diff options
Diffstat (limited to 'thirdparty/mbedtls/library/ecp.c')
| -rw-r--r-- | thirdparty/mbedtls/library/ecp.c | 2195 | 
1 files changed, 2195 insertions, 0 deletions
diff --git a/thirdparty/mbedtls/library/ecp.c b/thirdparty/mbedtls/library/ecp.c new file mode 100644 index 0000000000..b41baef27a --- /dev/null +++ b/thirdparty/mbedtls/library/ecp.c @@ -0,0 +1,2195 @@ +/* + *  Elliptic curves over GF(p): generic functions + * + *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved + *  SPDX-License-Identifier: Apache-2.0 + * + *  Licensed under the Apache License, Version 2.0 (the "License"); you may + *  not use this file except in compliance with the License. + *  You may obtain a copy of the License at + * + *  http://www.apache.org/licenses/LICENSE-2.0 + * + *  Unless required by applicable law or agreed to in writing, software + *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT + *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + *  See the License for the specific language governing permissions and + *  limitations under the License. + * + *  This file is part of mbed TLS (https://tls.mbed.org) + */ + +/* + * References: + * + * SEC1 http://www.secg.org/index.php?action=secg,docs_secg + * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone + * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf + * RFC 4492 for the related TLS structures and constants + * + * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf + * + * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis + *     for elliptic curve cryptosystems. In : Cryptographic Hardware and + *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. + *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25> + * + * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to + *     render ECC resistant against Side Channel Attacks. IACR Cryptology + *     ePrint Archive, 2004, vol. 2004, p. 342. + *     <http://eprint.iacr.org/2004/342.pdf> + */ + +#if !defined(MBEDTLS_CONFIG_FILE) +#include "mbedtls/config.h" +#else +#include MBEDTLS_CONFIG_FILE +#endif + +#if defined(MBEDTLS_ECP_C) + +#include "mbedtls/ecp.h" +#include "mbedtls/threading.h" + +#include <string.h> + +#if !defined(MBEDTLS_ECP_ALT) + +#if defined(MBEDTLS_PLATFORM_C) +#include "mbedtls/platform.h" +#else +#include <stdlib.h> +#include <stdio.h> +#define mbedtls_printf     printf +#define mbedtls_calloc    calloc +#define mbedtls_free       free +#endif + +#include "mbedtls/ecp_internal.h" + +#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \ +    !defined(inline) && !defined(__cplusplus) +#define inline __inline +#endif + +/* Implementation that should never be optimized out by the compiler */ +static void mbedtls_zeroize( void *v, size_t n ) { +    volatile unsigned char *p = v; while( n-- ) *p++ = 0; +} + +#if defined(MBEDTLS_SELF_TEST) +/* + * Counts of point addition and doubling, and field multiplications. + * Used to test resistance of point multiplication to simple timing attacks. + */ +static unsigned long add_count, dbl_count, mul_count; +#endif + +#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \ +    defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \ +    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \ +    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \ +    defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \ +    defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \ +    defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \ +    defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \ +    defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \ +    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \ +    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) +#define ECP_SHORTWEIERSTRASS +#endif + +#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) +#define ECP_MONTGOMERY +#endif + +/* + * Curve types: internal for now, might be exposed later + */ +typedef enum +{ +    ECP_TYPE_NONE = 0, +    ECP_TYPE_SHORT_WEIERSTRASS,    /* y^2 = x^3 + a x + b      */ +    ECP_TYPE_MONTGOMERY,           /* y^2 = x^3 + a x^2 + x    */ +} ecp_curve_type; + +/* + * List of supported curves: + *  - internal ID + *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2) + *  - size in bits + *  - readable name + * + * Curves are listed in order: largest curves first, and for a given size, + * fastest curves first. This provides the default order for the SSL module. + * + * Reminder: update profiles in x509_crt.c when adding a new curves! + */ +static const mbedtls_ecp_curve_info ecp_supported_curves[] = +{ +#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) +    { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         }, +#endif +#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) +    { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) +    { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         }, +#endif +#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) +    { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) +    { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) +    { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         }, +#endif +#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) +    { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) +    { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) +    { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) +    { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) +    { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         }, +#endif +    { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                }, +}; + +#define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \ +                        sizeof( ecp_supported_curves[0] ) + +static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES]; + +/* + * List of supported curves and associated info + */ +const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void ) +{ +    return( ecp_supported_curves ); +} + +/* + * List of supported curves, group ID only + */ +const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void ) +{ +    static int init_done = 0; + +    if( ! init_done ) +    { +        size_t i = 0; +        const mbedtls_ecp_curve_info *curve_info; + +        for( curve_info = mbedtls_ecp_curve_list(); +             curve_info->grp_id != MBEDTLS_ECP_DP_NONE; +             curve_info++ ) +        { +            ecp_supported_grp_id[i++] = curve_info->grp_id; +        } +        ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE; + +        init_done = 1; +    } + +    return( ecp_supported_grp_id ); +} + +/* + * Get the curve info for the internal identifier + */ +const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id ) +{ +    const mbedtls_ecp_curve_info *curve_info; + +    for( curve_info = mbedtls_ecp_curve_list(); +         curve_info->grp_id != MBEDTLS_ECP_DP_NONE; +         curve_info++ ) +    { +        if( curve_info->grp_id == grp_id ) +            return( curve_info ); +    } + +    return( NULL ); +} + +/* + * Get the curve info from the TLS identifier + */ +const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id ) +{ +    const mbedtls_ecp_curve_info *curve_info; + +    for( curve_info = mbedtls_ecp_curve_list(); +         curve_info->grp_id != MBEDTLS_ECP_DP_NONE; +         curve_info++ ) +    { +        if( curve_info->tls_id == tls_id ) +            return( curve_info ); +    } + +    return( NULL ); +} + +/* + * Get the curve info from the name + */ +const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name ) +{ +    const mbedtls_ecp_curve_info *curve_info; + +    for( curve_info = mbedtls_ecp_curve_list(); +         curve_info->grp_id != MBEDTLS_ECP_DP_NONE; +         curve_info++ ) +    { +        if( strcmp( curve_info->name, name ) == 0 ) +            return( curve_info ); +    } + +    return( NULL ); +} + +/* + * Get the type of a curve + */ +static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp ) +{ +    if( grp->G.X.p == NULL ) +        return( ECP_TYPE_NONE ); + +    if( grp->G.Y.p == NULL ) +        return( ECP_TYPE_MONTGOMERY ); +    else +        return( ECP_TYPE_SHORT_WEIERSTRASS ); +} + +/* + * Initialize (the components of) a point + */ +void mbedtls_ecp_point_init( mbedtls_ecp_point *pt ) +{ +    if( pt == NULL ) +        return; + +    mbedtls_mpi_init( &pt->X ); +    mbedtls_mpi_init( &pt->Y ); +    mbedtls_mpi_init( &pt->Z ); +} + +/* + * Initialize (the components of) a group + */ +void mbedtls_ecp_group_init( mbedtls_ecp_group *grp ) +{ +    if( grp == NULL ) +        return; + +    memset( grp, 0, sizeof( mbedtls_ecp_group ) ); +} + +/* + * Initialize (the components of) a key pair + */ +void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key ) +{ +    if( key == NULL ) +        return; + +    mbedtls_ecp_group_init( &key->grp ); +    mbedtls_mpi_init( &key->d ); +    mbedtls_ecp_point_init( &key->Q ); +} + +/* + * Unallocate (the components of) a point + */ +void mbedtls_ecp_point_free( mbedtls_ecp_point *pt ) +{ +    if( pt == NULL ) +        return; + +    mbedtls_mpi_free( &( pt->X ) ); +    mbedtls_mpi_free( &( pt->Y ) ); +    mbedtls_mpi_free( &( pt->Z ) ); +} + +/* + * Unallocate (the components of) a group + */ +void mbedtls_ecp_group_free( mbedtls_ecp_group *grp ) +{ +    size_t i; + +    if( grp == NULL ) +        return; + +    if( grp->h != 1 ) +    { +        mbedtls_mpi_free( &grp->P ); +        mbedtls_mpi_free( &grp->A ); +        mbedtls_mpi_free( &grp->B ); +        mbedtls_ecp_point_free( &grp->G ); +        mbedtls_mpi_free( &grp->N ); +    } + +    if( grp->T != NULL ) +    { +        for( i = 0; i < grp->T_size; i++ ) +            mbedtls_ecp_point_free( &grp->T[i] ); +        mbedtls_free( grp->T ); +    } + +    mbedtls_zeroize( grp, sizeof( mbedtls_ecp_group ) ); +} + +/* + * Unallocate (the components of) a key pair + */ +void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key ) +{ +    if( key == NULL ) +        return; + +    mbedtls_ecp_group_free( &key->grp ); +    mbedtls_mpi_free( &key->d ); +    mbedtls_ecp_point_free( &key->Q ); +} + +/* + * Copy the contents of a point + */ +int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q ) +{ +    int ret; + +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) ); + +cleanup: +    return( ret ); +} + +/* + * Copy the contents of a group object + */ +int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src ) +{ +    return mbedtls_ecp_group_load( dst, src->id ); +} + +/* + * Set point to zero + */ +int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt ) +{ +    int ret; + +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) ); + +cleanup: +    return( ret ); +} + +/* + * Tell if a point is zero + */ +int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt ) +{ +    return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 ); +} + +/* + * Compare two points lazyly + */ +int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P, +                           const mbedtls_ecp_point *Q ) +{ +    if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 && +        mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 && +        mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 ) +    { +        return( 0 ); +    } + +    return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); +} + +/* + * Import a non-zero point from ASCII strings + */ +int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix, +                           const char *x, const char *y ) +{ +    int ret; + +    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) ); + +cleanup: +    return( ret ); +} + +/* + * Export a point into unsigned binary data (SEC1 2.3.3) + */ +int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *P, +                            int format, size_t *olen, +                            unsigned char *buf, size_t buflen ) +{ +    int ret = 0; +    size_t plen; + +    if( format != MBEDTLS_ECP_PF_UNCOMPRESSED && +        format != MBEDTLS_ECP_PF_COMPRESSED ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    /* +     * Common case: P == 0 +     */ +    if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 ) +    { +        if( buflen < 1 ) +            return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL ); + +        buf[0] = 0x00; +        *olen = 1; + +        return( 0 ); +    } + +    plen = mbedtls_mpi_size( &grp->P ); + +    if( format == MBEDTLS_ECP_PF_UNCOMPRESSED ) +    { +        *olen = 2 * plen + 1; + +        if( buflen < *olen ) +            return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL ); + +        buf[0] = 0x04; +        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) ); +    } +    else if( format == MBEDTLS_ECP_PF_COMPRESSED ) +    { +        *olen = plen + 1; + +        if( buflen < *olen ) +            return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL ); + +        buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) ); +    } + +cleanup: +    return( ret ); +} + +/* + * Import a point from unsigned binary data (SEC1 2.3.4) + */ +int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt, +                           const unsigned char *buf, size_t ilen ) +{ +    int ret; +    size_t plen; + +    if( ilen < 1 ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    if( buf[0] == 0x00 ) +    { +        if( ilen == 1 ) +            return( mbedtls_ecp_set_zero( pt ) ); +        else +            return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); +    } + +    plen = mbedtls_mpi_size( &grp->P ); + +    if( buf[0] != 0x04 ) +        return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ); + +    if( ilen != 2 * plen + 1 ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) ); + +cleanup: +    return( ret ); +} + +/* + * Import a point from a TLS ECPoint record (RFC 4492) + *      struct { + *          opaque point <1..2^8-1>; + *      } ECPoint; + */ +int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt, +                        const unsigned char **buf, size_t buf_len ) +{ +    unsigned char data_len; +    const unsigned char *buf_start; + +    /* +     * We must have at least two bytes (1 for length, at least one for data) +     */ +    if( buf_len < 2 ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    data_len = *(*buf)++; +    if( data_len < 1 || data_len > buf_len - 1 ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    /* +     * Save buffer start for read_binary and update buf +     */ +    buf_start = *buf; +    *buf += data_len; + +    return mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ); +} + +/* + * Export a point as a TLS ECPoint record (RFC 4492) + *      struct { + *          opaque point <1..2^8-1>; + *      } ECPoint; + */ +int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt, +                         int format, size_t *olen, +                         unsigned char *buf, size_t blen ) +{ +    int ret; + +    /* +     * buffer length must be at least one, for our length byte +     */ +    if( blen < 1 ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format, +                    olen, buf + 1, blen - 1) ) != 0 ) +        return( ret ); + +    /* +     * write length to the first byte and update total length +     */ +    buf[0] = (unsigned char) *olen; +    ++*olen; + +    return( 0 ); +} + +/* + * Set a group from an ECParameters record (RFC 4492) + */ +int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp, const unsigned char **buf, size_t len ) +{ +    uint16_t tls_id; +    const mbedtls_ecp_curve_info *curve_info; + +    /* +     * We expect at least three bytes (see below) +     */ +    if( len < 3 ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    /* +     * First byte is curve_type; only named_curve is handled +     */ +    if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    /* +     * Next two bytes are the namedcurve value +     */ +    tls_id = *(*buf)++; +    tls_id <<= 8; +    tls_id |= *(*buf)++; + +    if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL ) +        return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ); + +    return mbedtls_ecp_group_load( grp, curve_info->grp_id ); +} + +/* + * Write the ECParameters record corresponding