diff options
Diffstat (limited to 'thirdparty/meshoptimizer/meshoptimizer.h')
-rw-r--r-- | thirdparty/meshoptimizer/meshoptimizer.h | 948 |
1 files changed, 948 insertions, 0 deletions
diff --git a/thirdparty/meshoptimizer/meshoptimizer.h b/thirdparty/meshoptimizer/meshoptimizer.h new file mode 100644 index 0000000000..a442d103c8 --- /dev/null +++ b/thirdparty/meshoptimizer/meshoptimizer.h @@ -0,0 +1,948 @@ +/** + * meshoptimizer - version 0.15 + * + * Copyright (C) 2016-2020, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com) + * Report bugs and download new versions at https://github.com/zeux/meshoptimizer + * + * This library is distributed under the MIT License. See notice at the end of this file. + */ +#pragma once + +#include <assert.h> +#include <stddef.h> + +/* Version macro; major * 1000 + minor * 10 + patch */ +#define MESHOPTIMIZER_VERSION 150 /* 0.15 */ + +/* If no API is defined, assume default */ +#ifndef MESHOPTIMIZER_API +#define MESHOPTIMIZER_API +#endif + +/* Experimental APIs have unstable interface and might have implementation that's not fully tested or optimized */ +#define MESHOPTIMIZER_EXPERIMENTAL MESHOPTIMIZER_API + +/* C interface */ +#ifdef __cplusplus +extern "C" { +#endif + +/** + * Vertex attribute stream, similar to glVertexPointer + * Each element takes size bytes, with stride controlling the spacing between successive elements. + */ +struct meshopt_Stream +{ + const void* data; + size_t size; + size_t stride; +}; + +/** + * Generates a vertex remap table from the vertex buffer and an optional index buffer and returns number of unique vertices + * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence. + * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer. + * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized. + * + * destination must contain enough space for the resulting remap table (vertex_count elements) + * indices can be NULL if the input is unindexed + */ +MESHOPTIMIZER_API size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); + +/** + * Generates a vertex remap table from multiple vertex streams and an optional index buffer and returns number of unique vertices + * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence. + * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer. + * To remap vertex buffers, you will need to call meshopt_remapVertexBuffer for each vertex stream. + * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized. + * + * destination must contain enough space for the resulting remap table (vertex_count elements) + * indices can be NULL if the input is unindexed + */ +MESHOPTIMIZER_API size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count); + +/** + * Generates vertex buffer from the source vertex buffer and remap table generated by meshopt_generateVertexRemap + * + * destination must contain enough space for the resulting vertex buffer (unique_vertex_count elements, returned by meshopt_generateVertexRemap) + * vertex_count should be the initial vertex count and not the value returned by meshopt_generateVertexRemap + */ +MESHOPTIMIZER_API void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap); + +/** + * Generate index buffer from the source index buffer and remap table generated by meshopt_generateVertexRemap + * + * destination must contain enough space for the resulting index buffer (index_count elements) + * indices can be NULL if the input is unindexed + */ +MESHOPTIMIZER_API void meshopt_remapIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const unsigned int* remap); + +/** + * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary + * All vertices that are binary equivalent (wrt first vertex_size bytes) map to the first vertex in the original vertex buffer. + * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering. + * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized. + * + * destination must contain enough space for the resulting index buffer (index_count elements) + */ +MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride); + +/** + * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary + * All vertices that are binary equivalent (wrt specified streams) map to the first vertex in the original vertex buffer. + * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering. + * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized. + * + * destination must contain enough space for the resulting index buffer (index_count elements) + */ +MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count); + +/** + * Vertex transform cache optimizer + * Reorders indices to reduce the number of GPU vertex shader invocations + * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. + * + * destination must contain enough space for the resulting index buffer (index_count elements) + */ +MESHOPTIMIZER_API void meshopt_optimizeVertexCache(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); + +/** + * Vertex transform cache optimizer for strip-like caches + * Produces inferior results to meshopt_optimizeVertexCache from the GPU vertex cache perspective + * However, the resulting index order is more optimal if the goal is to reduce the triangle strip length or improve compression efficiency + * + * destination must contain enough space for the resulting index buffer (index_count elements) + */ +MESHOPTIMIZER_API void meshopt_optimizeVertexCacheStrip(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); + +/** + * Vertex transform cache optimizer for FIFO caches + * Reorders indices to reduce the number of GPU vertex shader invocations + * Generally takes ~3x less time to optimize meshes but produces inferior results compared to meshopt_optimizeVertexCache + * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. + * + * destination must contain enough space for the resulting index buffer (index_count elements) + * cache_size should be less than the actual GPU cache size to avoid cache thrashing + */ +MESHOPTIMIZER_API void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size); + +/** + * Overdraw optimizer + * Reorders indices to reduce the number of GPU vertex shader invocations and the pixel overdraw + * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. + * + * destination must contain enough space for the resulting index buffer (index_count elements) + * indices must contain index data that is the result of meshopt_optimizeVertexCache (*not* the original mesh indices!) + * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer + * threshold indicates how much the overdraw optimizer can degrade vertex cache efficiency (1.05 = up to 5%) to reduce overdraw more efficiently + */ +MESHOPTIMIZER_API void meshopt_optimizeOverdraw(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold); + +/** + * Vertex fetch cache optimizer + * Reorders vertices and changes indices to reduce the amount of GPU memory fetches during vertex processing + * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused + * This functions works for a single vertex stream; for multiple vertex streams, use meshopt_optimizeVertexFetchRemap + meshopt_remapVertexBuffer for each stream. + * + * destination must contain enough space for the resulting vertex buffer (vertex_count elements) + * indices is used both as an input and as an output index buffer + */ +MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetch(void* destination, unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); + +/** + * Vertex fetch cache optimizer + * Generates vertex remap to reduce the amount of GPU memory fetches during vertex processing + * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused + * The resulting remap table should be used to reorder vertex/index buffers using meshopt_remapVertexBuffer/meshopt_remapIndexBuffer + * + * destination must contain enough space for the resulting remap table (vertex_count elements) + */ +MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); + +/** + * Index buffer encoder + * Encodes index data into an array of bytes that is generally much smaller (<1.5 bytes/triangle) and compresses better (<1 bytes/triangle) compared to original. + * Input index buffer must represent a triangle list. + * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space + * For maximum efficiency the index buffer being encoded has to be optimized for vertex cache and vertex fetch first. + * + * buffer must contain enough space for the encoded index buffer (use meshopt_encodeIndexBufferBound to compute worst case size) + */ +MESHOPTIMIZER_API size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count); +MESHOPTIMIZER_API size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count); + +/** + * Experimental: Set index encoder format version + * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) and 1 (decodable by 0.14+) + */ +MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeIndexVersion(int version); + +/** + * Index buffer decoder + * Decodes index data from an array of bytes generated by meshopt_encodeIndexBuffer + * Returns 0 if decoding was successful, and an error code otherwise + * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices). + * + * destination must contain enough space for the resulting index buffer (index_count elements) + */ +MESHOPTIMIZER_API int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size); + +/** + * Experimental: Index sequence encoder + * Encodes index sequence into an array of bytes that is generally smaller and compresses better compared to original. + * Input index sequence can represent arbitrary topology; for triangle lists meshopt_encodeIndexBuffer is likely to be better. + * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space + * + * buffer must contain enough space for the encoded index sequence (use meshopt_encodeIndexSequenceBound to compute worst case size) + */ +MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count); +MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count); + +/** + * Index sequence decoder + * Decodes index data from an array of bytes generated by meshopt_encodeIndexSequence + * Returns 0 if decoding was successful, and an error code otherwise + * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices). + * + * destination must contain enough space for the resulting index sequence (index_count elements) + */ +MESHOPTIMIZER_EXPERIMENTAL int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size); + +/** + * Vertex buffer encoder + * Encodes vertex data into an array of bytes that is generally smaller and compresses better compared to original. + * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space + * This function works for a single vertex stream; for multiple vertex streams, call meshopt_encodeVertexBuffer for each stream. + * Note that all vertex_size bytes of each vertex are encoded verbatim, including padding which should be zero-initialized. + * + * buffer must contain enough space for the encoded vertex buffer (use meshopt_encodeVertexBufferBound to compute worst case size) + */ +MESHOPTIMIZER_API size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size); +MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size); + +/** + * Experimental: Set vertex encoder format version + * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) + */ +MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeVertexVersion(int version); + +/** + * Vertex buffer decoder + * Decodes vertex data from an array of bytes generated by meshopt_encodeVertexBuffer + * Returns 0 if decoding was successful, and an error code otherwise + * The decoder is safe to use for untrusted input, but it may produce garbage data. + * + * destination must contain enough space for the resulting vertex buffer (vertex_count * vertex_size bytes) + */ +MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size); + +/** + * Vertex buffer filters + * These functions can be used to filter output of meshopt_decodeVertexBuffer in-place. + * count must be aligned by 4 and stride is fixed for each function to facilitate SIMD implementation. + * + * meshopt_decodeFilterOct decodes octahedral encoding of a unit vector with K-bit (K <= 16) signed X/Y as an input; Z must store 1.0f. + * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is. + * + * meshopt_decodeFilterQuat decodes 3-component quaternion encoding with K-bit (4 <= K <= 16) component encoding and a 2-bit component index indicating which component to reconstruct. + * Each component is stored as an 16-bit integer; stride must be equal to 8. + * + * meshopt_decodeFilterExp decodes exponential encoding of floating-point data with 8-bit exponent and 24-bit integer mantissa as 2^E*M. + * Each 32-bit component is decoded in isolation; stride must be divisible by 4. + */ +MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterOct(void* buffer, size_t vertex_count, size_t vertex_size); +MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterQuat(void* buffer, size_t vertex_count, size_t vertex_size); +MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t vertex_count, size_t vertex_size); + +/** + * Experimental: Mesh simplifier + * Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible + * The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error. + * If not all attributes from the input mesh are required, it's recommended to reindex the mesh using meshopt_generateShadowIndexBuffer prior to simplification. + * Returns the number of indices after simplification, with destination containing new index data + * The resulting index buffer references vertices from the original vertex buffer. + * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. + * + * destination must contain enough space for the *source* index buffer (since optimization is iterative, this means index_count elements - *not* target_index_count!) + * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer + */ +MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error); + +/** + * Experimental: Mesh simplifier (sloppy) + * Reduces the number of triangles in the mesh, sacrificing mesh apperance for simplification performance + * The algorithm doesn't preserve mesh topology but is always able to reach target triangle count. + * Returns the number of indices after simplification, with destination containing new index data + * The resulting index buffer references vertices from the original vertex buffer. + * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. + * + * destination must contain enough space for the target index buffer + * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer + */ +MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count); + +/** + * Experimental: Point cloud simplifier + * Reduces the number of points in the cloud to reach the given target + * Returns the number of points after simplification, with destination containing new index data + * The resulting index buffer references vertices from the original vertex buffer. + * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. + * + * destination must contain enough space for the target index buffer + * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer + */ +MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count); + +/** + * Mesh stripifier + * Converts