summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/src/enc/picture_csp_enc.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/libwebp/src/enc/picture_csp_enc.c')
-rw-r--r--thirdparty/libwebp/src/enc/picture_csp_enc.c148
1 files changed, 85 insertions, 63 deletions
diff --git a/thirdparty/libwebp/src/enc/picture_csp_enc.c b/thirdparty/libwebp/src/enc/picture_csp_enc.c
index d531dd0282..02d9df76d5 100644
--- a/thirdparty/libwebp/src/enc/picture_csp_enc.c
+++ b/thirdparty/libwebp/src/enc/picture_csp_enc.c
@@ -28,11 +28,11 @@
// If defined, use table to compute x / alpha.
#define USE_INVERSE_ALPHA_TABLE
-static const union {
- uint32_t argb;
- uint8_t bytes[4];
-} test_endian = { 0xff000000u };
-#define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff)
+#ifdef WORDS_BIGENDIAN
+#define ALPHA_OFFSET 0 // uint32_t 0xff000000 is 0xff,00,00,00 in memory
+#else
+#define ALPHA_OFFSET 3 // uint32_t 0xff000000 is 0x00,00,00,ff in memory
+#endif
//------------------------------------------------------------------------------
// Detection of non-trivial transparency
@@ -61,7 +61,7 @@ int WebPPictureHasTransparency(const WebPPicture* picture) {
return CheckNonOpaque(picture->a, picture->width, picture->height,
1, picture->a_stride);
} else {
- const int alpha_offset = ALPHA_IS_LAST ? 3 : 0;
+ const int alpha_offset = ALPHA_OFFSET;
return CheckNonOpaque((const uint8_t*)picture->argb + alpha_offset,
picture->width, picture->height,
4, picture->argb_stride * sizeof(*picture->argb));
@@ -126,7 +126,7 @@ static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
#else
-static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTables(void) {}
+static void InitGammaTables(void) {}
static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; }
static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
return (int)(base_value << shift);
@@ -170,29 +170,33 @@ typedef uint16_t fixed_y_t; // unsigned type with extra SFIX precision for W
#if defined(USE_GAMMA_COMPRESSION)
-// float variant of gamma-correction
// We use tables of different size and precision for the Rec709 / BT2020
// transfer function.
#define kGammaF (1./0.45)
-static float kGammaToLinearTabF[MAX_Y_T + 1]; // size scales with Y_FIX
-static float kLinearToGammaTabF[kGammaTabSize + 2];
-static volatile int kGammaTablesFOk = 0;
-
-static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesF(void) {
- if (!kGammaTablesFOk) {
+static uint32_t kLinearToGammaTabS[kGammaTabSize + 2];
+#define GAMMA_TO_LINEAR_BITS 14
+static uint32_t kGammaToLinearTabS[MAX_Y_T + 1]; // size scales with Y_FIX
+static volatile int kGammaTablesSOk = 0;
+
+static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesS(void) {
+ assert(2 * GAMMA_TO_LINEAR_BITS < 32); // we use uint32_t intermediate values
+ if (!kGammaTablesSOk) {
int v;
const double norm = 1. / MAX_Y_T;
const double scale = 1. / kGammaTabSize;
const double a = 0.09929682680944;
const double thresh = 0.018053968510807;
+ const double final_scale = 1 << GAMMA_TO_LINEAR_BITS;
for (v = 0; v <= MAX_Y_T; ++v) {
const double g = norm * v;
+ double value;
if (g <= thresh * 4.5) {
- kGammaToLinearTabF[v] = (float)(g / 4.5);
+ value = g / 4.5;
} else {
const double a_rec = 1. / (1. + a);
- kGammaToLinearTabF[v] = (float)pow(a_rec * (g + a), kGammaF);
+ value = pow(a_rec * (g + a), kGammaF);
}
+ kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5);
}
for (v = 0; v <= kGammaTabSize; ++v) {
