summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/src/enc/vp8l_enc.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/libwebp/src/enc/vp8l_enc.c')
-rw-r--r--thirdparty/libwebp/src/enc/vp8l_enc.c669
1 files changed, 445 insertions, 224 deletions
diff --git a/thirdparty/libwebp/src/enc/vp8l_enc.c b/thirdparty/libwebp/src/enc/vp8l_enc.c
index 2efd403f77..e330e716f1 100644
--- a/thirdparty/libwebp/src/enc/vp8l_enc.c
+++ b/thirdparty/libwebp/src/enc/vp8l_enc.c
@@ -65,25 +65,22 @@ static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) {
*col2 = tmp;
}
-static void GreedyMinimizeDeltas(uint32_t palette[], int num_colors) {
- // Find greedily always the closest color of the predicted color to minimize
- // deltas in the palette. This reduces storage needs since the
- // palette is stored with delta encoding.
- uint32_t predict = 0x00000000;
- int i, k;
- for (i = 0; i < num_colors; ++i) {
- int best_ix = i;
- uint32_t best_score = ~0U;
- for (k = i; k < num_colors; ++k) {
- const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
- if (best_score > cur_score) {
- best_score = cur_score;
- best_ix = k;
- }
+static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color,
+ int num_colors) {
+ int low = 0, hi = num_colors;
+ if (sorted[low] == color) return low; // loop invariant: sorted[low] != color
+ while (1) {
+ const int mid = (low + hi) >> 1;
+ if (sorted[mid] == color) {
+ return mid;
+ } else if (sorted[mid] < color) {
+ low = mid;
+ } else {
+ hi = mid;
}
- SwapColor(&palette[best_ix], &palette[i]);
- predict = palette[i];
}
+ assert(0);
+ return 0;
}
// The palette has been sorted by alpha. This function checks if the other
@@ -92,7 +89,8 @@ static void GreedyMinimizeDeltas(uint32_t palette[], int num_colors) {
// no benefit to re-organize them greedily. A monotonic development
// would be spotted in green-only situations (like lossy alpha) or gray-scale
// images.
-static int PaletteHasNonMonotonousDeltas(uint32_t palette[], int num_colors) {
+static int PaletteHasNonMonotonousDeltas(const uint32_t* const palette,
+ int num_colors) {
uint32_t predict = 0x000000;
int i;
uint8_t sign_found = 0x00;
@@ -115,28 +113,215 @@ static int PaletteHasNonMonotonousDeltas(uint32_t palette[], int num_colors) {
return (sign_found & (sign_found << 1)) != 0; // two consequent signs.
}
+static void PaletteSortMinimizeDeltas(const uint32_t* const palette_sorted,
+ int num_colors, uint32_t* const palette) {
+ uint32_t predict = 0x00000000;
+ int i, k;
+ memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
+ if (!PaletteHasNonMonotonousDeltas(palette_sorted, num_colors)) return;
+ // Find greedily always the closest color of the predicted color to minimize
+ // deltas in the palette. This reduces storage needs since the
+ // palette is stored with delta encoding.
+ for (i = 0; i < num_colors; ++i) {
+ int best_ix = i;
+ uint32_t best_score = ~0U;
+ for (k = i; k < num_colors; ++k) {
+ const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
+ if (best_score > cur_score) {
+ best_score = cur_score;
+ best_ix = k;
+ }
+ }
+ SwapColor(&palette[best_ix], &palette[i]);
+ predict = palette[i];
+ }
+}
+
+// Sort palette in increasing order and prepare an inverse mapping array.
+static void PrepareMapToPalette(const uint32_t palette[], uint32_t num_colors,
+ uint32_t sorted[], uint32_t idx_map[]) {
+ uint32_t i;
+ memcpy(sorted, palette, num_colors * sizeof(*sorted));
+ qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
+ for (i = 0; i < num_colors; ++i) {
+ idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
+ }
+}
+
// -----------------------------------------------------------------------------
-// Palette
+// Modified Zeng method from "A Survey on Palette Reordering
+// Methods for Improving the Compression of Color-Indexed Images" by Armando J.
+// Pinho and Antonio J. R. Neves.
+
+// Finds the biggest cooccurrence in the matrix.
+static void CoOccurrenceFindMax(const uint32_t* const cooccurrence,
+ uint32_t num_colors, uint8_t* const c1,
+ uint8_t* const c2) {
+ // Find the index that is most frequently located adjacent to other
+ // (different) indexes.
+ uint32_t best_sum = 0u;
+ uint32_t i, j, best_cooccurrence;
+ *c1 = 0u;
+ for (i = 0; i < num_colors; ++i) {
+ uint32_t sum = 0;
+ for (j = 0; j < num_colors; ++j) sum += cooccurrence[i * num_colors + j];
+ if (sum > best_sum) {
+ best_sum = sum;
+ *c1 = i;
+ }
+ }
+ // Find the index that is most frequently found adjacent to *c1.
+ *c2 = 0u;
+ best_cooccurrence = 0u;
+ for (i = 0; i < num_colors; ++i) {
+ if (cooccurrence[*c1 * num_colors + i] > best_cooccurrence) {
+ best_cooccurrence = cooccurrence[*c1 * num_colors + i];
+ *c2 = i;
+ }
+ }
+ assert(*c1 != *c2);
+}
-// If number of colors in the image is less than or equal to MAX_PALETTE_SIZE,
-// creates a palette and returns true, else returns false.