a previously vertex cache optimized triangle list to triangle strip, stitching strips using restart index or degenerate triangles + * Returns the number of indices in the resulting strip, with destination containing new index data + * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first. + * Using restart indices can result in ~10% smaller index buffers, but on some GPUs restart indices may result in decreased performance. + * + * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_stripifyBound + * restart_index should be 0xffff or 0xffffffff depending on index size, or 0 to use degenerate triangles + */ +MESHOPTIMIZER_API size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int restart_index); +MESHOPTIMIZER_API size_t meshopt_stripifyBound(size_t index_count); + +/** + * Mesh unstripifier + * Converts a triangle strip to a triangle list + * Returns the number of indices in the resulting list, with destination containing new index data + * + * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_unstripifyBound + */ +MESHOPTIMIZER_API size_t meshopt_unstripify(unsigned int* destination, const unsigned int* indices, size_t index_count, unsigned int restart_index); +MESHOPTIMIZER_API size_t meshopt_unstripifyBound(size_t index_count); + +struct meshopt_VertexCacheStatistics +{ + unsigned int vertices_transformed; + unsigned int warps_executed; + float acmr; /* transformed vertices / triangle count; best case 0.5, worst case 3.0, optimum depends on topology */ + float atvr; /* transformed vertices / vertex count; best case 1.0, worst case 6.0, optimum is 1.0 (each vertex is transformed once) */ +}; + +/** + * Vertex transform cache analyzer + * Returns cache hit statistics using a simplified FIFO model + * Results may not match actual GPU performance + */ +MESHOPTIMIZER_API struct meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size); + +struct meshopt_OverdrawStatistics +{ + unsigned int pixels_covered; + unsigned int pixels_shaded; + float overdraw; /* shaded pixels / covered pixels; best case 1.0 */ +}; + +/** + * Overdraw analyzer + * Returns overdraw statistics using a software rasterizer + * Results may not match actual GPU performance + * + * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer + */ +MESHOPTIMIZER_API struct meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); + +struct meshopt_VertexFetchStatistics +{ + unsigned int bytes_fetched; + float overfetch; /* fetched bytes / vertex buffer size; best case 1.0 (each byte is fetched once) */ +}; + +/** + * Vertex fetch cache analyzer + * Returns cache hit statistics using a simplified direct mapped model + * Results may not match actual GPU performance + */ +MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size); + +struct meshopt_Meshlet +{ + unsigned int vertices[64]; + unsigned char indices[126][3]; + unsigned char triangle_count; + unsigned char vertex_count; +}; + +/** + * Experimental: Meshlet builder + * Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer + * The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers. + * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first. + * + * destination must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound + * max_vertices and max_triangles can't exceed limits statically declared in meshopt_Meshlet (max_vertices <= 64, max_triangles <= 126) + */ +MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles); +MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles); + +struct meshopt_Bounds +{ + /* bounding sphere, useful for frustum and occlusion culling */ + float center[3]; + float radius; + + /* normal cone, useful for backface culling */ + float cone_apex[3]; + float cone_axis[3]; + float cone_cutoff; /* = cos(angle/2) */ + + /* normal cone axis and cutoff, stored in 8-bit SNORM format; decode using x/127.0 */ + signed char cone_axis_s8[3]; + signed char cone_cutoff_s8; +}; + +/** + * Experimental: Cluster bounds generator + * Creates bounding volumes that can be used for frustum, backface and occlusion culling. + * + * For backface culling with orthographic projection, use the following formula to reject backfacing clusters: + * dot(view, cone_axis) >= cone_cutoff + * + * For perspective projection, you can the formula that needs cone apex in addition to axis & cutoff: + * dot(normalize(cone_apex - camera_position), cone_axis) >= cone_cutoff + * + * Alternatively, you can use the formula that doesn't need cone apex and uses bounding sphere instead: + * dot(normalize(center - camera_position), cone_axis) >= cone_cutoff + radius / length(center - camera_position) + * or an equivalent formula that doesn't have a singularity at center = camera_position: + * dot(center - camera_position, cone_axis) >= cone_cutoff * length(center - camera_position) + radius + * + * The formula that uses the apex is slightly more accurate but needs the apex; if you are already using bounding sphere + * to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable. + * + * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer + * index_count should