const double g = scale * v;
@@ -202,37 +206,44 @@ static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesF(void) {
} else {
value = (1. + a) * pow(g, 1. / kGammaF) - a;
}
- kLinearToGammaTabF[v] = (float)(MAX_Y_T * value);
+ // we already incorporate the 1/2 rounding constant here
+ kLinearToGammaTabS[v] =
+ (uint32_t)(MAX_Y_T * value) + (1 << GAMMA_TO_LINEAR_BITS >> 1);
}
// to prevent small rounding errors to cause read-overflow:
- kLinearToGammaTabF[kGammaTabSize + 1] = kLinearToGammaTabF[kGammaTabSize];
- kGammaTablesFOk = 1;
+ kLinearToGammaTabS[kGammaTabSize + 1] = kLinearToGammaTabS[kGammaTabSize];
+ kGammaTablesSOk = 1;
}
}
-static WEBP_INLINE float GammaToLinearF(int v) {
- return kGammaToLinearTabF[v];
+// return value has a fixed-point precision of GAMMA_TO_LINEAR_BITS
+static WEBP_INLINE uint32_t GammaToLinearS(int v) {
+ return kGammaToLinearTabS[v];
}
-static WEBP_INLINE int LinearToGammaF(float value) {
- const float v = value * kGammaTabSize;
- const int tab_pos = (int)v;
- const float x = v - (float)tab_pos; // fractional part
- const float v0 = kLinearToGammaTabF[tab_pos + 0];
- const float v1 = kLinearToGammaTabF[tab_pos + 1];
- const float y = v1 * x + v0 * (1.f - x); // interpolate
- return (int)(y + .5);
+static WEBP_INLINE uint32_t LinearToGammaS(uint32_t value) {
+ // 'value' is in GAMMA_TO_LINEAR_BITS fractional precision
+ const uint32_t v = value * kGammaTabSize;
+ const uint32_t tab_pos = v >> GAMMA_TO_LINEAR_BITS;
+ // fractional part, in GAMMA_TO_LINEAR_BITS fixed-point precision
+ const uint32_t x = v - (tab_pos << GAMMA_TO_LINEAR_BITS); // fractional part
+ // v0 / v1 are in GAMMA_TO_LINEAR_BITS fixed-point precision (range [0..1])
+ const uint32_t v0 = kLinearToGammaTabS[tab_pos + 0];
+ const uint32_t v1 = kLinearToGammaTabS[tab_pos + 1];
+ // Final interpolation. Note that rounding is already included.
+ const uint32_t v2 = (v1 - v0) * x; // note: v1 >= v0.
+ const uint32_t result = v0 + (v2 >> GAMMA_TO_LINEAR_BITS);
+ return result;
}
#else
-static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesF(void) {}
-static WEBP_INLINE float GammaToLinearF(int v) {
- const float norm = 1.f / MAX_Y_T;
- return norm * v;
+static void InitGammaTablesS(void) {}
+static WEBP_INLINE uint32_t GammaToLinearS(int v) {
+ return (v << GAMMA_TO_LINEAR_BITS) / MAX_Y_T;
}
-static WEBP_INLINE int LinearToGammaF(float value) {
- return (int)(MAX_Y_T * value + .5);
+static WEBP_INLINE uint32_t LinearToGammaS(uint32_t value) {
+ return (MAX_Y_T * value) >> GAMMA_TO_LINEAR_BITS;
}
#endif // USE_GAMMA_COMPRESSION
@@ -254,26 +265,22 @@ static int RGBToGray(int r, int g, int b) {
return (luma >> YUV_FIX);
}
-static float RGBToGrayF(float r, float g, float b) {
- return (float)(0.2126 * r + 0.7152 * g + 0.0722 * b);
-}
-
-static int ScaleDown(int a, int b, int c, int d) {
- const float A = GammaToLinearF(a);
- const float B = GammaToLinearF(b);
- const float C = GammaToLinearF(c);
- const float D = GammaToLinearF(d);
- return LinearToGammaF(0.25f * (A + B + C + D));
+static uint32_t ScaleDown(int a, int b, int c, int d) {
+ const uint32_t A = GammaToLinearS(a);
+ const uint32_t B = GammaToLinearS(b);
+ const uint32_t C = GammaToLinearS(c);
+ const uint32_t D = GammaToLinearS(d);
+ return LinearToGammaS((A + B + C + D + 2) >> 2);
}
static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w) {
int i;
for (i = 0; i < w; ++i) {