-static int AnalyzeAndCreatePalette(const WebPPicture* const pic,
- int low_effort,
- uint32_t palette[MAX_PALETTE_SIZE],
- int* const palette_size) {
- const int num_colors = WebPGetColorPalette(pic, palette);
- if (num_colors > MAX_PALETTE_SIZE) {
- *palette_size = 0;
- return 0;
+// Builds the cooccurrence matrix
+static WebPEncodingError CoOccurrenceBuild(const WebPPicture* const pic,
+ const uint32_t* const palette,
+ uint32_t num_colors,
+ uint32_t* cooccurrence) {
+ uint32_t *lines, *line_top, *line_current, *line_tmp;
+ int x, y;
+ const uint32_t* src = pic->argb;
+ uint32_t prev_pix = ~src[0];
+ uint32_t prev_idx = 0u;
+ uint32_t idx_map[MAX_PALETTE_SIZE] = {0};
+ uint32_t palette_sorted[MAX_PALETTE_SIZE];
+ lines = (uint32_t*)WebPSafeMalloc(2 * pic->width, sizeof(*lines));
+ if (lines == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
+ line_top = &lines[0];
+ line_current = &lines[pic->width];
+ PrepareMapToPalette(palette, num_colors, palette_sorted, idx_map);
+ for (y = 0; y < pic->height; ++y) {
+ for (x = 0; x < pic->width; ++x) {
+ const uint32_t pix = src[x];
+ if (pix != prev_pix) {
+ prev_idx = idx_map[SearchColorNoIdx(palette_sorted, pix, num_colors)];
+ prev_pix = pix;
+ }
+ line_current[x] = prev_idx;
+ // 4-connectivity is what works best as mentioned in "On the relation
+ // between Memon's and the modified Zeng's palette reordering methods".
+ if (x > 0 && prev_idx != line_current[x - 1]) {
+ const uint32_t left_idx = line_current[x - 1];
+ ++cooccurrence[prev_idx * num_colors + left_idx];
+ ++cooccurrence[left_idx * num_colors + prev_idx];
+ }
+ if (y > 0 && prev_idx != line_top[x]) {
+ const uint32_t top_idx = line_top[x];
+ ++cooccurrence[prev_idx * num_colors + top_idx];
+ ++cooccurrence[top_idx * num_colors + prev_idx];
+ }
+ }
+ line_tmp = line_top;
+ line_top = line_current;
+ line_current = line_tmp;
+ src += pic->argb_stride;
+ }
+ WebPSafeFree(lines);
+ return VP8_ENC_OK;
+}
+
+struct Sum {
+ uint8_t index;
+ uint32_t sum;
+};
+
+// Implements the modified Zeng method from "A Survey on Palette Reordering
+// Methods for Improving the Compression of Color-Indexed Images" by Armando J.
+// Pinho and Antonio J. R. Neves.
+static WebPEncodingError PaletteSortModifiedZeng(
+ const WebPPicture* const pic, const uint32_t* const palette_sorted,
+ uint32_t num_colors, uint32_t* const palette) {
+ uint32_t i, j, ind;
+ uint8_t remapping[MAX_PALETTE_SIZE];
+ uint32_t* cooccurrence;
+ struct Sum sums[MAX_PALETTE_SIZE];
+ uint32_t first, last;
+ uint32_t num_sums;
+ // TODO(vrabaud) check whether one color images should use palette or not.
+ if (num_colors <= 1) return VP8_ENC_OK;
+ // Build the co-occurrence matrix.
+ cooccurrence =
+ (uint32_t*)WebPSafeCalloc(num_colors * num_colors, sizeof(*cooccurrence));
+ if (cooccurrence == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
+ if (CoOccurrenceBuild(pic, palette_sorted, num_colors, cooccurrence) !=
+ VP8_ENC_OK) {
+ WebPSafeFree(cooccurrence);
+ return VP8_ENC_ERROR_OUT_OF_MEMORY;
+ }
+
+ // Initialize the mapping list with the two best indices.
+ CoOccurrenceFindMax(cooccurrence, num_colors, &remapping[0], &remapping[1]);
+
+ // We need to append and prepend to the list of remapping. To this end, we
+ // actually define the next start/end of the list as indices in a vector (with
+ // a wrap around when the end is reached).
+ first = 0;
+ last = 1;
+ num_sums = num_colors - 2; // -2 because we know the first two values
+ if (num_sums > 0) {
+ // Initialize the sums with the first two remappings and find the best one
+ struct Sum* best_sum = &sums[0];
+ best_sum->index = 0u;
+ best_sum->sum = 0u;
+ for (i = 0, j = 0; i < num_colors; ++i) {
+ if (i == remapping[0] || i == remapping[1]) continue;
+ sums[j].index = i;
+ sums[j].sum = cooccurrence[i * num_colors + remapping[0]] +
+ cooccurrence[i * num_colors + remapping[1]];
+ if (sums[j].sum > best_sum->sum) best_sum = &sums[j];
+ ++j;
+ }
+
+ while (num_sums > 0) {
+ const uint8_t best_index = best_sum->index;
+ // Compute delta to know if we need to prepend or append the best index.