be less than or equal to 256*3 (the function assumes clusters of limited size) + */ +MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); +MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeMeshletBounds(const struct meshopt_Meshlet* meshlet, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); + +/** + * Experimental: Spatial sorter + * Generates a remap table that can be used to reorder points for spatial locality. + * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer. + * + * destination must contain enough space for the resulting remap table (vertex_count elements) + */ +MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); + +/** + * Experimental: Spatial sorter + * Reorders triangles for spatial locality, and generates a new index buffer. The resulting index buffer can be used with other functions like optimizeVertexCache. + * + * destination must contain enough space for the resulting index buffer (index_count elements) + * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer + */ +MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); + +/** + * Set allocation callbacks + * These callbacks will be used instead of the default operator new/operator delete for all temporary allocations in the library. + * Note that all algorithms only allocate memory for temporary use. + * allocate/deallocate are always called in a stack-like order - last pointer to be allocated is deallocated first. + */ +MESHOPTIMIZER_API void meshopt_setAllocator(void* (*allocate)(size_t), void (*deallocate)(void*)); + +#ifdef __cplusplus +} /* extern "C" */ +#endif + +/* Quantization into commonly supported data formats */ +#ifdef __cplusplus +/** + * Quantize a float in [0..1] range into an N-bit fixed point unorm value + * Assumes reconstruction function (q / (2^N-1)), which is the case for fixed-function normalized fixed point conversion + * Maximum reconstruction error: 1/2^(N+1) + */ +inline int meshopt_quantizeUnorm(float v, int N); + +/** + * Quantize a float in [-1..1] range into an N-bit fixed point snorm value + * Assumes reconstruction function (q / (2^(N-1)-1)), which is the case for fixed-function normalized fixed point conversion (except early OpenGL versions) + * Maximum reconstruction error: 1/2^N + */ +inline int meshopt_quantizeSnorm(float v, int N); + +/** + * Quantize a float into half-precision floating point value + * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest + * Representable magnitude range: [6e-5; 65504] + * Maximum relative reconstruction error: 5e-4 + */ +inline unsigned short meshopt_quantizeHalf(float v); + +/** + * Quantize a float into a floating point value with a limited number of significant mantissa bits + * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest + * Assumes N is in a valid mantissa precision range, which is 1..23 + */ +inline float meshopt_quantizeFloat(float v, int N); +#endif + +/** + * C++ template interface + * + * These functions mirror the C interface the library provides, providing template-based overloads so that + * the caller can use an arbitrary type for the index data, both for input and output. + * When the supplied type is the same size as that of unsigned int, the wrappers are zero-cost; when it's not, + * the wrappers end up allocating memory and copying index data to convert from one type to another. + */ +#if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS) +template <typename T> +inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); +template <typename T> +inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count); +template <typename T> +inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap); +template <typename T> +inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride); +template <typename T> +inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count); +template <typename T> +inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count); +template <typename T> +inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count); +template <typename T> +inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size); +template <typename T> +inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold); +template <typename T> +inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count); +template <typename T> +inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); +template <typename T> +inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count); +template <typename T> +inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size); +template <typename T> +inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count); +template <typename T> +inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size); +template <typename T> +inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error); +template <typename T> +inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count); +template <typename T> +inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index); +template <typename T> +inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index); +template <typename