned int offset = 0;
+
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ adjacency.offsets[i] = offset;
+ offset += adjacency.counts[i];
+ }
+
+ assert(offset == index_count);
+
+ // fill triangle data
+ for (size_t i = 0; i < face_count; ++i)
+ {
+ unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
+
+ adjacency.data[adjacency.offsets[a]++] = unsigned(i);
+ adjacency.data[adjacency.offsets[b]++] = unsigned(i);
+ adjacency.data[adjacency.offsets[c]++] = unsigned(i);
+ }
+
+ // fix offsets that have been disturbed by the previous pass
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ assert(adjacency.offsets[i] >= adjacency.counts[i]);
+
+ adjacency.offsets[i] -= adjacency.counts[i];
+ }
+}
+
+static unsigned int getNextVertexDeadEnd(const unsigned int* dead_end, unsigned int& dead_end_top, unsigned int& input_cursor, const unsigned int* live_triangles, size_t vertex_count)
+{
+ // check dead-end stack
+ while (dead_end_top)
+ {
+ unsigned int vertex = dead_end[--dead_end_top];
+
+ if (live_triangles[vertex] > 0)
+ return vertex;
+ }
+
+ // input order
+ while (input_cursor < vertex_count)
+ {
+ if (live_triangles[input_cursor] > 0)
+ return input_cursor;
+
+ ++input_cursor;
+ }
+
+ return ~0u;
+}
+
+static unsigned int getNextVertexNeighbour(const unsigned int* next_candidates_begin, const unsigned int* next_candidates_end, const unsigned int* live_triangles, const unsigned int* cache_timestamps, unsigned int timestamp, unsigned int cache_size)
+{
+ unsigned int best_candidate = ~0u;
+ int best_priority = -1;
+
+ for (const unsigned int* next_candidate = next_candidates_begin; next_candidate != next_candidates_end; ++next_candidate)
+ {
+ unsigned int vertex = *next_candidate;
+
+ // otherwise we don't need to process it
+ if (live_triangles[vertex] > 0)
+ {
+ int priority = 0;
+
+ // will it be in cache after fanning?
+ if (2 * live_triangles[vertex] + timestamp - cache_timestamps[vertex] <= cache_size)
+ {
+ priority = timestamp - cache_timestamps[vertex]; // position in cache
+ }
+
+ if (priority > best_priority)
+ {
+ best_candidate = vertex;
+ best_priority = priority;
+ }
+ }
+ }
+
+ return best_candidate;
+}
+
+static float vertexScore(const VertexScoreTable* table, int cache_position, unsigned int live_triangles)
+{
+ assert(cache_position >= -1 && cache_position < int(kCacheSizeMax));
+
+ unsigned int live_triangles_clamped = live_triangles < kValenceMax ? live_triangles : kValenceMax;
+
+ return table->cache[1 + cache_position] + table->live[live_triangles_clamped];
+}
+
+static unsigned int getNextTriangleDeadEnd(unsigned int& input_cursor, const unsigned char* emitted_flags, size_t face_count)
+{
+ // input order
+ while (input_cursor < face_count)
+ {
+ if (!emitted_flags[input_cursor])
+ return input_cursor;
+
+ ++input_cursor;
+ }
+
+ return ~0u;
+}
+
+} // namespace meshopt
+
+void meshopt_optimizeVertexCacheTable(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const meshopt::VertexScoreTable* table)
+{
+ using namespace meshopt;
+
+ assert(index_count % 3 == 0);
+
+ meshopt_Allocator allocator;
+
+ // guard for empty meshes
+ if (index_count == 0 || vertex_count == 0)
+ return;
+
+ // support in-place optimization
+ if (destination == indices)
+ {
+ unsigned int* indices_copy = allocator.allocate<unsigned int>(index_count);
+ memcpy(indices_copy, indices, index_count * sizeof(unsigned int));
+ indices = indices_copy;
+ }
+
+ unsigned int cache_size = 16;
+ assert(cache_size <= kCacheSizeMax);
+
+ size_t face_count = index_count / 3;
+
+ // build adjacency information
+ TriangleAdjacency adjacency = {};
+ buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator);
+
+ // live triangle counts
+ unsigned int* live_triangles = allocator.allocate<unsigned int>(vertex_count);
+ memcpy(live_triangles, adjacency.counts, vertex_count * sizeof(unsigned int));
+
+ // emitted flags
+ unsigned char* emitted_flags = allocator.allocate<unsigned char>(face_count);