- const float R = GammaToLinearF(src[0 * w + i]);
- const float G = GammaToLinearF(src[1 * w + i]);
- const float B = GammaToLinearF(src[2 * w + i]);
- const float Y = RGBToGrayF(R, G, B);
- dst[i] = (fixed_y_t)LinearToGammaF(Y);
+ const uint32_t R = GammaToLinearS(src[0 * w + i]);
+ const uint32_t G = GammaToLinearS(src[1 * w + i]);
+ const uint32_t B = GammaToLinearS(src[2 * w + i]);
+ const uint32_t Y = RGBToGray(R, G, B);
+ dst[i] = (fixed_y_t)LinearToGammaS(Y);
}
}
@@ -863,7 +870,7 @@ static int ImportYUVAFromRGBA(const uint8_t* r_ptr,
}
if (use_iterative_conversion) {
- InitGammaTablesF();
+ InitGammaTablesS();
if (!PreprocessARGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, picture)) {
return 0;
}
@@ -990,10 +997,10 @@ static int PictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace,
return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION);
} else {
const uint8_t* const argb = (const uint8_t*)picture->argb;
- const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1;
- const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2;
- const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3;
- const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0;
+ const uint8_t* const a = argb + (0 ^ ALPHA_OFFSET);
+ const uint8_t* const r = argb + (1 ^ ALPHA_OFFSET);
+ const uint8_t* const g = argb + (2 ^ ALPHA_OFFSET);
+ const uint8_t* const b = argb + (3 ^ ALPHA_OFFSET);
picture->colorspace = WEBP_YUV420;
return ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride,
@@ -1044,7 +1051,8 @@ int WebPPictureYUVAToARGB(WebPPicture* picture) {
const int argb_stride = 4 * picture->argb_stride;
uint8_t* dst = (uint8_t*)picture->argb;
const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y;
- WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST);
+ WebPUpsampleLinePairFunc upsample =
+ WebPGetLinePairConverter(ALPHA_OFFSET > 0);
// First row, with replicated top samples.
upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width);
@@ -1087,6 +1095,7 @@ static int Import(WebPPicture* const picture,
const uint8_t* rgb, int rgb_stride,
int step, int swap_rb, int import_alpha) {
int y;
+ // swap_rb -> b,g,r,a , !swap_rb -> r,g,b,a
const uint8_t* r_ptr = rgb + (swap_rb ? 2 : 0);
const uint8_t* g_ptr = rgb + 1;
const uint8_t* b_ptr = rgb + (swap_rb ? 0 : 2);
@@ -1104,19 +1113,32 @@ static int Import(WebPPicture* const picture,
WebPInitAlphaProcessing();
if (import_alpha) {
+ // dst[] byte order is {a,r,g,b} for big-endian, {b,g,r,a} for little endian
uint32_t* dst = picture->argb;
- const int do_copy =
- (!swap_rb && !ALPHA_IS_LAST) || (swap_rb && ALPHA_IS_LAST);
+ const int do_copy = (ALPHA_OFFSET == 3) && swap_rb;
assert(step == 4);
- for (y = 0; y < height; ++y) {
- if (do_copy) {
+ if (do_copy) {
+ for (y = 0; y < height; ++y) {
memcpy(dst, rgb, width * 4);
- } else {
+ rgb += rgb_stride;
+ dst += picture->argb_stride;
+ }
+ } else {
+ for (y = 0; y < height; ++y) {
+#ifdef WORDS_BIGENDIAN
+ // BGRA or RGBA input order.
+ const uint8_t* a_ptr = rgb + 3;
+ WebPPackARGB(a_ptr, r_ptr, g_ptr, b_ptr, width, dst);
+ r_ptr += rgb_stride;
+ g_ptr += rgb_stride;
+ b_ptr += rgb_stride;
+#else
// RGBA input order. Need to swap R and B.
VP8LConvertBGRAToRGBA((const uint32_t*)rgb, width, (uint8_t*)dst);
+#endif
+ rgb += rgb_stride;
+ dst += picture->argb_stride;
}
- rgb += rgb_stride;
- dst += picture->argb_stride;
}
} else {
uint32_t* dst = picture->argb;