summaryrefslogtreecommitdiff
path: root/thirdparty/meshoptimizer/simplifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/meshoptimizer/simplifier.cpp')
-rw-r--r--thirdparty/meshoptimizer/simplifier.cpp321
1 files changed, 208 insertions, 113 deletions
diff --git a/thirdparty/meshoptimizer/simplifier.cpp b/thirdparty/meshoptimizer/simplifier.cpp
index b195a8cb5d..942db14461 100644
--- a/thirdparty/meshoptimizer/simplifier.cpp
+++ b/thirdparty/meshoptimizer/simplifier.cpp
@@ -6,7 +6,6 @@
#include <math.h>
#include <string.h>
-
#ifndef TRACE
#define TRACE 0
#endif
@@ -15,6 +14,12 @@
#include <stdio.h>
#endif
+#if TRACE
+#define TRACESTATS(i) stats[i]++;
+#else
+#define TRACESTATS(i) (void)0
+#endif
+
// This work is based on:
// Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997
// Michael Garland. Quadric-based polygonal surface simplification. 1999
@@ -26,28 +31,37 @@ namespace meshopt
struct EdgeAdjacency
{
+ struct Edge
+ {
+ unsigned int next;
+ unsigned int prev;
+ };
+
unsigned int* counts;
unsigned int* offsets;
- unsigned int* data;
+ Edge* data;
};
-static void buildEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
+static void prepareEdgeAdjacency(EdgeAdjacency& adjacency, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
{
- size_t face_count = index_count / 3;
-
- // allocate arrays
adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
- adjacency.data = allocator.allocate<unsigned int>(index_count);
+ adjacency.data = allocator.allocate<EdgeAdjacency::Edge>(index_count);
+}
+
+static void updateEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, const unsigned int* remap)
+{
+ size_t face_count = index_count / 3;
// fill edge counts
memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
for (size_t i = 0; i < index_count; ++i)
{
- assert(indices[i] < vertex_count);
+ unsigned int v = remap ? remap[indices[i]] : indices[i];
+ assert(v < vertex_count);
- adjacency.counts[indices[i]]++;
+ adjacency.counts[v]++;
}
// fill offset table
@@ -66,9 +80,24 @@ static void buildEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* ind
{
unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
- adjacency.data[adjacency.offsets[a]++] = b;
- adjacency.data[adjacency.offsets[b]++] = c;
- adjacency.data[adjacency.offsets[c]++] = a;
+ if (remap)
+ {
+ a = remap[a];
+ b = remap[b];
+ c = remap[c];
+ }
+
+ adjacency.data[adjacency.offsets[a]].next = b;
+ adjacency.data[adjacency.offsets[a]].prev = c;
+ adjacency.offsets[a]++;
+
+ adjacency.data[adjacency.offsets[b]].next = c;
+ adjacency.data[adjacency.offsets[b]].prev = a;
+ adjacency.offsets[b]++;
+
+ adjacency.data[adjacency.offsets[c]].next = a;
+ adjacency.data[adjacency.offsets[c]].prev = b;
+ adjacency.offsets[c]++;
}
// fix offsets that have been disturbed by the previous pass
@@ -209,10 +238,10 @@ const unsigned char kHasOpposite[Kind_Count][Kind_Count] = {
static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b)
{
unsigned int count = adjacency.counts[a];
- const unsigned int* data = adjacency.data + adjacency.offsets[a];
+ const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[a];
for (size_t i = 0; i < count; ++i)
- if (data[i] == b)
+ if (edges[i].next == b)
return true;
return false;
@@ -234,11 +263,11 @@ static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned
unsigned int vertex = unsigned(i);
unsigned int count = adjacency.counts[vertex];
- const unsigned int* data = adjacency.data + adjacency.offsets[vertex];
+ const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[vertex];
for (size_t j = 0; j < count; ++j)
{
- unsigned int target = data[j];
+ unsigned int target = edges[j].next;
if (!hasEdge(adjacency, target, vertex))
{
@@ -249,10 +278,7 @@ static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned
}
#if TRACE
- size_t lockedstats[4] = {};
-#define TRACELOCKED(i) lockedstats[i]++;
-#else
-#define TRACELOCKED(i) (void)0
+ size_t stats[4] = {};
#endif
for (size_t i = 0; i < vertex_count; ++i)
@@ -278,7 +304,7 @@ static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned
else
{
result[i] = Kind_Locked;
- TRACELOCKED(0);
+ TRACESTATS(0);
}
}
else if (wedge[wedge[i]] == i)
@@ -299,20 +325,20 @@ static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned
else
{
result[i] = Kind_Locked;
