diff options
Diffstat (limited to 'thirdparty/mbedtls/library/rsa_internal.c')
-rw-r--r-- | thirdparty/mbedtls/library/rsa_internal.c | 337 |
1 files changed, 155 insertions, 182 deletions
diff --git a/thirdparty/mbedtls/library/rsa_internal.c b/thirdparty/mbedtls/library/rsa_internal.c index d6ba97a14b..2ff51c34b7 100644 --- a/thirdparty/mbedtls/library/rsa_internal.c +++ b/thirdparty/mbedtls/library/rsa_internal.c @@ -59,9 +59,9 @@ * of (a) and (b) above to attempt to factor N. * */ -int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, - mbedtls_mpi const *E, mbedtls_mpi const *D, - mbedtls_mpi *P, mbedtls_mpi *Q ) +int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N, + mbedtls_mpi const *E, mbedtls_mpi const *D, + mbedtls_mpi *P, mbedtls_mpi *Q) { int ret = 0; @@ -74,48 +74,46 @@ int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, mbedtls_mpi K; /* Temporary holding the current candidate */ const unsigned char primes[] = { 2, - 3, 5, 7, 11, 13, 17, 19, 23, - 29, 31, 37, 41, 43, 47, 53, 59, - 61, 67, 71, 73, 79, 83, 89, 97, - 101, 103, 107, 109, 113, 127, 131, 137, - 139, 149, 151, 157, 163, 167, 173, 179, - 181, 191, 193, 197, 199, 211, 223, 227, - 229, 233, 239, 241, 251 - }; - - const size_t num_primes = sizeof( primes ) / sizeof( *primes ); - - if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL ) - return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); - - if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || - mbedtls_mpi_cmp_int( D, 1 ) <= 0 || - mbedtls_mpi_cmp_mpi( D, N ) >= 0 || - mbedtls_mpi_cmp_int( E, 1 ) <= 0 || - mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) - { - return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); + 3, 5, 7, 11, 13, 17, 19, 23, + 29, 31, 37, 41, 43, 47, 53, 59, + 61, 67, 71, 73, 79, 83, 89, 97, + 101, 103, 107, 109, 113, 127, 131, 137, + 139, 149, 151, 157, 163, 167, 173, 179, + 181, 191, 193, 197, 199, 211, 223, 227, + 229, 233, 239, 241, 251 }; + + const size_t num_primes = sizeof(primes) / sizeof(*primes); + + if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) { + return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + } + + if (mbedtls_mpi_cmp_int(N, 0) <= 0 || + mbedtls_mpi_cmp_int(D, 1) <= 0 || + mbedtls_mpi_cmp_mpi(D, N) >= 0 || + mbedtls_mpi_cmp_int(E, 1) <= 0 || + mbedtls_mpi_cmp_mpi(E, N) >= 0) { + return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; } /* * Initializations and temporary changes */ - mbedtls_mpi_init( &K ); - mbedtls_mpi_init( &T ); + mbedtls_mpi_init(&K); + mbedtls_mpi_init(&T); /* T := DE - 1 */ - MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D, E)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1)); - if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 ) - { + if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) { ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; goto cleanup; } /* After this operation, T holds the largest odd divisor of DE - 1. */ - MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order)); /* * Actual work @@ -123,49 +121,49 @@ int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, /* Skip trying 2 if N == 1 mod 8 */ attempt = 0; - if( N->p[0] % 8 == 1 ) + if (N->p[0] % 8 == 1) { attempt = 1; + } - for( ; attempt < num_primes; ++attempt ) - { - mbedtls_mpi_lset( &K, primes[attempt] ); + for (; attempt < num_primes; ++attempt) { + mbedtls_mpi_lset(&K, primes[attempt]); /* Check if gcd(K,N) = 1 */ - MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); - if( mbedtls_mpi_cmp_int( P, 1 ) != 0 ) + MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N)); + if (mbedtls_mpi_cmp_int(P, 1) != 0) { continue; + } /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... * and check whether they have nontrivial GCD with N. */ - MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N, - Q /* temporarily use Q for storing Montgomery - * multiplication helper values */ ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N, + Q /* temporarily use Q for storing Montgomery + * multiplication helper values */)); - for( iter = 1; iter <= order; ++iter ) - { + for (iter = 1; iter <= order; ++iter) { /* If we reach 1 prematurely, there's no point * in continuing to square K */ - if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 ) + if (mbedtls_mpi_cmp_int(&K, 1) == 0) { break; + } - MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N)); - if( mbedtls_mpi_cmp_int( P, 1 ) == 1 && - mbedtls_mpi_cmp_mpi( P, N ) == -1 ) - { + if (mbedtls_mpi_cmp_int(P, 1) == 1 && + mbedtls_mpi_cmp_mpi(P, N) == -1) { /* * Have found a nontrivial divisor P of N. * Set Q := N / P. */ - MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P)); goto cleanup; } - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N)); } /* @@ -175,8 +173,7 @@ int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, * Check if that's the case and abort if not, to avoid very long, * yet