diff options
Diffstat (limited to 'thirdparty/libwebp/utils/quant_levels.c')
| -rw-r--r-- | thirdparty/libwebp/utils/quant_levels.c | 140 | 
1 files changed, 140 insertions, 0 deletions
diff --git a/thirdparty/libwebp/utils/quant_levels.c b/thirdparty/libwebp/utils/quant_levels.c new file mode 100644 index 0000000000..d7c8aab922 --- /dev/null +++ b/thirdparty/libwebp/utils/quant_levels.c @@ -0,0 +1,140 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Quantize levels for specified number of quantization-levels ([2, 256]). +// Min and max values are preserved (usual 0 and 255 for alpha plane). +// +// Author: Skal (pascal.massimino@gmail.com) + +#include <assert.h> + +#include "./quant_levels.h" + +#define NUM_SYMBOLS     256 + +#define MAX_ITER  6             // Maximum number of convergence steps. +#define ERROR_THRESHOLD 1e-4    // MSE stopping criterion. + +// ----------------------------------------------------------------------------- +// Quantize levels. + +int QuantizeLevels(uint8_t* const data, int width, int height, +                   int num_levels, uint64_t* const sse) { +  int freq[NUM_SYMBOLS] = { 0 }; +  int q_level[NUM_SYMBOLS] = { 0 }; +  double inv_q_level[NUM_SYMBOLS] = { 0 }; +  int min_s = 255, max_s = 0; +  const size_t data_size = height * width; +  int i, num_levels_in, iter; +  double last_err = 1.e38, err = 0.; +  const double err_threshold = ERROR_THRESHOLD * data_size; + +  if (data == NULL) { +    return 0; +  } + +  if (width <= 0 || height <= 0) { +    return 0; +  } + +  if (num_levels < 2 || num_levels > 256) { +    return 0; +  } + +  { +    size_t n; +    num_levels_in = 0; +    for (n = 0; n < data_size; ++n) { +      num_levels_in += (freq[data[n]] == 0); +      if (min_s > data[n]) min_s = data[n]; +      if (max_s < data[n]) max_s = data[n]; +      ++freq[data[n]]; +    } +  } + +  if (num_levels_in <= num_levels) goto End;  // nothing to do! + +  // Start with uniformly spread centroids. +  for (i = 0; i < num_levels; ++i) { +    inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1); +  } + +  // Fixed values. Won't be changed. +  q_level[min_s] = 0; +  q_level[max_s] = num_levels - 1; +  assert(inv_q_level[0] == min_s); +  assert(inv_q_level[num_levels - 1] == max_s); + +  // k-Means iterations. +  for (iter = 0; iter < MAX_ITER; ++iter) { +    double q_sum[NUM_SYMBOLS] = { 0 }; +    double q_count[NUM_SYMBOLS] = { 0 }; +    int s, slot = 0; + +    // Assign classes to representatives. +    for (s = min_s; s <= max_s; ++s) { +      // Keep track of the nearest neighbour 'slot' +      while (slot < num_levels - 1 && +             2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) { +        ++slot; +      } +      if (freq[s] > 0) { +        q_sum[slot] += s * freq[s]; +        q_count[slot] += freq[s]; +      } +      q_level[s] = slot; +    } + +    // Assign new representatives to classes. +    if (num_levels > 2) { +      for (slot = 1; slot < num_levels - 1; ++slot) { +        const double count = q_count[slot]; +        if (count > 0.) { +          inv_q_level[slot] = q_sum[slot] / count; +        } +      } +    } + +    // Compute convergence error. +    err = 0.; +    for (s = min_s; s <= max_s; ++s) { +      const double error = s - inv_q_level[q_level[s]]; +      err += freq[s] * error * error; +    } + +    // Check for convergence: we stop as soon as the error is no +    // longer improving. +    if (last_err - err < err_threshold) break; +    last_err = err; +  } + +  // Remap the alpha plane to quantized values. +  { +    // double->int rounding operation can be costly, so we do it +    // once for all before remapping. We also perform the data[] -> slot +    // mapping, while at it (avoid one indirection in the final loop). +    uint8_t map[NUM_SYMBOLS]; +    int s; +    size_t n; +    for (s = min_s; s <= max_s; ++s) { +      const int slot = q_level[s]; +      map[s] = (uint8_t)(inv_q_level[slot] + .5); +    } +    // Final pass. +    for (n = 0; n < data_size; ++n) { +      data[n] = map[data[n]]; +    } +  } + End: +  // Store sum of squared error if needed. +  if (sse != NULL) *sse = (uint64_t)err; + +  return 1; +} +  |