to a group (RFC 4492) + */ +int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen, +                         unsigned char *buf, size_t blen ) +{ +    const mbedtls_ecp_curve_info *curve_info; + +    if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    /* +     * We are going to write 3 bytes (see below) +     */ +    *olen = 3; +    if( blen < *olen ) +        return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL ); + +    /* +     * First byte is curve_type, always named_curve +     */ +    *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE; + +    /* +     * Next two bytes are the namedcurve value +     */ +    buf[0] = curve_info->tls_id >> 8; +    buf[1] = curve_info->tls_id & 0xFF; + +    return( 0 ); +} + +/* + * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi. + * See the documentation of struct mbedtls_ecp_group. + * + * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf. + */ +static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp ) +{ +    int ret; + +    if( grp->modp == NULL ) +        return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) ); + +    /* N->s < 0 is a much faster test, which fails only if N is 0 */ +    if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) || +        mbedtls_mpi_bitlen( N ) > 2 * grp->pbits ) +    { +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); +    } + +    MBEDTLS_MPI_CHK( grp->modp( N ) ); + +    /* N->s < 0 is a much faster test, which fails only if N is 0 */ +    while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) +        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) ); + +    while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 ) +        /* we known P, N and the result are positive */ +        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) ); + +cleanup: +    return( ret ); +} + +/* + * Fast mod-p functions expect their argument to be in the 0..p^2 range. + * + * In order to guarantee that, we need to ensure that operands of + * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will + * bring the result back to this range. + * + * The following macros are shortcuts for doing that. + */ + +/* + * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi + */ +#if defined(MBEDTLS_SELF_TEST) +#define INC_MUL_COUNT   mul_count++; +#else +#define INC_MUL_COUNT +#endif + +#define MOD_MUL( N )    do { MBEDTLS_MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \ +                        while( 0 ) + +/* + * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi + * N->s < 0 is a very fast test, which fails only if N is 0 + */ +#define MOD_SUB( N )                                \ +    while( N.s < 0 && mbedtls_mpi_cmp_int( &N, 0 ) != 0 )   \ +        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &N, &N, &grp->P ) ) + +/* + * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int. + * We known P, N and the result are positive, so sub_abs is correct, and + * a bit faster. + */ +#define MOD_ADD( N )                                \ +    while( mbedtls_mpi_cmp_mpi( &N, &grp->P ) >= 0 )        \ +        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &N, &N, &grp->P ) ) + +#if defined(ECP_SHORTWEIERSTRASS) +/* + * For curves in short Weierstrass form, we do all the internal operations in + * Jacobian coordinates. + * + * For multiplication, we'll use a comb method with coutermeasueres against + * SPA, hence timing attacks. + */ + +/* + * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1) + * Cost: 1N := 1I + 3M + 1S + */ +static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt ) +{ +    int ret; +    mbedtls_mpi Zi, ZZi; + +    if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 ) +        return( 0 ); + +#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) +    if ( mbedtls_internal_ecp_grp_capable( grp ) ) +    { +        return mbedtls_internal_ecp_normalize_jac( grp, pt ); +    } +#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */ +    mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi ); + +    /* +     * X = X / Z^2  mod p +     */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ZZi    ) ); MOD_MUL( pt->X ); + +    /* +     * Y = Y / Z^3  mod p +     */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ZZi    ) ); MOD_MUL( pt->Y ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &Zi     ) ); MOD_MUL( pt->Y ); + +    /* +     * Z = 1 +     */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) ); + +cleanup: + +    mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi ); + +    return( ret ); +} + +/* + * Normalize jacobian coordinates of an array of (pointers to) points, + * using Montgomery's trick to perform only one inversion mod P. + * (See for example Cohen's "A Course in Computational Algebraic Number + * Theory", Algorithm 10.3.4.) + * + * Warning: fails (returning an error) if one of the points is zero! + * This should never happen, see choice of w in ecp_mul_comb(). + * + * Cost: 1N(t) := 1I + (6t - 3)M + 1S + */ +static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp, +                                   mbedtls_ecp_point *T[], size_t t_len ) +{ +    int ret; +    size_t i; +    mbedtls_mpi *c, u, Zi, ZZi; + +    if( t_len < 2 ) +        return( ecp_normalize_jac( grp, *T ) ); + +#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) +    if ( mbedtls_internal_ecp_grp_capable( grp ) ) +    { +        return mbedtls_internal_ecp_normalize_jac_many(grp, T, t_len); +    } +#endif + +    if( ( c = mbedtls_calloc( t_len, sizeof( mbedtls_mpi ) ) ) == NULL ) +        return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); + +    mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi ); + +    /* +     * c[i] = Z_0 * ... * Z_i +     */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) ); +    for( i = 1; i < t_len; i++ ) +    { +        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) ); +        MOD_MUL( c[i] ); +    } + +    /* +     * u = 1 / (Z_0 * ... * Z_n) mod P +     */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[t_len-1], &grp->P ) ); + +    for( i = t_len - 1; ; i-- ) +    { +        /* +         * Zi = 1 / Z_i mod p +         * u = 1 / (Z_0 * ... * Z_i) mod P +         */ +        if( i == 0 ) { +            MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) ); +        } +        else +        { +            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1]  ) ); MOD_MUL( Zi ); +            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u,  &u, &T[i]->Z ) ); MOD_MUL( u ); +        } + +        /* +         * proceed as in normalize() +         */ +        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,      &Zi  ) ); MOD_MUL( ZZi ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi  ) ); MOD_MUL( T[i]->Y ); + +        /* +         * Post-precessing: reclaim some memory by shrinking coordinates +         * - not storing Z (always 1) +         * - shrinking other coordinates, but still keeping the same number of +         *   limbs as P, as otherwise it will too likely be regrown too fast. +         */ +        MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) ); +        mbedtls_mpi_free( &T[i]->Z ); + +        if( i == 0 ) +            break; +    } + +cleanup: + +    mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi ); +    for( i = 0; i < t_len; i++ ) +        mbedtls_mpi_free( &c[i] ); +    mbedtls_free( c ); + +    return( ret ); +} + +/* + * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak. + * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid + */ +static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp, +                            mbedtls_ecp_point *Q, +                            unsigned char inv ) +{ +    int ret; +    unsigned char nonzero; +    mbedtls_mpi mQY; + +    mbedtls_mpi_init( &mQY ); + +    /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) ); +    nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0; +    MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) ); + +cleanup: +    mbedtls_mpi_free( &mQY ); + +    return( ret ); +} + +/* + * Point doubling R = 2 P, Jacobian