+ int32_t delta = 0;
+ const int32_t n = num_colors - num_sums;
+ for (ind = first, j = 0; (ind + j) % num_colors != last + 1; ++j) {
+ const uint16_t l_j = remapping[(ind + j) % num_colors];
+ delta += (n - 1 - 2 * (int32_t)j) *
+ (int32_t)cooccurrence[best_index * num_colors + l_j];
+ }
+ if (delta > 0) {
+ first = (first == 0) ? num_colors - 1 : first - 1;
+ remapping[first] = best_index;
+ } else {
+ ++last;
+ remapping[last] = best_index;
+ }
+ // Remove best_sum from sums.
+ *best_sum = sums[num_sums - 1];
+ --num_sums;
+ // Update all the sums and find the best one.
+ best_sum = &sums[0];
+ for (i = 0; i < num_sums; ++i) {
+ sums[i].sum += cooccurrence[best_index * num_colors + sums[i].index];
+ if (sums[i].sum > best_sum->sum) best_sum = &sums[i];
+ }
+ }
}
- *palette_size = num_colors;
- qsort(palette, num_colors, sizeof(*palette), PaletteCompareColorsForQsort);
- if (!low_effort && PaletteHasNonMonotonousDeltas(palette, num_colors)) {
- GreedyMinimizeDeltas(palette, num_colors);
+ assert((last + 1) % num_colors == first);
+ WebPSafeFree(cooccurrence);
+
+ // Re-map the palette.
+ for (i = 0; i < num_colors; ++i) {
+ palette[i] = palette_sorted[remapping[(first + i) % num_colors]];
}
- return 1;
+ return VP8_ENC_OK;
}
+// -----------------------------------------------------------------------------
+// Palette
+
// These five modes are evaluated and their respective entropy is computed.
typedef enum {
kDirect = 0,
@@ -144,10 +329,18 @@ typedef enum {
kSubGreen = 2,
kSpatialSubGreen = 3,
kPalette = 4,
- kNumEntropyIx = 5
+ kPaletteAndSpatial = 5,
+ kNumEntropyIx = 6
} EntropyIx;
typedef enum {
+ kSortedDefault = 0,
+ kMinimizeDelta = 1,
+ kModifiedZeng = 2,
+ kUnusedPalette = 3,
+} PaletteSorting;
+
+typedef enum {
kHistoAlpha = 0,
kHistoAlphaPred,
kHistoGreen,
@@ -354,14 +547,21 @@ static int GetTransformBits(int method, int histo_bits) {
}
// Set of parameters to be used in each iteration of the cruncher.
-#define CRUNCH_CONFIGS_LZ77_MAX 2
+#define CRUNCH_SUBCONFIGS_MAX 2
+typedef struct {
+ int lz77_;
+ int do_no_cache_;
+} CrunchSubConfig;
typedef struct {
int entropy_idx_;
- int lz77s_types_to_try_[CRUNCH_CONFIGS_LZ77_MAX];
- int lz77s_types_to_try_size_;
+ PaletteSorting palette_sorting_type_;
+ CrunchSubConfig sub_configs_[CRUNCH_SUBCONFIGS_MAX];
+ int sub_configs_size_;
} CrunchConfig;
-#define CRUNCH_CONFIGS_MAX kNumEntropyIx
+// +2 because we add a palette sorting configuration for kPalette and
+// kPaletteAndSpatial.
+#define CRUNCH_CONFIGS_MAX (kNumEntropyIx + 2)
static int EncoderAnalyze(VP8LEncoder* const enc,
CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],
@@ -376,11 +576,20 @@ static int EncoderAnalyze(VP8LEncoder* const enc,
int i;
int use_palette;
int n_lz77s;
+ // If set to 0, analyze the cache with the computed cache value. If 1, also
+ // analyze with no-cache.
+ int do_no_cache = 0;
assert(pic != NULL && pic->argb != NULL);
- use_palette =
- AnalyzeAndCreatePalette(pic, low_effort,
- enc->palette_, &enc->palette_size_);
+ // Check whether a palette is possible.
+ enc->palette_size_ = WebPGetColorPalette(pic, enc->palette_sorted_);
+ use_palette = (enc->palette_size_ <= MAX_PALETTE_SIZE);
+ if (!use_palette) {
+ enc->palette_size_ = 0;
+ } else {
+ qsort(enc->palette_sorted_, enc->palette_size_,
+ sizeof(*enc->palette_sorted_), PaletteCompareColorsForQsort);
+ }
// Empirical bit sizes.
enc->histo_bits_ = GetHistoBits(method, use_palette,
@@ -390,6 +599,8 @@ static int EncoderAnalyze(VP8LEncoder* const enc,
if (low_effort) {
// AnalyzeEntropy is somewhat slow.
crunch_configs[0].entropy_idx_ = use_palette ? kPalette : kSpatialSubGreen;
+ crunch_configs[0].palette_sorting_type_ =
+ use_palette ? kSortedDefault : kUnusedPalette;
n_lz77s = 1;
*crunch_configs_size = 1;
} else {
@@ -402,29 +613,59 @@ static int EncoderAnalyze(VP8LEncoder* const enc,
return 0;
}
if (method == 6 && config->quality == 100) {
+ do_no_cache = 1;
// Go brute force on all transforms.