- TRACELOCKED(1);
+ TRACESTATS(1);
}
}
else
{
result[i] = Kind_Locked;
- TRACELOCKED(2);
+ TRACESTATS(2);
}
}
else
{
// more than one vertex maps to this one; we don't have classification available
result[i] = Kind_Locked;
- TRACELOCKED(3);
+ TRACESTATS(3);
}
}
else
@@ -325,7 +351,7 @@ static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned
#if TRACE
printf("locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d\n",
- int(lockedstats[0]), int(lockedstats[1]), int(lockedstats[2]), int(lockedstats[3]));
+ int(stats[0]), int(stats[1]), int(stats[2]), int(stats[3]));
#endif
}
@@ -333,11 +359,8 @@ struct Vector3
{
float x, y, z;
};
-// -- GODOT start --
-//static void rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
-static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
-// -- GODOT end --
+static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
{
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
@@ -348,9 +371,12 @@ static float rescalePositions(Vector3* result, const float* vertex_positions_dat
{
const float* v = vertex_positions_data + i * vertex_stride_float;
- result[i].x = v[0];
- result[i].y = v[1];
- result[i].z = v[2];
+ if (result)
+ {
+ result[i].x = v[0];
+ result[i].y = v[1];
+ result[i].z = v[2];
+ }
for (int j = 0; j < 3; ++j)
{
@@ -367,18 +393,19 @@ static float rescalePositions(Vector3* result, const float* vertex_positions_dat
extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]);
extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]);
- float scale = extent == 0 ? 0.f : 1.f / extent;
-
- for (size_t i = 0; i < vertex_count; ++i)
+ if (result)
{
- result[i].x = (result[i].x - minv[0]) * scale;
- result[i].y = (result[i].y - minv[1]) * scale;
- result[i].z = (result[i].z - minv[2]) * scale;
+ float scale = extent == 0 ? 0.f : 1.f / extent;
+
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ result[i].x = (result[i].x - minv[0]) * scale;
+ result[i].y = (result[i].y - minv[1]) * scale;
+ result[i].z = (result[i].z - minv[2]) * scale;
+ }
}
-// -- GODOT start --
- return extent;
-// -- GODOT end --
+ return extent;
}
struct Quadric
@@ -594,6 +621,48 @@ static void fillEdgeQuadrics(Quadric* vertex_quadrics, const unsigned int* indic
}
}
+// does triangle ABC flip when C is replaced with D?
+static bool hasTriangleFlip(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d)
+{
+ Vector3 eb = {b.x - a.x, b.y - a.y, b.z - a.z};
+ Vector3 ec = {c.x - a.x, c.y - a.y, c.z - a.z};
+ Vector3 ed = {d.x - a.x, d.y - a.y, d.z - a.z};
+
+ Vector3 nbc = {eb.y * ec.z - eb.z * ec.y, eb.z * ec.x - eb.x * ec.z, eb.x * ec.y - eb.y * ec.x};
+ Vector3 nbd = {eb.y * ed.z - eb.z * ed.y, eb.z * ed.x - eb.x * ed.z, eb.x * ed.y - eb.y * ed.x};
+
+ return nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z < 0;
+}
+
+static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, const unsigned int* collapse_remap, unsigned int i0, unsigned int i1)
+{
+ assert(collapse_remap[i0] == i0);
+ assert(collapse_remap[i1] == i1);
+
+ const Vector3& v0 = vertex_positions[i0];
+ const Vector3& v1 = vertex_positions[i1];
+
+ const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[i0]];
+ size_t count = adjacency.counts[i0];
+
+ for (size_t i = 0; i < count; ++i)
+ {
+ unsigned int a = collapse_remap[edges[i].next];
+ unsigned int b = collapse_remap[edges[i].prev];
+
+ // skip triangles that get collapsed
+ // note: this is mathematically redundant as if either of these is true, the dot product in hasTriangleFlip should be 0
+ if (a == i1 || b == i1)
+ continue;
+
+ // early-out when at least one triangle flips due to a collapse
+ if (hasTriangleFlip(vertex_positions[a], vertex_positions[b], v0, v1))
+ return true;
+ }
+
+ return false;
+}
+
static size_t pickEdgeCollapses(Collapse* collapses, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop)
{
size_t collapse_count = 0;
@@ -704,7 +773,7 @@ static void dumpEdgeCollapses(const Collapse* collapses, size_t collapse_count,
for (int k0 = 0; k0 < Kind_Count; ++k0)
for (int k1 = 0; k1 < Kind_Count; ++k1)
if (ckinds[k0][k1])
- printf("collapses %d -> %d: %d, min error %e\n", k0, k1, int(ckinds[k0][k1]), cerrors[k0][k1]);
+ printf("collapses %d -> %d: %d, min error %e\n", k0, k1, int(ckinds[k0][k1]), ckinds[k0][k1] ? sqrtf(cerrors[k0][k1]) : 0.f);