coordinates + * + * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 . + * + * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR + * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring. + * + * Standard optimizations are applied when curve parameter A is one of { 0, -3 }. + * + * Cost: 1D := 3M + 4S          (A ==  0) + *             4M + 4S          (A == -3) + *             3M + 6S + 1a     otherwise + */ +static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, +                           const mbedtls_ecp_point *P ) +{ +    int ret; +    mbedtls_mpi M, S, T, U; + +#if defined(MBEDTLS_SELF_TEST) +    dbl_count++; +#endif + +#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) +    if ( mbedtls_internal_ecp_grp_capable( grp ) ) +    { +        return mbedtls_internal_ecp_double_jac( grp, R, P ); +    } +#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */ + +    mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U ); + +    /* Special case for A = -3 */ +    if( grp->A.p == NULL ) +    { +        /* M = 3(X + Z^2)(X - Z^2) */ +        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T,  &P->X,  &S      ) ); MOD_ADD( T ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U,  &P->X,  &S      ) ); MOD_SUB( U ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &U      ) ); MOD_MUL( S ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M ); +    } +    else +    { +        /* M = 3.X^2 */ +        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &P->X   ) ); MOD_MUL( S ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M ); + +        /* Optimize away for "koblitz" curves with A = 0 */ +        if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 ) +        { +            /* M += A.Z^4 */ +            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S ); +            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &S,     &S      ) ); MOD_MUL( T ); +            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &grp->A ) ); MOD_MUL( S ); +            MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M,  &M,     &S      ) ); MOD_ADD( M ); +        } +    } + +    /* S = 4.X.Y^2 */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &P->Y,  &P->Y   ) ); MOD_MUL( T ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T,  1               ) ); MOD_ADD( T ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &T      ) ); MOD_MUL( S ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S,  1               ) ); MOD_ADD( S ); + +    /* U = 8.Y^4 */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &T,     &T      ) ); MOD_MUL( U ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U ); + +    /* T = M^2 - 2.S */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &M,     &M      ) ); MOD_MUL( T ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T ); + +    /* S = M(S - T) - U */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &T      ) ); MOD_SUB( S ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &S,     &M      ) ); MOD_MUL( S ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &U      ) ); MOD_SUB( S ); + +    /* U = 2.Y.Z */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &P->Y,  &P->Z   ) ); MOD_MUL( U ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U ); + +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) ); + +cleanup: +    mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U ); + +    return( ret ); +} + +/* + * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22) + * + * The coordinates of Q must be normalized (= affine), + * but those of P don't need to. R is not normalized. + * + * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q. + * None of these cases can happen as intermediate step in ecp_mul_comb(): + * - at each step, P, Q and R are multiples of the base point, the factor + *   being less than its order, so none of them is zero; + * - Q is an odd multiple of the base point, P an even multiple, + *   due to the choice of precomputed points in the modified comb method. + * So branches for these cases do not leak secret information. + * + * We accept Q->Z being unset (saving memory in tables) as meaning 1. + * + * Cost: 1A := 8M + 3S + */ +static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, +                          const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q ) +{ +    int ret; +    mbedtls_mpi T1, T2, T3, T4, X, Y, Z; + +#if defined(MBEDTLS_SELF_TEST) +    add_count++; +#endif + +#if defined(MBEDTLS_ECP_ADD_MIXED_ALT) +    if ( mbedtls_internal_ecp_grp_capable( grp ) ) +    { +        return mbedtls_internal_ecp_add_mixed( grp, R, P, Q ); +    } +#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */ + +    /* +     * Trivial cases: P == 0 or Q == 0 (case 1) +     */ +    if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 ) +        return( mbedtls_ecp_copy( R, Q ) ); + +    if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 ) +        return( mbedtls_ecp_copy( R, P ) ); + +    /* +     * Make sure Q coordinates are normalized +     */ +    if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 ); +    mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); + +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T1,    &P->Z ) );  MOD_MUL( T2 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &T1,    &Q->X ) );  MOD_MUL( T1 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T2,    &Q->Y ) );  MOD_MUL( T2 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1,  &T1,    &P->X ) );  MOD_SUB( T1 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2,  &T2,    &P->Y ) );  MOD_SUB( T2 ); + +    /* Special cases (2) and (3) */ +    if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 ) +    { +        if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 ) +        { +            ret = ecp_double_jac( grp, R, P ); +            goto cleanup; +        } +        else +        { +            ret = mbedtls_ecp_set_zero( R ); +            goto cleanup; +        } +    } + +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z,   &P->Z,  &T1   ) );  MOD_MUL( Z  ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &P->X ) );  MOD_MUL( T3 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T4,    &P->Y ) );  MOD_MUL( T4 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  ); + +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) ); + +cleanup: + +    mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 ); +    mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); + +    return( ret ); +} + +/* + * Randomize jacobian coordinates: + * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l + * This is sort of the reverse operation of ecp_normalize_jac(). + * + * This countermeasure was first suggested in [2]. + */ +static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt, +                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) +{ +    int ret; +    mbedtls_mpi l, ll; +    size_t p_size; +    int count = 0; + +#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) +    if ( mbedtls_internal_ecp_grp_capable( grp ) ) +    { +        return mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ); +    } +#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */ + +    p_size = ( grp->pbits + 7 ) / 8; +    mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll ); + +    /* Generate l such that 1 < l < p */ +    do +    { +        MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) ); + +        while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 ) +            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) ); + +        if( count++ > 10 ) +            return( MBEDTLS_ERR_ECP_RANDOM_FAILED ); +    } +    while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 ); + +    /* Z = l * Z */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z,   &pt->Z,     &l  ) ); MOD_MUL( pt->Z ); + +    /* X = l^2 * X */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ll ) ); MOD_MUL( pt->X ); + +    /* Y = l^3 * Y */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ll ) ); MOD_MUL( pt->Y ); + +cleanup: +    mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll ); + +    return( ret ); +} + +/* + * Check and define parameters used by the comb method (see below for details) + */ +#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7 +#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds" +#endif + +/* d = ceil( n / w ) */ +#define COMB_MAX_D      ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2 + +/* number of precomputed points */ +#define COMB_MAX_PRE    ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) ) + +/* + * Compute the representation of m that will be used with our comb method. + * + * The basic comb method is described in GECC 3.44 for example. We use a + * modified version that provides resistance to SPA by avoiding zero + * digits in the representation as in [3]. We modify the method further by + * requiring that all K_i be odd, which has the small cost that our + * representation uses one more K_i, due to carries. + * + * Also, for the sake of compactness, only the seven low-order bits of x[i] + * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in + * the paper): it is set if and only if if s_i == -1; + * + * Calling conventions: + * - x is an array of size d + 1 + * - w is the size, ie number of teeth, of the comb, and must be between + *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE) + * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d + *   (the result will be incorrect if these assumptions are not satisfied) + */ +static void ecp_comb_fixed( unsigned char x[], size_t d, +                            unsigned char w, const mbedtls_mpi *m ) +{ +    size_t i, j; +    unsigned char c, cc, adjust; + +    memset( x, 0, d+1 ); + +    /* First get the classical comb values (except for x_d = 0) */ +    for( i = 0; i < d; i++ ) +        for( j = 0; j < w; j++ ) +            x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j; + +    /* Now make sure x_1 .. x_d are odd */ +    c = 0; +    for( i = 1; i <= d; i++ ) +    { +        /* Add carry and update it */ +        cc   = x[i] & c; +        x[i] = x[i] ^ c; +        c = cc; + +        /* Adjust if needed, avoiding branches */ +        adjust = 1 - ( x[i] & 0x01 ); +        c   |= x[i] & ( x[i-1] * adjust ); +        x[i] = x[i] ^ ( x[i-1] * adjust ); +        x[i-1] |= adjust << 7; +    } +} + +/* + * Precompute points for the comb method + * + * If i = i_{w-1} ... i_1 is the binary representation of i, then + * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P + * + * T must be able to hold 2^{w - 1} elements + * + * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1) + */ +static int ecp_precompute_comb( const mbedtls_ecp_group *grp, +                                mbedtls_ecp_point T[], const mbedtls_ecp_point *P, +                                unsigned char w, size_t d ) +{ +    int ret; +    unsigned char i, k; +    size_t j; +    mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1]; + +    /* +     * Set T[0] = P and +     * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value) +     */ +    MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) ); + +    k = 0; +    for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 ) +    { +        cur = T + i; +        MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) ); +        for( j = 0; j < d; j++ ) +            MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) ); + +        TT[k++] = cur; +    } + +    MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) ); + +    /* +     * Compute the remaining ones using the minimal number of additions +     * Be careful to update T[2^l] only after using it! +     */ +    k = 0; +    for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 ) +    { +        j = i; +        while( j-- ) +        { +            MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) ); +            TT[k++] = &T[i + j]; +        } +    } + +    MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) ); + +cleanup: + +    return( ret ); +} + +/* + * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ] + */ +static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, +                            const mbedtls_ecp_point T[], unsigned char t_len, +                            unsigned char i ) +{ +    int ret; +    unsigned char ii, j; + +    /* Ignore the "sign" bit and scale down */ +    ii =  ( i & 0x7Fu ) >> 1; + +    /* Read the whole table to thwart cache-based timing attacks */ +    for( j = 0; j < t_len; j++ ) +    { +        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) ); +    } + +    /* Safely invert result if i is "negative" */ +    MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) ); + +cleanup: +    return( ret ); +} + +/* + * Core multiplication algorithm for the (modified) comb method. + * This part is actually common with the basic comb method (GECC 3.44) + * + * Cost: d A + d D + 1 R + */ +static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, +                              const mbedtls_ecp_point T[], unsigned char t_len, +                              const unsigned char x[], size_t d, +                              int (*f_rng)(void *, unsigned char *, size_t), +                              void *p_rng ) +{ +    int ret; +    mbedtls_ecp_point Txi; +    size_t i; + +    mbedtls_ecp_point_init( &Txi ); + +    /* Start with a non-zero point and randomize its coordinates */ +    i = d; +    MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) ); +    if( f_rng != 0 ) +        MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) ); + +    while( i-- != 0 ) +    { +        MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) ); +        MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) ); +        MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) ); +    } + +cleanup: + +    mbedtls_ecp_point_free( &Txi ); + +    return( ret ); +} + +/* + * Multiplication using the comb method, + * for curves in short Weierstrass form + */ +static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R, +                         const mbedtls_mpi *m, const mbedtls_ecp_point *P, +                         int (*f_rng)(void *, unsigned char *, size_t), +                         void *p_rng ) +{ +    int ret; +    unsigned char w, m_is_odd, p_eq_g, pre_len, i; +    size_t d; +    unsigned char k[COMB_MAX_D + 1]; +    mbedtls_ecp_point *T; +    mbedtls_mpi M, mm; + +    mbedtls_mpi_init( &M ); +    mbedtls_mpi_init( &mm ); + +    /* we need N to be odd to trnaform m in an odd number, check now */ +    if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    /* +     * Minimize the number of multiplications, that is minimize +     * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w ) +     * (see costs of the various parts, with 1S = 1M) +     */ +    w = grp->nbits >= 384 ? 5 : 4; + +    /* +     * If P == G, pre-compute a bit more, since this may be re-used later. +     * Just adding one avoids upping the cost of the first mul too much, +     * and the memory cost too. +     */ +#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1 +    p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 && +               mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 ); +    if( p_eq_g ) +        w++; +#else +    p_eq_g = 0; +#endif + +    /* +     * Make sure w is within bounds. +     * (The last test is useful only for very small curves in the test suite.) +     */ +    if( w > MBEDTLS_ECP_WINDOW_SIZE ) +        w = MBEDTLS_ECP_WINDOW_SIZE; +    if( w >= grp->nbits ) +        w = 2; + +    /* Other sizes that depend on w */ +    pre_len = 1U << ( w - 1 ); +    d = ( grp->nbits + w - 1 ) / w; + +    /* +     * Prepare precomputed points: if P == G we want to +     * use grp->T if already initialized, or initialize it. +     */ +    T = p_eq_g ? grp->T : NULL; + +    if( T == NULL ) +    { +        T = mbedtls_calloc( pre_len, sizeof( mbedtls_ecp_point ) ); +        if( T == NULL ) +        { +            ret = MBEDTLS_ERR_ECP_ALLOC_FAILED; +            goto cleanup; +        } + +        MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) ); + +        if( p_eq_g ) +        { +            grp->T = T; +            grp->T_size = pre_len; +        } +    } + +    /* +     * Make sure M is odd (M = m or M = N - m, since N is odd) +     * using the fact that m * P = - (N - m) * P +     */ +    m_is_odd = ( mbedtls_mpi_get_bit( m, 0 ) == 1 ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) ); + +    /* +     * Go for comb multiplication, R = M * P +     */ +    ecp_comb_fixed( k, d, w, &M ); +    MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) ); + +    /* +     * Now get m * P from M * P and normalize it +     */ +    MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) ); +    MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) ); + +cleanup: + +    if( T != NULL && ! p_eq_g ) +    { +        for( i = 0; i < pre_len; i++ ) +            mbedtls_ecp_point_free( &T[i] ); +        mbedtls_free( T ); +    } + +    mbedtls_mpi_free( &M ); +    mbedtls_mpi_free( &mm ); + +    if( ret != 0 ) +        mbedtls_ecp_point_free( R ); + +    return( ret ); +} + +#endif /* ECP_SHORTWEIERSTRASS */ + +#if defined(ECP_MONTGOMERY) +/* + * For Montgomery curves, we do all the internal arithmetic in projective + * coordinates. Import/export of points uses only the x coordinates, which is + * internaly represented as X / Z. + * + * For scalar multiplication, we'll use a Montgomery ladder. + */ + +/* + * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1 + * Cost: 1M + 1I + */ +static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P ) +{ +    int ret; + +#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) +    if ( mbedtls_internal_ecp_grp_capable( grp ) ) +    { +        return mbedtls_internal_ecp_normalize_mxz( grp, P ); +    } +#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */ + +    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) ); + +cleanup: +    return( ret ); +} + +/* + * Randomize projective x/z coordinates: + * (X, Z) -> (l X, l Z) for random l + * This is sort of the reverse operation of ecp_normalize_mxz(). + * + * This countermeasure was first suggested in [2]. + * Cost: 2M + */ +static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P, +                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) +{ +    int ret; +    mbedtls_mpi l; +    size_t p_size; +    int count = 0; + +#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) +    if ( mbedtls_internal_ecp_grp_capable( grp ) ) +    { +        return mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng ); +    } +#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */ + +    p_size = ( grp->pbits + 7 ) / 8; +    mbedtls_mpi_init( &l ); + +    /* Generate l such that 1 < l < p */ +    do +    { +        MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) ); + +        while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 ) +            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) ); + +        if( count++ > 10 ) +            return( MBEDTLS_ERR_ECP_RANDOM_FAILED ); +    } +    while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 ); + +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z ); + +cleanup: +    mbedtls_mpi_free( &l ); + +    return( ret ); +} + +/* + * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q), + * for Montgomery curves in x/z coordinates. + * + * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3 + * with + * d =  X1 + * P = (X2, Z2) + * Q = (X3, Z3) + * R = (X4, Z4) + * S = (X5, Z5) + * and eliminating temporary variables tO, ..., t4. + * + * Cost: 5M + 4S + */ +static int ecp_double_add_mxz( const mbedtls_ecp_group *grp, +                               mbedtls_ecp_point *R, mbedtls_ecp_point *S, +                               const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q, +                               const mbedtls_mpi *d ) +{ +    int ret; +    mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB; + +#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) +    if ( mbedtls_internal_ecp_grp_capable( grp ) ) +    { +        return mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ); +    } +#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */ + +    mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B ); +    mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C ); +    mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB ); + +    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A,    &P->X,   &P->Z ) ); MOD_ADD( A    ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA,   &A,      &A    ) ); MOD_MUL( AA   ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B,    &P->X,   &P->Z ) ); MOD_SUB( B    ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB,   &B,      &B    ) ); MOD_MUL( BB   ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E,    &AA,     &BB   ) ); MOD_SUB( E    ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C,    &Q->X,   &Q->Z ) ); MOD_ADD( C    ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D,    &Q->X,   &Q->Z ) ); MOD_SUB( D    ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA,   &D,      &A    ) ); MOD_MUL( DA   ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB,   &C,      &B    ) ); MOD_MUL( CB   ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA,     &CB   ) ); MOD_MUL( S->X ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X,   &S->X ) ); MOD_MUL( S->X ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA,     &CB   ) ); MOD_SUB( S->Z ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z,   &S->Z ) ); MOD_MUL( S->Z ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d,       &S->Z ) ); MOD_MUL( S->Z ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA,     &BB   ) ); MOD_MUL( R->X ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E    ) ); MOD_MUL( R->Z ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB,     &R->Z ) ); MOD_ADD( R->Z ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E,      &R->Z ) ); MOD_MUL( R->Z ); + +cleanup: +    mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B ); +    mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C ); +    mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB ); + +    return( ret ); +} + +/* + * Multiplication with Montgomery ladder in x/z coordinates, + * for curves in Montgomery form + */ +static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R, +                        const mbedtls_mpi *m, const mbedtls_ecp_point *P, +                        int (*f_rng)(void *, unsigned char *, size_t), +                        void *p_rng ) +{ +    int ret; +    size_t i; +    unsigned char b; +    mbedtls_ecp_point RP; +    mbedtls_mpi PX; + +    mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX ); + +    /* Save PX and read from P before writing to R, in case P == R */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) ); +    MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) ); + +    /* Set R to zero in modified x/z coordinates */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) ); +    mbedtls_mpi_free( &R->Y ); + +    /* RP.X might be sligtly larger than P, so reduce it */ +    MOD_ADD( RP.X ); + +    /* Randomize coordinates of the starting point */ +    if( f_rng != NULL ) +        MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) ); + +    /* Loop invariant: R = result so far, RP = R + P */ +    i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */ +    while( i-- > 0 ) +    { +        b = mbedtls_mpi_get_bit( m, i ); +        /* +         *  if (b) R = 2R + P else R = 2R, +         * which is: +         *  if (b) double_add( RP, R, RP, R ) +         *  else   double_add( R, RP, R, RP ) +         * but using safe conditional swaps to avoid leaks +         */ +        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) ); +        MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) ); +    } + +    MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) ); + +cleanup: +    mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX ); + +    return( ret ); +} + +#endif /* ECP_MONTGOMERY */ + +/* + * Multiplication R = m * P + */ +int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R, +             