diff options
Diffstat (limited to 'thirdparty/meshoptimizer/clusterizer.cpp')
-rw-r--r-- | thirdparty/meshoptimizer/clusterizer.cpp | 351 |
1 files changed, 351 insertions, 0 deletions
diff --git a/thirdparty/meshoptimizer/clusterizer.cpp b/thirdparty/meshoptimizer/clusterizer.cpp new file mode 100644 index 0000000000..f7d88c5136 --- /dev/null +++ b/thirdparty/meshoptimizer/clusterizer.cpp @@ -0,0 +1,351 @@ +// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details +#include "meshoptimizer.h" + +#include <assert.h> +#include <math.h> +#include <string.h> + +// This work is based on: +// Graham Wihlidal. Optimizing the Graphics Pipeline with Compute. 2016 +// Matthaeus Chajdas. GeometryFX 1.2 - Cluster Culling. 2016 +// Jack Ritter. An Efficient Bounding Sphere. 1990 +namespace meshopt +{ + +static void computeBoundingSphere(float result[4], const float points[][3], size_t count) +{ + assert(count > 0); + + // find extremum points along all 3 axes; for each axis we get a pair of points with min/max coordinates + size_t pmin[3] = {0, 0, 0}; + size_t pmax[3] = {0, 0, 0}; + + for (size_t i = 0; i < count; ++i) + { + const float* p = points[i]; + + for (int axis = 0; axis < 3; ++axis) + { + pmin[axis] = (p[axis] < points[pmin[axis]][axis]) ? i : pmin[axis]; + pmax[axis] = (p[axis] > points[pmax[axis]][axis]) ? i : pmax[axis]; + } + } + + // find the pair of points with largest distance + float paxisd2 = 0; + int paxis = 0; + + for (int axis = 0; axis < 3; ++axis) + { + const float* p1 = points[pmin[axis]]; + const float* p2 = points[pmax[axis]]; + + float d2 = (p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1]) + (p2[2] - p1[2]) * (p2[2] - p1[2]); + + if (d2 > paxisd2) + { + paxisd2 = d2; + paxis = axis; + } + } + + // use the longest segment as the initial sphere diameter + const float* p1 = points[pmin[paxis]]; + const float* p2 = points[pmax[paxis]]; + + float center[3] = {(p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2, (p1[2] + p2[2]) / 2}; + float radius = sqrtf(paxisd2) / 2; + + // iteratively adjust the sphere up until all points fit + for (size_t i = 0; i < count; ++i) + { + const float* p = points[i]; + float d2 = (p[0] - center[0]) * (p[0] - center[0]) + (p[1] - center[1]) * (p[1] - center[1]) + (p[2] - center[2]) * (p[2] - center[2]); + + if (d2 > radius * radius) + { + float d = sqrtf(d2); + assert(d > 0); + + float k = 0.5f + (radius / d) / 2; + + center[0] = center[0] * k + p[0] * (1 - k); + center[1] = center[1] * k + p[1] * (1 - k); + center[2] = center[2] * k + p[2] * (1 - k); + radius = (radius + d) / 2; + } + } + + result[0] = center[0]; + result[1] = center[1]; + result[2] = center[2]; + result[3] = radius; +} + +} // namespace meshopt + +size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles) +{ + assert(index_count % 3 == 0); + assert(max_vertices >= 3); + assert(max_triangles >= 1); + + // meshlet construction is limited by max vertices and max triangles per meshlet + // the worst case is that the input is an unindexed stream since this equally stresses both limits + // note that we assume that in the worst case, we leave 2 vertices unpacked in each meshlet - if we have space for 3 we can pack any triangle + size_t max_vertices_conservative = max_vertices - 2; + size_t meshlet_limit_vertices = (index_count + max_vertices_conservative - 1) / max_vertices_conservative; + size_t meshlet_limit_triangles = (index_count / 3 + max_triangles - 1) / max_triangles; + + return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles; +} + +size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles) +{ + assert(index_count % 3 == 0); + assert(max_vertices >= 3); + assert(max_triangles >= 1); + + meshopt_Allocator allocator; + + meshopt_Meshlet meshlet; + memset(&meshlet, 0, sizeof(meshlet)); + + assert(max_vertices <= sizeof(meshlet.vertices) / sizeof(meshlet.vertices[0])); + assert(max_triangles <= sizeof(meshlet.indices) / 3); + + // index of the vertex in the meshlet, 0xff if the vertex isn't used + unsigned char* used = allocator.allocate<unsigned