eventually failing, computations if N,D,E were not sane. */ - if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 ) - { + if (mbedtls_mpi_cmp_int(&K, 1) != 0) { break; } } @@ -185,125 +182,116 @@ int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, cleanup: - mbedtls_mpi_free( &K ); - mbedtls_mpi_free( &T ); - return( ret ); + mbedtls_mpi_free(&K); + mbedtls_mpi_free(&T); + return ret; } /* * Given P, Q and the public exponent E, deduce D. * This is essentially a modular inversion. */ -int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P, - mbedtls_mpi const *Q, - mbedtls_mpi const *E, - mbedtls_mpi *D ) +int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P, + mbedtls_mpi const *Q, + mbedtls_mpi const *E, + mbedtls_mpi *D) { int ret = 0; mbedtls_mpi K, L; - if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 ) - return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); + if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) { + return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + } - if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || - mbedtls_mpi_cmp_int( Q, 1 ) <= 0 || - mbedtls_mpi_cmp_int( E, 0 ) == 0 ) - { - return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); + if (mbedtls_mpi_cmp_int(P, 1) <= 0 || + mbedtls_mpi_cmp_int(Q, 1) <= 0 || + mbedtls_mpi_cmp_int(E, 0) == 0) { + return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; } - mbedtls_mpi_init( &K ); - mbedtls_mpi_init( &L ); + mbedtls_mpi_init(&K); + mbedtls_mpi_init(&L); /* Temporarily put K := P-1 and L := Q-1 */ - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1)); /* Temporarily put D := gcd(P-1, Q-1) */ - MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L)); /* K := LCM(P-1, Q-1) */ - MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L)); + MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D)); /* Compute modular inverse of E in LCM(P-1, Q-1) */ - MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K)); cleanup: - mbedtls_mpi_free( &K ); - mbedtls_mpi_free( &L ); + mbedtls_mpi_free(&K); + mbedtls_mpi_free(&L); - return( ret ); + return ret; } /* * Check that RSA CRT parameters are in accordance with core parameters. */ -int mbedtls_rsa_validate_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, - const mbedtls_mpi *D, const mbedtls_mpi *DP, - const mbedtls_mpi *DQ, const mbedtls_mpi *QP ) +int mbedtls_rsa_validate_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q, + const mbedtls_mpi *D, const mbedtls_mpi *DP, + const mbedtls_mpi *DQ, const mbedtls_mpi *QP) { int ret = 0; mbedtls_mpi K, L; - mbedtls_mpi_init( &K ); - mbedtls_mpi_init( &L ); + mbedtls_mpi_init(&K); + mbedtls_mpi_init(&L); /* Check that DP - D == 0 mod P - 1 */ - if( DP != NULL ) - { - if( P == NULL ) - { + if (DP != NULL) { + if (P == NULL) { ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; goto cleanup; } - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K)); - if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) - { + if (mbedtls_mpi_cmp_int(&L, 0) != 0) { ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; goto cleanup; } } /* Check that DQ - D == 0 mod Q - 1 */ - if( DQ != NULL ) - { - if( Q == NULL ) - { + if (DQ != NULL) { + if (Q == NULL) { ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; goto cleanup; } - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K)); - if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) - { + if (mbedtls_mpi_cmp_int(&L, 0) != 0) { ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; goto cleanup; } } /* Check that QP * Q - 1 == 0 mod P */ - if( QP != NULL ) - { - if( P == NULL || Q == NULL ) - { + if (QP != NULL) { + if (P == NULL || Q == NULL) { ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; goto cleanup; } - MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) ); - if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) - { + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P)); + if (mbedtls_mpi_cmp_int(&K, 0) != 0) { ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; goto cleanup; } @@ -312,33 +300,32 @@ int mbedtls_rsa_validate_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, cleanup: /* Wrap MPI error codes by RSA check failure error code */ - if( ret != 0 && + if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED && - ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA ) - { + ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) { ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; } - mbedtls_mpi_free( &K ); - mbedtls_mpi_free( &L ); + mbedtls_mpi_free(&K); + mbedtls_mpi_free(&L); - return( ret ); + return ret; } /* * Check that core RSA parameters are sane. */ -int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, - const mbedtls_mpi *Q, const mbedtls_mpi *D, - const mbedtls_mpi *E, - int (*f_rng)(void *, unsigned char *, size_t), - void *p_rng ) +int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P, + const