const mbedtls_mpi *m, const mbedtls_ecp_point *P, +             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) +{ +    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; +#if defined(MBEDTLS_ECP_INTERNAL_ALT) +    char is_grp_capable = 0; +#endif + +    /* Common sanity checks */ +    if( mbedtls_mpi_cmp_int( &P->Z, 1 ) != 0 ) +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +    if( ( ret = mbedtls_ecp_check_privkey( grp, m ) ) != 0 || +        ( ret = mbedtls_ecp_check_pubkey( grp, P ) ) != 0 ) +        return( ret ); + +#if defined(MBEDTLS_ECP_INTERNAL_ALT) +    if ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp )  ) +    { +        MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) ); +    } + +#endif /* MBEDTLS_ECP_INTERNAL_ALT */ +#if defined(ECP_MONTGOMERY) +    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY ) +        ret = ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ); + +#endif +#if defined(ECP_SHORTWEIERSTRASS) +    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS ) +        ret = ecp_mul_comb( grp, R, m, P, f_rng, p_rng ); + +#endif +#if defined(MBEDTLS_ECP_INTERNAL_ALT) +cleanup: + +    if ( is_grp_capable ) +    { +        mbedtls_internal_ecp_free( grp ); +    } + +#endif /* MBEDTLS_ECP_INTERNAL_ALT */ +    return( ret ); +} + +#if defined(ECP_SHORTWEIERSTRASS) +/* + * Check that an affine point is valid as a public key, + * short weierstrass curves (SEC1 3.2.3.1) + */ +static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt ) +{ +    int ret; +    mbedtls_mpi YY, RHS; + +    /* pt coordinates must be normalized for our checks */ +    if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 || +        mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 || +        mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 || +        mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 ) +        return( MBEDTLS_ERR_ECP_INVALID_KEY ); + +    mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS ); + +    /* +     * YY = Y^2 +     * RHS = X (X^2 + A) + B = X^3 + A X + B +     */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY,  &pt->Y,   &pt->Y  ) );  MOD_MUL( YY  ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X,   &pt->X  ) );  MOD_MUL( RHS ); + +    /* Special case for A = -3 */ +    if( grp->A.p == NULL ) +    { +        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS ); +    } +    else +    { +        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) );  MOD_ADD( RHS ); +    } + +    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS,     &pt->X  ) );  MOD_MUL( RHS ); +    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS,     &grp->B ) );  MOD_ADD( RHS ); + +    if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 ) +        ret = MBEDTLS_ERR_ECP_INVALID_KEY; + +cleanup: + +    mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS ); + +    return( ret ); +} +#endif /* ECP_SHORTWEIERSTRASS */ + +/* + * R = m * P with shortcuts for m == 1 and m == -1 + * NOT constant-time - ONLY for short Weierstrass! + */ +static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp, +                                      mbedtls_ecp_point *R, +                                      const mbedtls_mpi *m, +                                      const mbedtls_ecp_point *P ) +{ +    int ret; + +    if( mbedtls_mpi_cmp_int( m, 1 ) == 0 ) +    { +        MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) ); +    } +    else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 ) +    { +        MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) ); +        if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 ) +            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) ); +    } +    else +    { +        MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, NULL, NULL ) ); +    } + +cleanup: +    return( ret ); +} + +/* + * Linear combination + * NOT constant-time + */ +int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R, +             const mbedtls_mpi *m, const mbedtls_ecp_point *P, +             const mbedtls_mpi *n, const mbedtls_ecp_point *Q ) +{ +    int ret; +    mbedtls_ecp_point mP; +#if defined(MBEDTLS_ECP_INTERNAL_ALT) +    char is_grp_capable = 0; +#endif + +    if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS ) +        return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ); + +    mbedtls_ecp_point_init( &mP ); + +    MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, &mP, m, P ) ); +    MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, R,   n, Q ) ); + +#if defined(MBEDTLS_ECP_INTERNAL_ALT) +    if (  is_grp_capable = mbedtls_internal_ecp_grp_capable( grp )  ) +    { +        MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) ); +    } + +#endif /* MBEDTLS_ECP_INTERNAL_ALT */ +    MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, &mP, R ) ); +    MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) ); + +cleanup: + +#if defined(MBEDTLS_ECP_INTERNAL_ALT) +    if ( is_grp_capable ) +    { +        mbedtls_internal_ecp_free( grp ); +    } + +#endif /* MBEDTLS_ECP_INTERNAL_ALT */ +    mbedtls_ecp_point_free( &mP ); + +    return( ret ); +} + + +#if defined(ECP_MONTGOMERY) +/* + * Check validity of a public key for Montgomery curves with x-only schemes + */ +static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt ) +{ +    /* [Curve25519 p. 5] Just check X is the correct number of bytes */ +    if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 ) +        return( MBEDTLS_ERR_ECP_INVALID_KEY ); + +    return( 0 ); +} +#endif /* ECP_MONTGOMERY */ + +/* + * Check that a point is valid as a public key + */ +int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt ) +{ +    /* Must use affine coordinates */ +    if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 ) +        return( MBEDTLS_ERR_ECP_INVALID_KEY ); + +#if defined(ECP_MONTGOMERY) +    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY ) +        return( ecp_check_pubkey_mx( grp, pt ) ); +#endif +#if defined(ECP_SHORTWEIERSTRASS) +    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS ) +        return( ecp_check_pubkey_sw( grp, pt ) ); +#endif +    return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); +} + +/* + * Check that an mbedtls_mpi is valid as a private key + */ +int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp, const mbedtls_mpi *d ) +{ +#if defined(ECP_MONTGOMERY) +    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY ) +    { +        /* see [Curve25519] page 5 */ +        if( mbedtls_mpi_get_bit( d, 0 ) != 0 || +            mbedtls_mpi_get_bit( d, 1 ) != 0 || +            mbedtls_mpi_get_bit( d, 2 ) != 0 || +            mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */ +            return( MBEDTLS_ERR_ECP_INVALID_KEY ); +        else +            return( 0 ); +    } +#endif /* ECP_MONTGOMERY */ +#if defined(ECP_SHORTWEIERSTRASS) +    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS ) +    { +        /* see SEC1 3.2 */ +        if( mbedtls_mpi_cmp_int( d, 1 ) < 0 || +            mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 ) +            return( MBEDTLS_ERR_ECP_INVALID_KEY ); +        else +            return( 0 ); +    } +#endif /* ECP_SHORTWEIERSTRASS */ + +    return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); +} + +/* + * Generate a keypair with configurable base point + */ +int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp, +                     const mbedtls_ecp_point *G, +                     mbedtls_mpi *d, mbedtls_ecp_point *Q, +                     int (*f_rng)(void *, unsigned char *, size_t), +                     void *p_rng ) +{ +    int ret; +    size_t n_size = ( grp->nbits + 7 ) / 8; + +#if defined(ECP_MONTGOMERY) +    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY ) +    { +        /* [M225] page 5 */ +        size_t b; + +        do { +            MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) ); +        } while( mbedtls_mpi_bitlen( d ) == 0); + +        /* Make sure the most significant bit is nbits */ +        