}
static void dumpLockedCollapses(const unsigned int* indices, size_t index_count, const unsigned char* vertex_kind)
@@ -772,22 +841,38 @@ static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapse
}
}
-static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, size_t triangle_collapse_goal, float error_goal, float error_limit)
+static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error)
{
size_t edge_collapses = 0;
size_t triangle_collapses = 0;
+ // most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit
+ // note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses
+ size_t edge_collapse_goal = triangle_collapse_goal / 2;
+
+#if TRACE
+ size_t stats[4] = {};
+#endif
+
for (size_t i = 0; i < collapse_count; ++i)
{
const Collapse& c = collapses[collapse_order[i]];
+ TRACESTATS(0);
+
if (c.error > error_limit)
break;
- if (c.error > error_goal && triangle_collapses > triangle_collapse_goal / 10)
+ if (triangle_collapses >= triangle_collapse_goal)
break;
- if (triangle_collapses >= triangle_collapse_goal)
+ // we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked
+ // as they will share vertices with other successfull collapses, we need to increase the acceptable error by some factor
+ float error_goal = edge_collapse_goal < collapse_count ? 1.5f * collapses[collapse_order[edge_collapse_goal]].error : FLT_MAX;
+
+ // on average, each collapse is expected to lock 6 other collapses; to avoid degenerate passes on meshes with odd
+ // topology, we only abort if we got over 1/6 collapses accordingly.
+ if (c.error > error_goal && triangle_collapses > triangle_collapse_goal / 6)
break;
unsigned int i0 = c.v0;
@@ -800,7 +885,19 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
// it's important to not move the vertices twice since it complicates the tracking/remapping logic
// it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass
if (collapse_locked[r0] | collapse_locked[r1])
+ {
+ TRACESTATS(1);
+ continue;
+ }
+
+ if (hasTriangleFlips(adjacency, vertex_positions, collapse_remap, r0, r1))
+ {
+ // adjust collapse goal since this collapse is invalid and shouldn't factor into error goal
+ edge_collapse_goal++;
+
+ TRACESTATS(2);
continue;
+ }
assert(collapse_remap[r0] == r0);
assert(collapse_remap[r1] == r1);
@@ -842,8 +939,18 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
// border edges collapse 1 triangle, other edges collapse 2 or more
triangle_collapses += (vertex_kind[i0] == Kind_Border) ? 1 : 2;
edge_collapses++;
+
+ result_error = result_error < c.error ? c.error : result_error;
}
+#if TRACE
+ float error_goal_perfect = edge_collapse_goal < collapse_count ? collapses[collapse_order[edge_collapse_goal]].error : 0.f;
+
+ printf("removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d)\n",
+ int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_perfect),
+ int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2]));
+#endif
+
return edge_collapses;
}
@@ -1151,10 +1258,7 @@ unsigned int* meshopt_simplifyDebugLoop = 0;
unsigned int* meshopt_simplifyDebugLoopBack = 0;
#endif
-// -- GODOT start --
-//size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error)
-size_t meshopt_simplify(unsigned int *destination, const unsigned int *indices, size_t index_count, const float *vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float *r_resulting_error)
-// -- GODOT end --
+size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error)
{
using namespace meshopt;
@@ -1169,7 +1273,8 @@ size_t meshopt_simplify(unsigned int *destination, const unsigned int *indices,
// build adjacency information
EdgeAdjacency adjacency = {};
- buildEdgeAdjacency(adjacency, indices, index_count, vertex_count, allocator);
+ prepareEdgeAdjacency(adjacency, index_count, vertex_count, allocator);
+ updateEdgeAdjacency(adjacency, indices, index_count, vertex_count, NULL);
// build position remap that maps each vertex to the one with identical position
unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
@@ -1198,10 +1303,7 @@ size_t meshopt_simplify(unsigned int *destination, const unsigned int *indices,
#endif
Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
-// -- GODOT start --
- //rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