*crunch_configs_size = 0;
for (i = 0; i < kNumEntropyIx; ++i) {
- if (i != kPalette || use_palette) {
+ // We can only apply kPalette or kPaletteAndSpatial if we can indeed use
+ // a palette.
+ if ((i != kPalette && i != kPaletteAndSpatial) || use_palette) {
assert(*crunch_configs_size < CRUNCH_CONFIGS_MAX);
- crunch_configs[(*crunch_configs_size)++].entropy_idx_ = i;
+ crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
+ if (use_palette && (i == kPalette || i == kPaletteAndSpatial)) {
+ crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
+ kMinimizeDelta;
+ ++*crunch_configs_size;
+ // Also add modified Zeng's method.
+ crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
+ crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
+ kModifiedZeng;
+ } else {
+ crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
+ kUnusedPalette;
+ }
+ ++*crunch_configs_size;
}
}
} else {
// Only choose the guessed best transform.
*crunch_configs_size = 1;
crunch_configs[0].entropy_idx_ = min_entropy_ix;
+ crunch_configs[0].palette_sorting_type_ =
+ use_palette ? kMinimizeDelta : kUnusedPalette;
+ if (config->quality >= 75 && method == 5) {
+ // Test with and without color cache.
+ do_no_cache = 1;
+ // If we have a palette, also check in combination with spatial.
+ if (min_entropy_ix == kPalette) {
+ *crunch_configs_size = 2;
+ crunch_configs[1].entropy_idx_ = kPaletteAndSpatial;
+ crunch_configs[1].palette_sorting_type_ = kMinimizeDelta;
+ }
+ }
}
}
// Fill in the different LZ77s.
- assert(n_lz77s <= CRUNCH_CONFIGS_LZ77_MAX);
+ assert(n_lz77s <= CRUNCH_SUBCONFIGS_MAX);
for (i = 0; i < *crunch_configs_size; ++i) {
int j;
for (j = 0; j < n_lz77s; ++j) {
- crunch_configs[i].lz77s_types_to_try_[j] =
+ assert(j < CRUNCH_SUBCONFIGS_MAX);
+ crunch_configs[i].sub_configs_[j].lz77_ =
(j == 0) ? kLZ77Standard | kLZ77RLE : kLZ77Box;
+ crunch_configs[i].sub_configs_[j].do_no_cache_ = do_no_cache;
}
- crunch_configs[i].lz77s_types_to_try_size_ = n_lz77s;
+ crunch_configs[i].sub_configs_size_ = n_lz77s;
}
return 1;
}
@@ -440,7 +681,7 @@ static int EncoderInit(VP8LEncoder* const enc) {
int i;
if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0;
- for (i = 0; i < 3; ++i) VP8LBackwardRefsInit(&enc->refs_[i], refs_block_size);
+ for (i = 0; i < 4; ++i) VP8LBackwardRefsInit(&enc->refs_[i], refs_block_size);
return 1;
}
@@ -769,13 +1010,10 @@ static WebPEncodingError StoreImageToBitMask(
}
// Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31
-static WebPEncodingError EncodeImageNoHuffman(VP8LBitWriter* const bw,
- const uint32_t* const argb,
- VP8LHashChain* const hash_chain,
- VP8LBackwardRefs* const refs_tmp1,
- VP8LBackwardRefs* const refs_tmp2,
- int width, int height,
- int quality, int low_effort) {
+static WebPEncodingError EncodeImageNoHuffman(
+ VP8LBitWriter* const bw, const uint32_t* const argb,
+ VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs_array,
+ int width, int height, int quality, int low_effort) {
int i;
int max_tokens = 0;
WebPEncodingError err = VP8_ENC_OK;
@@ -798,13 +1036,11 @@ static WebPEncodingError EncodeImageNoHuffman(VP8LBitWriter* const bw,
err = VP8_ENC_ERROR_OUT_OF_MEMORY;
goto Error;
}
- refs = VP8LGetBackwardReferences(width, height, argb, quality, 0,
- kLZ77Standard | kLZ77RLE, &cache_bits,
- hash_chain, refs_tmp1, refs_tmp2);
- if (refs == NULL) {
- err = VP8_ENC_ERROR_OUT_OF_MEMORY;
- goto Error;
- }
+ err = VP8LGetBackwardReferences(
+ width, height, argb, quality, /*low_effort=*/0, kLZ77Standard | kLZ77RLE,
+ cache_bits, /*do_no_cache=*/0, hash_chain, refs_array, &cache_bits);
+ if (err != VP8_ENC_OK) goto Error;
+ refs = &refs_array[0];
histogram_image = VP8LAllocateHistogramSet(1, cache_bits);
if (histogram_image == NULL) {
err = VP8_ENC_ERROR_OUT_OF_MEMORY;
@@ -860,11 +1096,11 @@ static WebPEncodingError EncodeImageNoHuffman(VP8LBitWriter* const bw,
static WebPEncodingError EncodeImageInternal(
VP8LBitWriter* const bw, const uint32_t* const argb,
- VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[3], int width,
+ VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[4], int width,
int height, int quality, int low_effort, int use_cache,
const CrunchConfig* const config, int* cache_bits, int histogram_bits,
size_t init_byte_position, int* const hdr_size, int* const data_size) {
- WebPEncodingError err = VP8_ENC_OK;
+ WebPEncodingError err = VP8_ENC_ERROR_OUT_OF_MEMORY;
const uint32_t histogram_image_xysize =
VP8LSubSampleSize(width, histogram_bits) *
VP8LSubSampleSize(height, histogram_bits);
@@ -876,103 +1112,103 @@ static WebPEncodingError EncodeImageInternal(
3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
HuffmanTreeToken* tokens = NULL;
HuffmanTreeCode* huffman_codes = NULL;
- VP8LBackwardRefs* refs_best;
- VP8LBackwardRefs* refs_tmp;
uint16_t* const histogram_symbols =
(uint16_t*)WebPSafeMalloc(histogram_image_xysize,
sizeof(*histogram_symbols));
- int lz77s_idx;
+ int sub_configs_idx;
+ int cache_bits_init, write_histogram_image;
VP8LBitWriter bw_init = *bw, bw_best;
int hdr_size_tmp;
+ VP8LHashChain hash_chain_histogram; // histogram image hash chain
+ size_t bw_size_best = ~(size_t)0;
assert(histogram_bits >= MIN_HUFFMAN_BITS);
assert(histogram_bits <= MAX_HUFFMAN_BITS);
assert(hdr_size != NULL);
assert(data_size != NULL);
- if (histogram_symbols == NULL) {
- err = VP8_ENC_ERROR_OUT_OF_MEMORY;
+ // Make sure we can allocate the different objects.
+ memset(&hash_chain_histogram, 0, sizeof(hash_chain_histogram));
+ if (huff_tree == NULL || histogram_symbols == NULL ||
+ !VP8LHashChainInit(&hash_chain_histogram, histogram_image_xysize) ||
+ !VP8LHashChainFill(hash_chain, quality, argb, width, height,
+ low_effort)) {
goto Error;
}
-
if (use_cache) {
// If the value is different from zero, it has been set during the
// palette analysis.
- if (*cache_bits == 0) *cache_bits = MAX_COLOR_CACHE_BITS;
+ cache_bits_init = (*cache_bits == 0) ? MAX_COLOR_CACHE_BITS : *cache_bits;
} else {
- *cache_bits = 0;
+ cache_bits_init = 0;
}
- // 'best_refs' is the reference to the best backward refs and points to one
- // of refs_array[0] or refs_array[1].
- // Calculate backward references from ARGB image.
- if (huff_tree == NULL ||
- !VP8LHashChainFill(hash_chain, quality, argb, width, height,
- low_effort) ||
- !VP8LBitWriterInit(&bw_best, 0) ||
- (config->lz77s_types_to_try_size_ > 1 &&
+ // If several iterations will happen, clone into bw_best.
+ if (!VP8LBitWriterInit(&bw_best, 0) ||
+ ((config->sub_configs_size_ > 1 ||
+ config->sub_configs_[0].do_no_cache_) &&
!VP8LBitWriterClone(bw, &bw_best))) {
- err = VP8_ENC_ERROR_OUT_OF_MEMORY;
goto Error;
}
- for (lz77s_idx = 0; lz77s_idx < config->lz77s_types_to_try_size_;
- ++lz77s_idx) {
- refs_best = VP8LGetBackwardReferences(
- width, height, argb, quality, low_effort,
- config->lz77s_types_to_try_[lz77s_idx], cache_bits, hash_chain,
- &refs_array[0], &refs_array[1]);
- if (refs_best == NULL) {
- err = VP8_ENC_ERROR_OUT_OF_MEMORY;
- goto Error;
- }
- // Keep the best references aside and use the other element from the first
- // two as a temporary for later usage.
- refs_tmp = &refs_array[refs_best == &refs_array[0] ? 1 : 0];
-
- histogram_image =
- VP8LAllocateHistogramSet(histogram_image_xysize, *cache_bits);
- tmp_histo = VP8LAllocateHistogram(*cache_bits);
- if (histogram_image == NULL || tmp_histo == NULL) {
- err = VP8_ENC_ERROR_OUT_OF_MEMORY;
- goto Error;
- }
-
- // Build histogram image and symbols from backward references.
- if (!VP8LGetHistoImageSymbols(width, height, refs_best, quality, low_effort,
- histogram_bits, *cache_bits, histogram_image,
- tmp_histo, histogram_symbols)) {
- err = VP8_ENC_ERROR_OUT_OF_MEMORY;
- goto Error;
- }
- // Create Huffman bit lengths and codes for each histogram image.
- histogram_image_size = histogram_image->size;
- bit_array_size = 5 * histogram_image_size;
- huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size,
- sizeof(*huffman_codes));
- // Note: some histogram_image entries may point to tmp_histos[], so the
- // latter need to outlive the following call to GetHuffBitLengthsAndCodes().