b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */ +        if( b > grp->nbits ) +            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) ); +        else +            MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) ); + +        /* Make sure the last three bits are unset */ +        MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) ); +        MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) ); +    } +    else +#endif /* ECP_MONTGOMERY */ +#if defined(ECP_SHORTWEIERSTRASS) +    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS ) +    { +        /* SEC1 3.2.1: Generate d such that 1 <= n < N */ +        int count = 0; + +        /* +         * Match the procedure given in RFC 6979 (deterministic ECDSA): +         * - use the same byte ordering; +         * - keep the leftmost nbits bits of the generated octet string; +         * - try until result is in the desired range. +         * This also avoids any biais, which is especially important for ECDSA. +         */ +        do +        { +            MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) ); +            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) ); + +            /* +             * Each try has at worst a probability 1/2 of failing (the msb has +             * a probability 1/2 of being 0, and then the result will be < N), +             * so after 30 tries failure probability is a most 2**(-30). +             * +             * For most curves, 1 try is enough with overwhelming probability, +             * since N starts with a lot of 1s in binary, but some curves +             * such as secp224k1 are actually very close to the worst case. +             */ +            if( ++count > 30 ) +                return( MBEDTLS_ERR_ECP_RANDOM_FAILED ); +        } +        while( mbedtls_mpi_cmp_int( d, 1 ) < 0 || +               mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 ); +    } +    else +#endif /* ECP_SHORTWEIERSTRASS */ +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + +cleanup: +    if( ret != 0 ) +        return( ret ); + +    return( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) ); +} + +/* + * Generate key pair, wrapper for conventional base point + */ +int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp, +                             mbedtls_mpi *d, mbedtls_ecp_point *Q, +                             int (*f_rng)(void *, unsigned char *, size_t), +                             void *p_rng ) +{ +    return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) ); +} + +/* + * Generate a keypair, prettier wrapper + */ +int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key, +                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) +{ +    int ret; + +    if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 ) +        return( ret ); + +    return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) ); +} + +/* + * Check a public-private key pair + */ +int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv ) +{ +    int ret; +    mbedtls_ecp_point Q; +    mbedtls_ecp_group grp; + +    if( pub->grp.id == MBEDTLS_ECP_DP_NONE || +        pub->grp.id != prv->grp.id || +        mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) || +        mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) || +        mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) ) +    { +        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); +    } + +    mbedtls_ecp_point_init( &Q ); +    mbedtls_ecp_group_init( &grp ); + +    /* mbedtls_ecp_mul() needs a non-const group... */ +    mbedtls_ecp_group_copy( &grp, &prv->grp ); + +    /* Also checks d is valid */ +    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) ); + +    if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) || +        mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) || +        mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) ) +    { +        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; +        goto cleanup; +    } + +cleanup: +    mbedtls_ecp_point_free( &Q ); +    mbedtls_ecp_group_free( &grp ); + +    return( ret ); +} + +#if defined(MBEDTLS_SELF_TEST) + +/* + * Checkup routine + */ +int mbedtls_ecp_self_test( int verbose ) +{ +    int ret; +    size_t i; +    mbedtls_ecp_group grp; +    mbedtls_ecp_point R, P; +    mbedtls_mpi m; +    unsigned long add_c_prev, dbl_c_prev, mul_c_prev; +    /* exponents especially adapted for secp192r1 */ +    const char *exponents[] = +    { +        "000000000000000000000000000000000000000000000001", /* one */ +        "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */ +        "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */ +        "400000000000000000000000000000000000000000000000", /* one and zeros */ +        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */ +        "555555555555555555555555555555555555555555555555", /* 101010... */ +    }; + +    mbedtls_ecp_group_init( &grp ); +    mbedtls_ecp_point_init( &R ); +    mbedtls_ecp_point_init( &P ); +    mbedtls_mpi_init( &m ); + +    /* Use secp192r1 if available, or any available curve */ +#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) +    MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) ); +#else +    MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) ); +#endif + +    if( verbose != 0 ) +        mbedtls_printf( "  ECP test #1 (constant op_count, base point G): " ); + +    /* Do a dummy multiplication first to trigger precomputation */ +    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) ); +    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) ); + +    add_count = 0; +    dbl_count = 0; +    mul_count = 0; +    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) ); +    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) ); + +    for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ ) +    { +        add_c_prev = add_count; +        dbl_c_prev = dbl_count; +        mul_c_prev = mul_count; +        add_count = 0; +        dbl_count = 0; +        mul_count = 0; + +        MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) ); +        MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) ); + +        if( add_count != add_c_prev || +            dbl_count != dbl_c_prev || +            mul_count != mul_c_prev ) +        { +            if( verbose != 0 ) +                mbedtls_printf( "failed (%u)\n", (unsigned int) i ); + +            ret = 1; +            goto cleanup; +        } +    } + +    if( verbose != 0 ) +        mbedtls_printf( "passed\n" ); + +    if( verbose != 0 ) +        mbedtls_printf( "  ECP test #2 (constant op_count, other point): " ); +    /* We computed P = 2G last time, use it */ + +    add_count = 0; +    dbl_count = 0; +    mul_count = 0; +    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) ); +    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) ); + +    for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ ) +    { +        add_c_prev = add_count; +        dbl_c_prev = dbl_count; +        mul_c_prev = mul_count; +        add_count = 0; +        dbl_count = 0; +        mul_count = 0; + +        MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) ); +        MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) ); + +        if( add_count != add_c_prev || +            dbl_count != dbl_c_prev || +            mul_count != mul_c_prev ) +        { +            if( verbose != 0 ) +                mbedtls_printf( "failed (%u)\n", (unsigned int) i ); + +            ret = 1; +            goto cleanup; +        } +    } + +    if( verbose != 0 ) +        mbedtls_printf( "passed\n" ); + +cleanup: + +    if( ret < 0 && verbose != 0 ) +        mbedtls_printf( "Unexpected error, return code = %08X\n", ret ); + +    mbedtls_ecp_group_free( &grp ); +    mbedtls_ecp_point_free( &R ); +    mbedtls_ecp_point_free( &P ); +    mbedtls_mpi_free( &m ); + +    if( verbose != 0 ) +        mbedtls_printf( "\n" ); + +    return( ret ); +} + +#endif /* MBEDTLS_SELF_TEST */ + +#endif /* !MBEDTLS_ECP_ALT */ + +#endif /* MBEDTLS_ECP_C */  |