+ memset(emitted_flags, 0, face_count);
+
+ // compute initial vertex scores
+ float* vertex_scores = allocator.allocate<float>(vertex_count);
+
+ for (size_t i = 0; i < vertex_count; ++i)
+ vertex_scores[i] = vertexScore(table, -1, live_triangles[i]);
+
+ // compute triangle scores
+ float* triangle_scores = allocator.allocate<float>(face_count);
+
+ for (size_t i = 0; i < face_count; ++i)
+ {
+ unsigned int a = indices[i * 3 + 0];
+ unsigned int b = indices[i * 3 + 1];
+ unsigned int c = indices[i * 3 + 2];
+
+ triangle_scores[i] = vertex_scores[a] + vertex_scores[b] + vertex_scores[c];
+ }
+
+ unsigned int cache_holder[2 * (kCacheSizeMax + 3)];
+ unsigned int* cache = cache_holder;
+ unsigned int* cache_new = cache_holder + kCacheSizeMax + 3;
+ size_t cache_count = 0;
+
+ unsigned int current_triangle = 0;
+ unsigned int input_cursor = 1;
+
+ unsigned int output_triangle = 0;
+
+ while (current_triangle != ~0u)
+ {
+ assert(output_triangle < face_count);
+
+ unsigned int a = indices[current_triangle * 3 + 0];
+ unsigned int b = indices[current_triangle * 3 + 1];
+ unsigned int c = indices[current_triangle * 3 + 2];
+
+ // output indices
+ destination[output_triangle * 3 + 0] = a;
+ destination[output_triangle * 3 + 1] = b;
+ destination[output_triangle * 3 + 2] = c;
+ output_triangle++;
+
+ // update emitted flags
+ emitted_flags[current_triangle] = true;
+ triangle_scores[current_triangle] = 0;
+
+ // new triangle
+ size_t cache_write = 0;
+ cache_new[cache_write++] = a;
+ cache_new[cache_write++] = b;
+ cache_new[cache_write++] = c;
+
+ // old triangles
+ for (size_t i = 0; i < cache_count; ++i)
+ {
+ unsigned int index = cache[i];
+
+ if (index != a && index != b && index != c)
+ {
+ cache_new[cache_write++] = index;
+ }
+ }
+
+ unsigned int* cache_temp = cache;
+ cache = cache_new, cache_new = cache_temp;
+ cache_count = cache_write > cache_size ? cache_size : cache_write;
+
+ // update live triangle counts
+ live_triangles[a]--;
+ live_triangles[b]--;
+ live_triangles[c]--;
+
+ // remove emitted triangle from adjacency data
+ // this makes sure that we spend less time traversing these lists on subsequent iterations
+ for (size_t k = 0; k < 3; ++k)
+ {
+ unsigned int index = indices[current_triangle * 3 + k];
+
+ unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
+ size_t neighbours_size = adjacency.counts[index];
+
+ for (size_t i = 0; i < neighbours_size; ++i)
+ {
+ unsigned int tri = neighbours[i];
+
+ if (tri == current_triangle)
+ {
+ neighbours[i] = neighbours[neighbours_size - 1];
+ adjacency.counts[index]--;
+ break;
+ }
+ }
+ }
+
+ unsigned int best_triangle = ~0u;
+ float best_score = 0;
+
+ // update cache positions, vertex scores and triangle scores, and find next best triangle
+ for (size_t i = 0; i < cache_write; ++i)
+ {
+ unsigned int index = cache[i];
+
+ int cache_position = i >= cache_size ? -1 : int(i);
+
+ // update vertex score
+ float score = vertexScore(table, cache_position, live_triangles[index]);
+ float score_diff = score - vertex_scores[index];
+
+ vertex_scores[index] = score;
+
+ // update scores of vertex triangles
+ const unsigned int* neighbours_begin = &adjacency.data[0] + adjacency.offsets[index];
+ const unsigned int* neighbours_end = neighbours_begin + adjacency.counts[index];
+
+ for (const unsigned int* it = neighbours_begin; it != neighbours_end; ++it)
+ {
+ unsigned int tri = *it;
+ assert(!emitted_flags[tri]);
+
+ float tri_score = triangle_scores[tri] + score_diff;
+ assert(tri_score > 0);
+
+ if (best_score < tri_score)
+ {
+ best_triangle = tri;
+ best_score = tri_score;
+ }
+
+ triangle_scores[tri] = tri_score;
+ }
+ }
+
+ // step through input triangles in order if we hit a dead-end
+ current_triangle = best_triangle;
+
+ if (current_triangle == ~0u)
+ {
+ current_triangle = getNextTriangleDeadEnd(input_cursor, &emitted_flags[0], face_count);
+ }
+ }
+
+ assert(input_cursor == face_count);