char>(vertex_count); + memset(used, -1, vertex_count); + + size_t offset = 0; + + for (size_t i = 0; i < index_count; i += 3) + { + unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2]; + assert(a < vertex_count && b < vertex_count && c < vertex_count); + + unsigned char& av = used[a]; + unsigned char& bv = used[b]; + unsigned char& cv = used[c]; + + unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff); + + if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles) + { + destination[offset++] = meshlet; + + for (size_t j = 0; j < meshlet.vertex_count; ++j) + used[meshlet.vertices[j]] = 0xff; + + memset(&meshlet, 0, sizeof(meshlet)); + } + + if (av == 0xff) + { + av = meshlet.vertex_count; + meshlet.vertices[meshlet.vertex_count++] = a; + } + + if (bv == 0xff) + { + bv = meshlet.vertex_count; + meshlet.vertices[meshlet.vertex_count++] = b; + } + + if (cv == 0xff) + { + cv = meshlet.vertex_count; + meshlet.vertices[meshlet.vertex_count++] = c; + } + + meshlet.indices[meshlet.triangle_count][0] = av; + meshlet.indices[meshlet.triangle_count][1] = bv; + meshlet.indices[meshlet.triangle_count][2] = cv; + meshlet.triangle_count++; + } + + if (meshlet.triangle_count) + destination[offset++] = meshlet; + + assert(offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles)); + + return offset; +} + +meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) +{ + using namespace meshopt; + + assert(index_count % 3 == 0); + assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256); + assert(vertex_positions_stride % sizeof(float) == 0); + + assert(index_count / 3 <= 256); + + (void)vertex_count; + + size_t vertex_stride_float = vertex_positions_stride / sizeof(float); + + // compute triangle normals and gather triangle corners + float normals[256][3]; + float corners[256][3][3]; + size_t triangles = 0; + + for (size_t i = 0; i < index_count; i += 3) + { + unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2]; + assert(a < vertex_count && b < vertex_count && c < vertex_count); + + const float* p0 = vertex_positions + vertex_stride_float * a; + const float* p1 = vertex_positions + vertex_stride_float * b; + const float* p2 = vertex_positions + vertex_stride_float * c; + + float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]}; + float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]}; + + float normalx = p10[1] * p20[2] - p10[2] * p20[1]; + float normaly = p10[2] * p20[0] - p10[0] * p20[2]; + float normalz = p10[0] * p20[1] - p10[1] * p20[0]; + + float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz); + + // no need to include degenerate triangles - they will be invisible anyway + if (area == 0.f) + continue; + + // record triangle normals & corners for future use; normal and corner 0 define a plane equation + normals[triangles][0] = normalx / area; + normals[triangles][1] = normaly / area; + normals[triangles][2] = normalz / area; + memcpy(corners[triangles][0], p0, 3 * sizeof(float)); + memcpy(corners[triangles][1], p1, 3 * sizeof(float)); + memcpy(corners[triangles][2], p2, 3 * sizeof(float)); + triangles++; + } + + meshopt_Bounds bounds = {}; + + // degenerate cluster, no valid triangles => trivial reject (cone data is 0) + if (triangles == 0) + return bounds; + + // compute cluster bounding sphere; we'll use the center to determine normal cone apex as well + float psphere[4] = {}; + computeBoundingSphere(psphere, corners[0], triangles * 3); + + float center[3] = {psphere[0], psphere[1], psphere[2]}; + + // treating triangle normals as points, find the bounding sphere - the sphere center determines the optimal cone axis + float nsphere[4] = {}; + computeBoundingSphere(nsphere, normals, triangles); + + float axis[3] = {nsphere[0], nsphere[1], nsphere[2]}; + float axislength = sqrtf(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]); + float invaxislength = axislength == 0.f ? 