- float extent = rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
-// -- GODOT end --
+ rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
Quadric* vertex_quadrics = allocator.allocate<Quadric>(vertex_count);
memset(vertex_quadrics, 0, vertex_count * sizeof(Quadric));
@@ -1212,13 +1314,9 @@ size_t meshopt_simplify(unsigned int *destination, const unsigned int *indices,
if (result != indices)
memcpy(result, indices, index_count * sizeof(unsigned int));
-// -- GODOT start --
#if TRACE
size_t pass_count = 0;
- //float worst_error = 0;
#endif
- float worst_error = 0;
-// -- GODOT end --
Collapse* edge_collapses = allocator.allocate<Collapse>(index_count);
unsigned int* collapse_order = allocator.allocate<unsigned int>(index_count);
@@ -1226,18 +1324,16 @@ size_t meshopt_simplify(unsigned int *destination, const unsigned int *indices,
unsigned char* collapse_locked = allocator.allocate<unsigned char>(vertex_count);
size_t result_count = index_count;
+ float result_error = 0;
// target_error input is linear; we need to adjust it to match quadricError units
float error_limit = target_error * target_error;
-// -- GODOT start --
- if (r_resulting_error) {
- *r_resulting_error = 1.0;
- }
-// -- GODOT end --
-
while (result_count > target_index_count)
{
+ // note: throughout the simplification process adjacency structure reflects welded topology for result-in-progress
+ updateEdgeAdjacency(adjacency, result, result_count, vertex_count, remap);
+
size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, result, result_count, remap, vertex_kind, loop);
// no edges can be collapsed any more due to topology restrictions
@@ -1252,23 +1348,18 @@ size_t meshopt_simplify(unsigned int *destination, const unsigned int *indices,
sortEdgeCollapses(collapse_order, edge_collapses, edge_collapse_count);
- // most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit
- // note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses
size_t triangle_collapse_goal = (result_count - target_index_count) / 3;
- size_t edge_collapse_goal = triangle_collapse_goal / 2;
-
- // we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked
- // as they will share vertices with other successfull collapses, we need to increase the acceptable error by this factor
- const float kPassErrorBound = 1.5f;
-
- float error_goal = edge_collapse_goal < edge_collapse_count ? edge_collapses[collapse_order[edge_collapse_goal]].error * kPassErrorBound : FLT_MAX;
for (size_t i = 0; i < vertex_count; ++i)
collapse_remap[i] = unsigned(i);
memset(collapse_locked, 0, vertex_count);
- size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, vertex_quadrics, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, triangle_collapse_goal, error_goal, error_limit);
+#if TRACE
+ printf("pass %d: ", int(pass_count++));
+#endif
+
+ size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, vertex_quadrics, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error);
// no edges can be collapsed any more due to hitting the error limit or triangle collapse limit
if (collapses == 0)
@@ -1280,37 +1371,11 @@ size_t meshopt_simplify(unsigned int *destination, const unsigned int *indices,
size_t new_count = remapIndexBuffer(result, result_count, collapse_remap);
assert(new_count < result_count);
-// -- GODOT start --
-//#if TRACE
- float pass_error = 0.f;
- for (size_t i = 0; i < edge_collapse_count; ++i)
- {
- Collapse& c = edge_collapses[collapse_order[i]];
-
- if (collapse_remap[c.v0] == c.v1)
- pass_error = c.error;
- }
-
- //pass_count++;
- worst_error = (worst_error < pass_error) ? pass_error : worst_error;
-
-#if TRACE
- pass_count++;
- printf("pass %d: triangles: %d -> %d, collapses: %d/%d (goal: %d), error: %e (limit %e goal %e)\n", int(pass_count), int(result_count / 3), int(new_count / 3), int(collapses), int(edge_collapse_count), int(edge_collapse_goal), pass_error, error_limit, error_goal);
-#endif
-// -- GODOT end --
-
result_count = new_count;
}
-// -- GODOT start --
- if (r_resulting_error) {
- *r_resulting_error = sqrt(worst_error) * extent;
- }
-// -- GODOT end --
-
#if TRACE
- printf("passes: %d, worst error: %e\n", int(pass_count), worst_error);
+ printf("result: %d triangles, error: %e; total %d passes\n", int(result_count), sqrtf(result_error), int(pass_count));