mbedtls_mpi *Q, const mbedtls_mpi *D, + const mbedtls_mpi *E, + int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng) { int ret = 0; mbedtls_mpi K, L; - mbedtls_mpi_init( &K ); - mbedtls_mpi_init( &L ); + mbedtls_mpi_init(&K); + mbedtls_mpi_init(&L); /* * Step 1: If PRNG provided, check that P and Q are prime @@ -350,16 +337,14 @@ int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, * rate of at most 2^-100 and we are aiming for the same certainty here as * well. */ - if( f_rng != NULL && P != NULL && - ( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 ) - { + if (f_rng != NULL && P != NULL && + (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) { ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; goto cleanup; } - if( f_rng != NULL && Q != NULL && - ( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 ) - { + if (f_rng != NULL && Q != NULL && + (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) { ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; goto cleanup; } @@ -372,12 +357,10 @@ int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, * Step 2: Check that 1 < N = P * Q */ - if( P != NULL && Q != NULL && N != NULL ) - { - MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) ); - if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 || - mbedtls_mpi_cmp_mpi( &K, N ) != 0 ) - { + if (P != NULL && Q != NULL && N != NULL) { + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q)); + if (mbedtls_mpi_cmp_int(N, 1) <= 0 || + mbedtls_mpi_cmp_mpi(&K, N) != 0) { ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; goto cleanup; } @@ -387,13 +370,11 @@ int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, * Step 3: Check and 1 < D, E < N if present. */ - if( N != NULL && D != NULL && E != NULL ) - { - if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 || - mbedtls_mpi_cmp_int( E, 1 ) <= 0 || - mbedtls_mpi_cmp_mpi( D, N ) >= 0 || - mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) - { + if (N != NULL && D != NULL && E != NULL) { + if (mbedtls_mpi_cmp_int(D, 1) <= 0 || + mbedtls_mpi_cmp_int(E, 1) <= 0 || + mbedtls_mpi_cmp_mpi(D, N) >= 0 || + mbedtls_mpi_cmp_mpi(E, N) >= 0) { ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; goto cleanup; } @@ -403,33 +384,29 @@ int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, * Step 4: Check that D, E are inverse modulo P-1 and Q-1 */ - if( P != NULL && Q != NULL && D != NULL && E != NULL ) - { - if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || - mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ) - { + if (P != NULL && Q != NULL && D != NULL && E != NULL) { + if (mbedtls_mpi_cmp_int(P, 1) <= 0 || + mbedtls_mpi_cmp_int(Q, 1) <= 0) { ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; goto cleanup; } /* Compute DE-1 mod P-1 */ - MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); - if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) - { + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L)); + if (mbedtls_mpi_cmp_int(&K, 0) != 0) { ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; goto cleanup; } /* Compute DE-1 mod Q-1 */ - MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); - if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) - { + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L)); + if (mbedtls_mpi_cmp_int(&K, 0) != 0) { ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; goto cleanup; } @@ -437,50 +414,46 @@ int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, cleanup: - mbedtls_mpi_free( &K ); - mbedtls_mpi_free( &L ); + mbedtls_mpi_free(&K); + mbedtls_mpi_free(&L); /* Wrap MPI error codes by RSA check failure error code */ - if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ) - { + if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) { ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; } - return( ret ); + return ret; } -int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, - const mbedtls_mpi *D, mbedtls_mpi *DP, - mbedtls_mpi *DQ, mbedtls_mpi *QP ) +int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q, + const mbedtls_mpi *D, mbedtls_mpi *DP, + mbedtls_mpi *DQ, mbedtls_mpi *QP) { int ret = 0; mbedtls_mpi K; - mbedtls_mpi_init( &K ); + mbedtls_mpi_init(&K); /* DP = D mod P-1 */ - if( DP != NULL ) - { - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) ); + if (DP != NULL) { + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K)); } /* DQ = D mod Q-1 */ - if( DQ != NULL ) - { - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) ); + if (DQ != NULL) { + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K)); } /* QP = Q^{-1} mod P */ - if( QP != NULL ) - { - MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) ); + if (QP != NULL) { + MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P)); } cleanup: - mbedtls_mpi_free( &K ); + mbedtls_mpi_free(&K); - return( ret ); + return ret; } #endif /* MBEDTLS_RSA_C */ |