- if (huffman_codes == NULL ||
- !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
- err = VP8_ENC_ERROR_OUT_OF_MEMORY;
- goto Error;
- }
- // Free combined histograms.
- VP8LFreeHistogramSet(histogram_image);
- histogram_image = NULL;
-
- // Free scratch histograms.
- VP8LFreeHistogram(tmp_histo);
- tmp_histo = NULL;
+ for (sub_configs_idx = 0; sub_configs_idx < config->sub_configs_size_;
+ ++sub_configs_idx) {
+ const CrunchSubConfig* const sub_config =
+ &config->sub_configs_[sub_configs_idx];
+ int cache_bits_best, i_cache;
+ err = VP8LGetBackwardReferences(width, height, argb, quality, low_effort,
+ sub_config->lz77_, cache_bits_init,
+ sub_config->do_no_cache_, hash_chain,
+ &refs_array[0], &cache_bits_best);
+ if (err != VP8_ENC_OK) goto Error;
- // Color Cache parameters.
- if (*cache_bits > 0) {
- VP8LPutBits(bw, 1, 1);
- VP8LPutBits(bw, *cache_bits, 4);
- } else {
- VP8LPutBits(bw, 0, 1);
- }
+ for (i_cache = 0; i_cache < (sub_config->do_no_cache_ ? 2 : 1); ++i_cache) {
+ const int cache_bits_tmp = (i_cache == 0) ? cache_bits_best : 0;
+ // Speed-up: no need to study the no-cache case if it was already studied
+ // in i_cache == 0.
+ if (i_cache == 1 && cache_bits_best == 0) break;
+
+ // Reset the bit writer for this iteration.
+ VP8LBitWriterReset(&bw_init, bw);
+
+ // Build histogram image and symbols from backward references.
+ histogram_image =
+ VP8LAllocateHistogramSet(histogram_image_xysize, cache_bits_tmp);
+ tmp_histo = VP8LAllocateHistogram(cache_bits_tmp);
+ if (histogram_image == NULL || tmp_histo == NULL ||
+ !VP8LGetHistoImageSymbols(width, height, &refs_array[i_cache],
+ quality, low_effort, histogram_bits,
+ cache_bits_tmp, histogram_image, tmp_histo,
+ histogram_symbols)) {
+ goto Error;
+ }
+ // Create Huffman bit lengths and codes for each histogram image.
+ histogram_image_size = histogram_image->size;
+ bit_array_size = 5 * histogram_image_size;
+ huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size,
+ sizeof(*huffman_codes));
+ // Note: some histogram_image entries may point to tmp_histos[], so the
+ // latter need to outlive the following call to
+ // GetHuffBitLengthsAndCodes().
+ if (huffman_codes == NULL ||
+ !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
+ goto Error;
+ }
+ // Free combined histograms.
+ VP8LFreeHistogramSet(histogram_image);
+ histogram_image = NULL;
+
+ // Free scratch histograms.
+ VP8LFreeHistogram(tmp_histo);
+ tmp_histo = NULL;
+
+ // Color Cache parameters.
+ if (cache_bits_tmp > 0) {
+ VP8LPutBits(bw, 1, 1);
+ VP8LPutBits(bw, cache_bits_tmp, 4);
+ } else {
+ VP8LPutBits(bw, 0, 1);
+ }
- // Huffman image + meta huffman.
- {
- const int write_histogram_image = (histogram_image_size > 1);
+ // Huffman image + meta huffman.
+ write_histogram_image = (histogram_image_size > 1);
VP8LPutBits(bw, write_histogram_image, 1);
if (write_histogram_image) {
uint32_t* const histogram_argb =
@@ -980,10 +1216,7 @@ static WebPEncodingError EncodeImageInternal(
sizeof(*histogram_argb));
int max_index = 0;
uint32_t i;
- if (histogram_argb == NULL) {
- err = VP8_ENC_ERROR_OUT_OF_MEMORY;
- goto Error;
- }
+ if (histogram_argb == NULL) goto Error;
for (i = 0; i < histogram_image_xysize; ++i) {
const int symbol_index = histogram_symbols[i] & 0xffff;
histogram_argb[i] = (symbol_index << 8);
@@ -995,65 +1228,64 @@ static WebPEncodingError EncodeImageInternal(
VP8LPutBits(bw, histogram_bits - 2, 3);
err = EncodeImageNoHuffman(
- bw, histogram_argb, hash_chain, refs_tmp, &refs_array[2],
+ bw, histogram_argb, &hash_chain_histogram, &refs_array[2],
VP8LSubSampleSize(width, histogram_bits),
VP8LSubSampleSize(height, histogram_bits), quality, low_effort);
WebPSafeFree(histogram_argb);
if (err != VP8_ENC_OK) goto Error;
}
- }
- // Store Huffman codes.
- {
- int i;
- int max_tokens = 0;
- // Find maximum number of symbols for the huffman tree-set.
- for (i = 0; i < 5 * histogram_image_size; ++i) {
- HuffmanTreeCode* const codes = &huffman_codes[i];
- if (max_tokens < codes->num_symbols) {
- max_tokens = codes->num_symbols;
+ // Store Huffman codes.