+ assert(output_triangle == face_count);
+}
+
+void meshopt_optimizeVertexCache(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count)
+{
+ meshopt_optimizeVertexCacheTable(destination, indices, index_count, vertex_count, &meshopt::kVertexScoreTable);
+}
+
+void meshopt_optimizeVertexCacheStrip(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count)
+{
+ meshopt_optimizeVertexCacheTable(destination, indices, index_count, vertex_count, &meshopt::kVertexScoreTableStrip);
+}
+
+void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size)
+{
+ using namespace meshopt;
+
+ assert(index_count % 3 == 0);
+ assert(cache_size >= 3);
+
+ meshopt_Allocator allocator;
+
+ // guard for empty meshes
+ if (index_count == 0 || vertex_count == 0)
+ return;
+
+ // support in-place optimization
+ if (destination == indices)
+ {
+ unsigned int* indices_copy = allocator.allocate<unsigned int>(index_count);
+ memcpy(indices_copy, indices, index_count * sizeof(unsigned int));
+ indices = indices_copy;
+ }
+
+ size_t face_count = index_count / 3;
+
+ // build adjacency information
+ TriangleAdjacency adjacency = {};
+ buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator);
+
+ // live triangle counts
+ unsigned int* live_triangles = allocator.allocate<unsigned int>(vertex_count);
+ memcpy(live_triangles, adjacency.counts, vertex_count * sizeof(unsigned int));
+
+ // cache time stamps
+ unsigned int* cache_timestamps = allocator.allocate<unsigned int>(vertex_count);
+ memset(cache_timestamps, 0, vertex_count * sizeof(unsigned int));
+
+ // dead-end stack
+ unsigned int* dead_end = allocator.allocate<unsigned int>(index_count);
+ unsigned int dead_end_top = 0;
+
+ // emitted flags
+ unsigned char* emitted_flags = allocator.allocate<unsigned char>(face_count);
+ memset(emitted_flags, 0, face_count);
+
+ unsigned int current_vertex = 0;
+
+ unsigned int timestamp = cache_size + 1;
+ unsigned int input_cursor = 1; // vertex to restart from in case of dead-end
+
+ unsigned int output_triangle = 0;
+
+ while (current_vertex != ~0u)
+ {
+ const unsigned int* next_candidates_begin = &dead_end[0] + dead_end_top;
+
+ // emit all vertex neighbours
+ const unsigned int* neighbours_begin = &adjacency.data[0] + adjacency.offsets[current_vertex];
+ const unsigned int* neighbours_end = neighbours_begin + adjacency.counts[current_vertex];
+
+ for (const unsigned int* it = neighbours_begin; it != neighbours_end; ++it)
+ {
+ unsigned int triangle = *it;
+
+ if (!emitted_flags[triangle])
+ {
+ unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
+
+ // output indices
+ destination[output_triangle * 3 + 0] = a;
+ destination[output_triangle * 3 + 1] = b;
+ destination[output_triangle * 3 + 2] = c;
+ output_triangle++;
+
+ // update dead-end stack
+ dead_end[dead_end_top + 0] = a;
+ dead_end[dead_end_top + 1] = b;
+ dead_end[dead_end_top + 2] = c;
+ dead_end_top += 3;
+
+ // update live triangle counts
+ live_triangles[a]--;
+ live_triangles[b]--;
+ live_triangles[c]--;
+
+ // update cache info
+ // if vertex is not in cache, put it in cache
+ if (timestamp - cache_timestamps[a] > cache_size)
+ cache_timestamps[a] = timestamp++;
+
+ if (timestamp - cache_timestamps[b] > cache_size)
+ cache_timestamps[b] = timestamp++;
+
+ if (timestamp - cache_timestamps[c] > cache_size)
+ cache_timestamps[c] = timestamp++;
+
+ // update emitted flags
+ emitted_flags[triangle] = true;
+ }
+ }
+
+ // next candidates are the ones we pushed to dead-end stack just now
+ const unsigned int* next_candidates_end = &dead_end[0] + dead_end_top;
+
+ // get next vertex
+ current_vertex = getNextVertexNeighbour(next_candidates_begin, next_candidates_end, &live_triangles[0], &cache_timestamps[0], timestamp, cache_size);
+
+ if (current_vertex == ~0u)
+ {
+ current_vertex = getNextVertexDeadEnd(&dead_end[0], dead_end_top, input_cursor, &live_triangles[0], vertex_count);
+ }
+ }
+
+ assert(output_triangle == face_count);
+}