0.f : 1.f / axislength; + + axis[0] *= invaxislength; + axis[1] *= invaxislength; + axis[2] *= invaxislength; + + // compute a tight cone around all normals, mindp = cos(angle/2) + float mindp = 1.f; + + for (size_t i = 0; i < triangles; ++i) + { + float dp = normals[i][0] * axis[0] + normals[i][1] * axis[1] + normals[i][2] * axis[2]; + + mindp = (dp < mindp) ? dp : mindp; + } + + // fill bounding sphere info; note that below we can return bounds without cone information for degenerate cones + bounds.center[0] = center[0]; + bounds.center[1] = center[1]; + bounds.center[2] = center[2]; + bounds.radius = psphere[3]; + + // degenerate cluster, normal cone is larger than a hemisphere => trivial accept + // note that if mindp is positive but close to 0, the triangle intersection code below gets less stable + // we arbitrarily decide that if a normal cone is ~168 degrees wide or more, the cone isn't useful + if (mindp <= 0.1f) + { + bounds.cone_cutoff = 1; + bounds.cone_cutoff_s8 = 127; + return bounds; + } + + float maxt = 0; + + // we need to find the point on center-t*axis ray that lies in negative half-space of all triangles + for (size_t i = 0; i < triangles; ++i) + { + // dot(center-t*axis-corner, trinormal) = 0 + // dot(center-corner, trinormal) - t * dot(axis, trinormal) = 0 + float cx = center[0] - corners[i][0][0]; + float cy = center[1] - corners[i][0][1]; + float cz = center[2] - corners[i][0][2]; + + float dc = cx * normals[i][0] + cy * normals[i][1] + cz * normals[i][2]; + float dn = axis[0] * normals[i][0] + axis[1] * normals[i][1] + axis[2] * normals[i][2]; + + // dn should be larger than mindp cutoff above + assert(dn > 0.f); + float t = dc / dn; + + maxt = (t > maxt) ? t : maxt; + } + + // cone apex should be in the negative half-space of all cluster triangles by construction + bounds.cone_apex[0] = center[0] - axis[0] * maxt; + bounds.cone_apex[1] = center[1] - axis[1] * maxt; + bounds.cone_apex[2] = center[2] - axis[2] * maxt; + + // note: this axis is the axis of the normal cone, but our test for perspective camera effectively negates the axis + bounds.cone_axis[0] = axis[0]; + bounds.cone_axis[1] = axis[1]; + bounds.cone_axis[2] = axis[2]; + + // cos(a) for normal cone is mindp; we need to add 90 degrees on both sides and invert the cone + // which gives us -cos(a+90) = -(-sin(a)) = sin(a) = sqrt(1 - cos^2(a)) + bounds.cone_cutoff = sqrtf(1 - mindp * mindp); + + // quantize axis & cutoff to 8-bit SNORM format + bounds.cone_axis_s8[0] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[0], 8)); + bounds.cone_axis_s8[1] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[1], 8)); + bounds.cone_axis_s8[2] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[2], 8)); + + // for the 8-bit test to be conservative, we need to adjust the cutoff by measuring the max. error + float cone_axis_s8_e0 = fabsf(bounds.cone_axis_s8[0] / 127.f - bounds.cone_axis[0]); + float cone_axis_s8_e1 = fabsf(bounds.cone_axis_s8[1] / 127.f - bounds.cone_axis[1]); + float cone_axis_s8_e2 = fabsf(bounds.cone_axis_s8[2] / 127.f - bounds.cone_axis[2]); + + // note that we need to round this up instead of rounding to nearest, hence +1 + int cone_cutoff_s8 = int(127 * (bounds.cone_cutoff + cone_axis_s8_e0 + cone_axis_s8_e1 + cone_axis_s8_e2) + 1); + + bounds.cone_cutoff_s8 = (cone_cutoff_s8 > 127) ? 127 : (signed char)(cone_cutoff_s8); + + return bounds; +} + +meshopt_Bounds meshopt_computeMeshletBounds(const meshopt_Meshlet* meshlet, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) +{ + assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256); + assert(vertex_positions_stride % sizeof(float) == 0); + + unsigned int indices[sizeof(meshlet->indices) / sizeof(meshlet->indices[0][0])]; + + for (size_t i = 0; i < meshlet->triangle_count; ++i) + { + unsigned int a = meshlet->vertices[meshlet->indices[i][0]]; + unsigned int b = meshlet->vertices[meshlet->indices[i][1]]; + unsigned int c = meshlet->vertices[meshlet->indices[i][2]]; + + assert(a < vertex_count && b < vertex_count && c < vertex_count); + + indices[i * 3 + 0] = a; + indices[i * 3 + 1] = b; + indices[i * 3 + 2] = c; + } + + return meshopt_computeClusterBounds(indices, meshlet->triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride); +} |