+ {
+ int i;
+ int max_tokens = 0;
+ // Find maximum number of symbols for the huffman tree-set.
+ for (i = 0; i < 5 * histogram_image_size; ++i) {
+ HuffmanTreeCode* const codes = &huffman_codes[i];
+ if (max_tokens < codes->num_symbols) {
+ max_tokens = codes->num_symbols;
+ }
+ }
+ tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
+ if (tokens == NULL) goto Error;
+ for (i = 0; i < 5 * histogram_image_size; ++i) {
+ HuffmanTreeCode* const codes = &huffman_codes[i];
+ StoreHuffmanCode(bw, huff_tree, tokens, codes);
+ ClearHuffmanTreeIfOnlyOneSymbol(codes);
}
}
- tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
- if (tokens == NULL) {
- err = VP8_ENC_ERROR_OUT_OF_MEMORY;
- goto Error;
+ // Store actual literals.
+ hdr_size_tmp = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position);
+ err = StoreImageToBitMask(bw, width, histogram_bits, &refs_array[i_cache],
+ histogram_symbols, huffman_codes);
+ if (err != VP8_ENC_OK) goto Error;
+ // Keep track of the smallest image so far.
+ if (VP8LBitWriterNumBytes(bw) < bw_size_best) {
+ bw_size_best = VP8LBitWriterNumBytes(bw);
+ *cache_bits = cache_bits_tmp;
+ *hdr_size = hdr_size_tmp;
+ *data_size =
+ (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size);
+ VP8LBitWriterSwap(bw, &bw_best);
}
- for (i = 0; i < 5 * histogram_image_size; ++i) {
- HuffmanTreeCode* const codes = &huffman_codes[i];
- StoreHuffmanCode(bw, huff_tree, tokens, codes);
- ClearHuffmanTreeIfOnlyOneSymbol(codes);
+ WebPSafeFree(tokens);
+ tokens = NULL;
+ if (huffman_codes != NULL) {
+ WebPSafeFree(huffman_codes->codes);
+ WebPSafeFree(huffman_codes);
+ huffman_codes = NULL;
}
}
- // Store actual literals.
- hdr_size_tmp = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position);
- err = StoreImageToBitMask(bw, width, histogram_bits, refs_best,
- histogram_symbols, huffman_codes);
- // Keep track of the smallest image so far.
- if (lz77s_idx == 0 ||
- VP8LBitWriterNumBytes(bw) < VP8LBitWriterNumBytes(&bw_best)) {
- *hdr_size = hdr_size_tmp;
- *data_size =
- (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size);
- VP8LBitWriterSwap(bw, &bw_best);
- }
- // Reset the bit writer for the following iteration if any.
- if (config->lz77s_types_to_try_size_ > 1) VP8LBitWriterReset(&bw_init, bw);
- WebPSafeFree(tokens);
- tokens = NULL;
- if (huffman_codes != NULL) {
- WebPSafeFree(huffman_codes->codes);
- WebPSafeFree(huffman_codes);
- huffman_codes = NULL;
- }
}
VP8LBitWriterSwap(bw, &bw_best);
+ err = VP8_ENC_OK;
Error:
WebPSafeFree(tokens);
WebPSafeFree(huff_tree);
VP8LFreeHistogramSet(histogram_image);
VP8LFreeHistogram(tmp_histo);
+ VP8LHashChainClear(&hash_chain_histogram);
if (huffman_codes != NULL) {
WebPSafeFree(huffman_codes->codes);
WebPSafeFree(huffman_codes);
@@ -1095,8 +1327,7 @@ static WebPEncodingError ApplyPredictFilter(const VP8LEncoder* const enc,
VP8LPutBits(bw, pred_bits - 2, 3);
return EncodeImageNoHuffman(
bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
- (VP8LBackwardRefs*)&enc->refs_[0], // cast const away
- (VP8LBackwardRefs*)&enc->refs_[1], transform_width, transform_height,
+ (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height,
quality, low_effort);
}
@@ -1116,8 +1347,7 @@ static WebPEncodingError ApplyCrossColorFilter(const VP8LEncoder* const enc,
VP8LPutBits(bw, ccolor_transform_bits - 2, 3);
return EncodeImageNoHuffman(
bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
- (VP8LBackwardRefs*)&enc->refs_[0], // cast const away
- (VP8LBackwardRefs*)&enc->refs_[1], transform_width, transform_height,
+ (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height,
quality, low_effort);
}
@@ -1272,22 +1502,6 @@ static WebPEncodingError MakeInputImageCopy(VP8LEncoder* const enc) {
// -----------------------------------------------------------------------------
-static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color,
- int hi) {
- int low = 0;
- if (sorted[low] == color) return low; // loop invariant: sorted[low] != color
- while (1) {
- const int mid = (low + hi) >> 1;
- if (sorted[mid] == color) {
- return mid;
- } else if (sorted[mid] < color) {
- low = mid;
- } else {
- hi = mid;
- }
- }
-}
-
#define APPLY_PALETTE_GREEDY_MAX 4
static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[],
@@ -1322,17 +1536,6 @@ static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) {
(32 - PALETTE_INV_SIZE_BITS);
}
-// Sort palette in increasing order and prepare an inverse mapping array.