#endif
#if TRACE > 1
@@ -1328,10 +1393,14 @@ size_t meshopt_simplify(unsigned int *destination, const unsigned int *indices,
memcpy(meshopt_simplifyDebugLoopBack, loopback, vertex_count * sizeof(unsigned int));
#endif
+ // result_error is quadratic; we need to remap it back to linear
+ if (out_result_error)
+ *out_result_error = sqrtf(result_error);
+
return result_count;
}
-size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count)
+size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error)
{
using namespace meshopt;
@@ -1343,9 +1412,6 @@ size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* ind
// we expect to get ~2 triangles/vertex in the output
size_t target_cell_count = target_index_count / 6;
- if (target_cell_count == 0)
- return 0;
-
meshopt_Allocator allocator;
Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
@@ -1362,18 +1428,25 @@ size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* ind
const int kInterpolationPasses = 5;
// invariant: # of triangles in min_grid <= target_count
- int min_grid = 0;
+ int min_grid = int(1.f / (target_error < 1e-3f ? 1e-3f : target_error));
int max_grid = 1025;
size_t min_triangles = 0;
size_t max_triangles = index_count / 3;
+ // when we're error-limited, we compute the triangle count for the min. size; this accelerates convergence and provides the correct answer when we can't use a larger grid
+ if (min_grid > 1)
+ {
+ computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
+ min_triangles = countTriangles(vertex_ids, indices, index_count);
+ }
+
// instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size...
int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f);
for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass)
{
- assert(min_triangles < target_index_count / 3);
- assert(max_grid - min_grid > 1);
+ if (min_triangles >= target_index_count / 3 || max_grid - min_grid <= 1)
+ break;
// we clamp the prediction of the grid size to make sure that the search converges
int grid_size = next_grid_size;
@@ -1402,16 +1475,18 @@ size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* ind
max_triangles = triangles;
}
- if (triangles == target_index_count / 3 || max_grid - min_grid <= 1)
- break;
-
// we start by using interpolation search - it usually converges faster
// however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN)
next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2;
}
if (min_triangles == 0)
+ {
+ if (out_result_error)
+ *out_result_error = 1.f;
+
return 0;
+ }
// build vertex->cell association by mapping all vertices with the same quantized position to the same cell
size_t table_size = hashBuckets2(vertex_count);
@@ -1434,18 +1509,26 @@ size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* ind
fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count);
+ // compute error
+ float result_error = 0.f;
+
+ for (size_t i = 0; i < cell_count; ++i)
+ result_error = result_error < cell_errors[i] ? cell_errors[i] : result_error;
+
// collapse triangles!
// note that we need to filter out triangles that we've already output because we very frequently generate redundant triangles between cells :(
size_t tritable_size = hashBuckets2(min_triangles);
unsigned int* tritable = allocator.allocate<unsigned int>(tritable_size);
size_t write = filterTriangles(destination, tritable, tritable_size, indices, index_count, vertex_cells, cell_remap);
- assert(write <= target_index_count);
#if TRACE
- printf("result: %d cells, %d triangles (%d unfiltered)\n", int(cell_count), int(write / 3), int(min_triangles));
+ printf("result: %d cells, %d triangles (%d unfiltered), error %e\n", int(cell_count), int(write / 3), int(min_triangles), sqrtf(result_error));
#endif
+ if (out_result_error)
+ *out_result_error = sqrtf(result_error);
+
return write;
}
@@ -1560,3 +1643,15 @@ size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_pos
return cell_count;
}
+
+float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+ using namespace meshopt;
+
+ assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
+ assert(vertex_positions_stride % sizeof(float) == 0);
+
+ float extent = rescalePositions(NULL, vertex_positions, vertex_count, vertex_positions_stride);
+
+ return extent;
+}