diff options
Diffstat (limited to 'thirdparty/meshoptimizer/spatialorder.cpp')
-rw-r--r-- | thirdparty/meshoptimizer/spatialorder.cpp | 194 |
1 files changed, 194 insertions, 0 deletions
diff --git a/thirdparty/meshoptimizer/spatialorder.cpp b/thirdparty/meshoptimizer/spatialorder.cpp new file mode 100644 index 0000000000..b09f80ac6f --- /dev/null +++ b/thirdparty/meshoptimizer/spatialorder.cpp @@ -0,0 +1,194 @@ +// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details +#include "meshoptimizer.h" + +#include <assert.h> +#include <float.h> +#include <string.h> + +// This work is based on: +// Fabian Giesen. Decoding Morton codes. 2009 +namespace meshopt +{ + +// "Insert" two 0 bits after each of the 10 low bits of x +inline unsigned int part1By2(unsigned int x) +{ + x &= 0x000003ff; // x = ---- ---- ---- ---- ---- --98 7654 3210 + x = (x ^ (x << 16)) & 0xff0000ff; // x = ---- --98 ---- ---- ---- ---- 7654 3210 + x = (x ^ (x << 8)) & 0x0300f00f; // x = ---- --98 ---- ---- 7654 ---- ---- 3210 + x = (x ^ (x << 4)) & 0x030c30c3; // x = ---- --98 ---- 76-- --54 ---- 32-- --10 + x = (x ^ (x << 2)) & 0x09249249; // x = ---- 9--8 --7- -6-- 5--4 --3- -2-- 1--0 + return x; +} + +static void computeOrder(unsigned int* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride) +{ + size_t vertex_stride_float = vertex_positions_stride / sizeof(float); + + float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; + float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; + + for (size_t i = 0; i < vertex_count; ++i) + { + const float* v = vertex_positions_data + i * vertex_stride_float; + + for (int j = 0; j < 3; ++j) + { + float vj = v[j]; + + minv[j] = minv[j] > vj ? vj : minv[j]; + maxv[j] = maxv[j] < vj ? vj : maxv[j]; + } + } + + float extent = 0.f; + + extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]); + extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]); + extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]); + + float scale = extent == 0 ? 0.f : 1.f / extent; + + // generate Morton order based on the position inside a unit cube + for (size_t i = 0; i < vertex_count; ++i) + { + const float* v = vertex_positions_data + i * vertex_stride_float; + + int x = int((v[0] - minv[0]) * scale * 1023.f + 0.5f); + int y = int((v[1] - minv[1]) * scale * 1023.f + 0.5f); + int z = int((v[2] - minv[2]) * scale * 1023.f + 0.5f); + + result[i] = part1By2(x) | (part1By2(y) << 1) | (part1By2(z) << 2); + } +} + +static void computeHistogram(unsigned int (&hist)[1024][3], const unsigned int* data, size_t count) +{ + memset(hist, 0, sizeof(hist)); + + // compute 3 10-bit histograms in parallel + for (size_t i = 0; i < count; ++i) + { + unsigned int id = data[i]; + + hist[(id >> 0) & 1023][0]++; + hist[(id >> 10) & 1023][1]++; + hist[(id >> 20) & 1023][2]++; + } + + unsigned int sumx = 0, sumy = 0, sumz = 0; + + // replace histogram data with prefix histogram sums in-place + for (int i = 0; i < 1024; ++i) + { + unsigned int hx = hist[i][0], hy = hist[i][1], hz = hist[i][2]; + + hist[i][0] = sumx; + hist[i][1] = sumy; + hist[i][2] = sumz; + + sumx += hx; + sumy += hy; + sumz += hz; + } + + assert(sumx == count && sumy == count && sumz == count); +} + +static void radixPass(unsigned int* destination, const unsigned int* source, const unsigned int* keys, size_t count, unsigned int (&hist)[1024][3], int pass) +{ + int bitoff = pass * 10; + + for (size_t i = 0; i < count; ++i) + { + unsigned int id = (keys[source[i]] >> bitoff) & 1023; + + destination[hist[id][pass]++] = source[i]; + } +} + +} // namespace meshopt + +void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) +{ + using namespace meshopt; + + assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256); + assert(vertex_positions_stride % sizeof(float) == 0); + + meshopt_Allocator allocator; + + unsigned int* keys = allocator.allocate<unsigned int>(vertex_count); + computeOrder(keys, vertex_positions, vertex_count, vertex_positions_stride); + + unsigned int hist[1024][3]; + computeHistogram(hist, keys, vertex_count); + + unsigned int* scratch = allocator.allocate<unsigned int>(vertex_count); + + for (size_t i = 0; i < vertex_count; ++i) + destination[i] = unsigned(i); + + // 3-pass radix sort computes the resulting order into scratch + radixPass(scratch, destination, keys, vertex_count, hist, 0); + radixPass(destination, scratch, keys, vertex_count, hist, 1); + radixPass(scratch, destination, keys, vertex_count, hist, 2); + + // since our remap table is mapping old=>new, we need to reverse it + for (size_t i = 0; i < vertex_count; ++i) + destination[scratch[i]] = unsigned(i); +} + +void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) +{ + using namespace meshopt; + + assert(index_count % 3 == 0); + assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256); + assert(vertex_positions_stride % sizeof(float) == 0); + + (void)vertex_count; + + size_t face_count = index_count / 3; + size_t vertex_stride_float = vertex_positions_stride / sizeof(float); + + meshopt_Allocator allocator; + + float* centroids = allocator.allocate<float>(face_count * 3); + + for (size_t i = 0; i < face_count; ++i) + { + unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; + assert(a < vertex_count && b < vertex_count && c < vertex_count); + + const float* va = vertex_positions + a * vertex_stride_float; + const float* vb = vertex_positions + b * vertex_stride_float; + const float* vc = vertex_positions + c * vertex_stride_float; + + centroids[i * 3 + 0] = (va[0] + vb[0] + vc[0]) / 3.f; + centroids[i * 3 + 1] = (va[1] + vb[1] + vc[1]) / 3.f; + centroids[i * 3 + 2] = (va[2] + vb[2] + vc[2]) / 3.f; + } + + unsigned int* remap = allocator.allocate<unsigned int>(face_count); + + meshopt_spatialSortRemap(remap, centroids, face_count, sizeof(float) * 3); + + // support in-order remap + if (destination == indices) + { + unsigned int* indices_copy = allocator.allocate<unsigned int>(index_count); + memcpy(indices_copy, indices, index_count * sizeof(unsigned int)); + indices = indices_copy; + } + + for (size_t i = 0; i < face_count; ++i) + { + unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; + unsigned int r = remap[i]; + + destination[r * 3 + 0] = a; + destination[r * 3 + 1] = b; + destination[r * 3 + 2] = c; + } +} |