-static void PrepareMapToPalette(const uint32_t palette[], int num_colors,
- uint32_t sorted[], uint32_t idx_map[]) {
- int i;
- memcpy(sorted, palette, num_colors * sizeof(*sorted));
- qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
- for (i = 0; i < num_colors; ++i) {
- idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
- }
-}
-
// Use 1 pixel cache for ARGB pixels.
#define APPLY_PALETTE_FOR(COLOR_INDEX) do { \
uint32_t prev_pix = palette[0]; \
@@ -1464,8 +1667,8 @@ static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort,
}
tmp_palette[0] = palette[0];
return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_,
- &enc->refs_[0], &enc->refs_[1], palette_size, 1,
- 20 /* quality */, low_effort);
+ &enc->refs_[0], palette_size, 1, /*quality=*/20,
+ low_effort);
}
// -----------------------------------------------------------------------------
@@ -1491,7 +1694,7 @@ static void VP8LEncoderDelete(VP8LEncoder* enc) {
if (enc != NULL) {
int i;
VP8LHashChainClear(&enc->hash_chain_);
- for (i = 0; i < 3; ++i) VP8LBackwardRefsClear(&enc->refs_[i]);
+ for (i = 0; i < 4; ++i) VP8LBackwardRefsClear(&enc->refs_[i]);
ClearTransformBuffer(enc);
WebPSafeFree(enc);
}
@@ -1541,7 +1744,7 @@ static int EncodeStreamHook(void* input, void* data2) {
int data_size = 0;
int use_delta_palette = 0;
int idx;
- size_t best_size = 0;
+ size_t best_size = ~(size_t)0;
VP8LBitWriter bw_init = *bw, bw_best;
(void)data2;
@@ -1553,12 +1756,15 @@ static int EncodeStreamHook(void* input, void* data2) {
for (idx = 0; idx < num_crunch_configs; ++idx) {
const int entropy_idx = crunch_configs[idx].entropy_idx_;
- enc->use_palette_ = (entropy_idx == kPalette);
+ enc->use_palette_ =
+ (entropy_idx == kPalette) || (entropy_idx == kPaletteAndSpatial);
enc->use_subtract_green_ =
(entropy_idx == kSubGreen) || (entropy_idx == kSpatialSubGreen);
- enc->use_predict_ =
- (entropy_idx == kSpatial) || (entropy_idx == kSpatialSubGreen);
- if (low_effort) {
+ enc->use_predict_ = (entropy_idx == kSpatial) ||
+ (entropy_idx == kSpatialSubGreen) ||
+ (entropy_idx == kPaletteAndSpatial);
+ // When using a palette, R/B==0, hence no need to test for cross-color.
+ if (low_effort || enc->use_palette_) {
enc->use_cross_color_ = 0;
} else {
enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_;
@@ -1590,6 +1796,19 @@ static int EncodeStreamHook(void* input, void* data2) {
// Encode palette
if (enc->use_palette_) {
+ if (crunch_configs[idx].palette_sorting_type_ == kSortedDefault) {
+ // Nothing to do, we have already sorted the palette.
+ memcpy(enc->palette_, enc->palette_sorted_,
+ enc->palette_size_ * sizeof(*enc->palette_));
+ } else if (crunch_configs[idx].palette_sorting_type_ == kMinimizeDelta) {
+ PaletteSortMinimizeDeltas(enc->palette_sorted_, enc->palette_size_,
+ enc->palette_);
+ } else {
+ assert(crunch_configs[idx].palette_sorting_type_ == kModifiedZeng);
+ err = PaletteSortModifiedZeng(enc->pic_, enc->palette_sorted_,
+ enc->palette_size_, enc->palette_);
+ if (err != VP8_ENC_OK) goto Error;
+ }
err = EncodePalette(bw, low_effort, enc);
if (err != VP8_ENC_OK) goto Error;
err = MapImageFromPalette(enc, use_delta_palette);
@@ -1640,7 +1859,7 @@ static int EncodeStreamHook(void* input, void* data2) {
if (err != VP8_ENC_OK) goto Error;
// If we are better than what we already have.
- if (idx == 0 || VP8LBitWriterNumBytes(bw) < best_size) {
+ if (VP8LBitWriterNumBytes(bw) < best_size) {
best_size = VP8LBitWriterNumBytes(bw);
// Store the BitWriter.
VP8LBitWriterSwap(bw, &bw_best);
@@ -1754,6 +1973,8 @@ WebPEncodingError VP8LEncodeStream(const WebPConfig* const config,
enc_side->palette_size_ = enc_main->palette_size_;
memcpy(enc_side->palette_, enc_main->palette_,
sizeof(enc_main->palette_));
+ memcpy(enc_side->palette_sorted_, enc_main->palette_sorted_,
+ sizeof(enc_main->palette_sorted_));
param->enc_ = enc_side;
}
// Create the workers.
@@ -1816,7 +2037,7 @@ Error:
}
#undef CRUNCH_CONFIGS_MAX
-#undef CRUNCH_CONFIGS_LZ77_MAX
+#undef CRUNCH_SUBCONFIGS_MAX
int VP8LEncodeImage(const WebPConfig* const config,
const WebPPicture* const picture) {