T> +inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size); +template <typename T> +inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); +template <typename T> +inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size); +template <typename T> +inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles); +template <typename T> +inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); +template <typename T> +inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); +#endif + +/* Inline implementation */ +#ifdef __cplusplus +inline int meshopt_quantizeUnorm(float v, int N) +{ + const float scale = float((1 << N) - 1); + + v = (v >= 0) ? v : 0; + v = (v <= 1) ? v : 1; + + return int(v * scale + 0.5f); +} + +inline int meshopt_quantizeSnorm(float v, int N) +{ + const float scale = float((1 << (N - 1)) - 1); + + float round = (v >= 0 ? 0.5f : -0.5f); + + v = (v >= -1) ? v : -1; + v = (v <= +1) ? v : +1; + + return int(v * scale + round); +} + +inline unsigned short meshopt_quantizeHalf(float v) +{ + union { float f; unsigned int ui; } u = {v}; + unsigned int ui = u.ui; + + int s = (ui >> 16) & 0x8000; + int em = ui & 0x7fffffff; + + /* bias exponent and round to nearest; 112 is relative exponent bias (127-15) */ + int h = (em - (112 << 23) + (1 << 12)) >> 13; + + /* underflow: flush to zero; 113 encodes exponent -14 */ + h = (em < (113 << 23)) ? 0 : h; + + /* overflow: infinity; 143 encodes exponent 16 */ + h = (em >= (143 << 23)) ? 0x7c00 : h; + + /* NaN; note that we convert all types of NaN to qNaN */ + h = (em > (255 << 23)) ? 0x7e00 : h; + + return (unsigned short)(s | h); +} + +inline float meshopt_quantizeFloat(float v, int N) +{ + union { float f; unsigned int ui; } u = {v}; + unsigned int ui = u.ui; + + const int mask = (1 << (23 - N)) - 1; + const int round = (1 << (23 - N)) >> 1; + + int e = ui & 0x7f800000; + unsigned int rui = (ui + round) & ~mask; + + /* round all numbers except inf/nan; this is important to make sure nan doesn't overflow into -0 */ + ui = e == 0x7f800000 ? ui : rui; + + /* flush denormals to zero */ + ui = e == 0 ? 0 : ui; + + u.ui = ui; + return u.f; +} +#endif + +/* Internal implementation helpers */ +#ifdef __cplusplus +class meshopt_Allocator +{ +public: + template <typename T> + struct StorageT + { + static void* (*allocate)(size_t); + static void (*deallocate)(void*); + }; + + typedef StorageT<void> Storage; + + meshopt_Allocator() + : blocks() + , count(0) + { + } + + ~meshopt_Allocator() + { + for (size_t i = count; i > 0; --i) + Storage::deallocate(blocks[i - 1]); + } + + template <typename T> T* allocate(size_t size) + { + assert(count < sizeof(blocks) / sizeof(blocks[0])); + T* result = static_cast<T*>(Storage::allocate(size > size_t(-1) / sizeof(T) ? size_t(-1) : size * sizeof(T))); + blocks[count++] = result; + return result; + } + +private: + void* blocks[24]; + size_t count; +}; + +// This makes sure that allocate/deallocate are lazily generated in translation units that need them and are deduplicated by the linker +template <typename T> void* (*meshopt_Allocator::StorageT<T>::allocate)(size_t) = operator new; +template <typename T> void (*meshopt_Allocator::StorageT<T>::deallocate)(void*) = operator delete; +#endif + +/* Inline implementation for C++ templated wrappers */ +#if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS) +template <typename T, bool ZeroCopy = sizeof(T) == sizeof(unsigned int)> +struct meshopt_IndexAdapter; + +template <typename T> +struct meshopt_IndexAdapter<T, false> +{ + T* result; + unsigned int* data; + size_t count; + + meshopt_IndexAdapter(T* result_, const T* input, size_t count_) + : result(result_) + , data(0) + , count(count_) + { + size_t size = count > size_t(-1) / sizeof(unsigned int) ? size_t(-1) : count * sizeof(unsigned int); + + data = static_cast<unsigned int*>(meshopt_Allocator::Storage::allocate(size)); + + if (input) + { + for (size_t i = 0; i < count; ++i) + data[i] = input[i]; + } + } + + ~meshopt_IndexAdapter() + { + if (result) + { + for (size_t i = 0; i < count; ++i) + result[i] = T(data[i]); + } + + meshopt_Allocator::Storage::deallocate(data); + } +}; + +template <typename T> +struct meshopt_IndexAdapter<T, true> +{ + unsigned int* data; + + meshopt_IndexAdapter(T* result, const T* input, size_t) + : data(reinterpret_cast<unsigned int*>(result ? result : const_cast<T*>(input))) + { + } +}; + +template <typename T> +inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) +{ + meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); + + return meshopt_generateVertexRemap(destination, indices ? in.data : 0, index_count, vertices, vertex_count, vertex_size); +} + +template <typename T> +inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count) +{ + meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); + + return meshopt_generateVertexRemapMulti(destination, indices ? in.data : 0, index_count, vertex_count, streams, stream_count); +} + +template <typename T> +inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap) +{ + meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); + meshopt_IndexAdapter<T> out(destination, 0, index_count); + + meshopt_remapIndexBuffer(out.data, indices ? in.data : 0, index_count, remap); +} + +template <typename T> +inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, index_count); + + meshopt_generateShadowIndexBuffer(out.data, in.data, index_count, vertices, vertex_count, vertex_size, vertex_stride); +} + +template <typename T> +inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, index_count); + + meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count); +} + +template <typename T> +inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, index_count); + + meshopt_optimizeVertexCache(out.data, in.data, index_count, vertex_count); +} + +template <typename T> +inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, index_count); + + meshopt_optimizeVertexCacheStrip(out.data, in.data, index_count, vertex_count); +} + +template <typename T> +inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, index_count); + + meshopt_optimizeVertexCacheFifo(out.data, in.data, index_count, vertex_count, cache_size); +} + +template <typename T> +inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, index_count); + + meshopt_optimizeOverdraw(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, threshold); +} + +template <typename T> +inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + + return meshopt_optimizeVertexFetchRemap(destination, in.data, index_count, vertex_count); +} + +template <typename T> +inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) +{ + meshopt_IndexAdapter<T> inout(indices, indices, index_count); + + return meshopt_optimizeVertexFetch(destination, inout.data, index_count, vertices, vertex_count, vertex_size); +} + +template <typename T> +inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + + return meshopt_encodeIndexBuffer(buffer, buffer_size, in.data, index_count); +} + +template <typename T> +inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size) +{ + char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1]; + (void)index_size_valid; + + return meshopt_decodeIndexBuffer(destination, index_count, sizeof(T), buffer, buffer_size); +} + +template <typename T> +inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + + return meshopt_encodeIndexSequence(buffer, buffer_size, in.data, index_count); +} + +template <typename T> +inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size) +{ + char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1]; + (void)index_size_valid; + + return meshopt_decodeIndexSequence(destination, index_count, sizeof(T), buffer, buffer_size); +} + +template <typename T> +inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, index_count); + + return meshopt_simplify(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error); +} + +template <typename T> +inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, target_index_count); + + return meshopt_simplifySloppy(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count); +} + +template <typename T> +inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, (index_count / 3) * 5); + + return meshopt_stripify(out.data, in.data, index_count, vertex_count, unsigned(restart_index)); +} + +template <typename T> +inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, (index_count - 2) * 3); + + return meshopt_unstripify(out.data, in.data, index_count, unsigned(restart_index)); +} + +template <typename T> +inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + + return meshopt_analyzeVertexCache(in.data, index_count, vertex_count, cache_size, warp_size, buffer_size); +} + +template <typename T> +inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + + return meshopt_analyzeOverdraw(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); +} + +template <typename T> +inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + + return meshopt_analyzeVertexFetch(in.data, index_count, vertex_count, vertex_size); +} + +template <typename T> +inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + + return meshopt_buildMeshlets(destination, in.data, index_count, vertex_count, max_vertices, max_triangles); +} + +template <typename T> +inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + + return meshopt_computeClusterBounds(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); +} + +template <typename T> +inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) +{ + meshopt_IndexAdapter<T> in(0, indices, index_count); + meshopt_IndexAdapter<T> out(destination, 0, index_count); + + meshopt_spatialSortTriangles(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); +} +#endif + +/** + * Copyright (c) 2016-2020 Arseny Kapoulkine + * + * Permission is hereby granted, free of charge, to any person + * obtaining a copy of this software and associated documentation + * files (the "Software"), to deal in the Software without + * restriction, including without limitation the rights to use, + * copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following + * conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + */ |