diff options
Diffstat (limited to 'thirdparty/libwebp/src/enc/picture_csp_enc.c')
-rw-r--r-- | thirdparty/libwebp/src/enc/picture_csp_enc.c | 492 |
1 files changed, 68 insertions, 424 deletions
diff --git a/thirdparty/libwebp/src/enc/picture_csp_enc.c b/thirdparty/libwebp/src/enc/picture_csp_enc.c index 35eede9635..fabebcf202 100644 --- a/thirdparty/libwebp/src/enc/picture_csp_enc.c +++ b/thirdparty/libwebp/src/enc/picture_csp_enc.c @@ -15,12 +15,19 @@ #include <stdlib.h> #include <math.h> +#include "sharpyuv/sharpyuv.h" +#include "sharpyuv/sharpyuv_csp.h" #include "src/enc/vp8i_enc.h" #include "src/utils/random_utils.h" #include "src/utils/utils.h" #include "src/dsp/dsp.h" #include "src/dsp/lossless.h" #include "src/dsp/yuv.h" +#include "src/dsp/cpu.h" + +#if defined(WEBP_USE_THREAD) && !defined(_WIN32) +#include <pthread.h> +#endif // Uncomment to disable gamma-compression during RGB->U/V averaging #define USE_GAMMA_COMPRESSION @@ -76,16 +83,16 @@ int WebPPictureHasTransparency(const WebPPicture* picture) { #if defined(USE_GAMMA_COMPRESSION) -// gamma-compensates loss of resolution during chroma subsampling -#define kGamma 0.80 // for now we use a different gamma value than kGammaF -#define kGammaFix 12 // fixed-point precision for linear values -#define kGammaScale ((1 << kGammaFix) - 1) -#define kGammaTabFix 7 // fixed-point fractional bits precision -#define kGammaTabScale (1 << kGammaTabFix) -#define kGammaTabRounder (kGammaTabScale >> 1) -#define kGammaTabSize (1 << (kGammaFix - kGammaTabFix)) +// Gamma correction compensates loss of resolution during chroma subsampling. +#define GAMMA_FIX 12 // fixed-point precision for linear values +#define GAMMA_TAB_FIX 7 // fixed-point fractional bits precision +#define GAMMA_TAB_SIZE (1 << (GAMMA_FIX - GAMMA_TAB_FIX)) +static const double kGamma = 0.80; +static const int kGammaScale = ((1 << GAMMA_FIX) - 1); +static const int kGammaTabScale = (1 << GAMMA_TAB_FIX); +static const int kGammaTabRounder = (1 << GAMMA_TAB_FIX >> 1); -static int kLinearToGammaTab[kGammaTabSize + 1]; +static int kLinearToGammaTab[GAMMA_TAB_SIZE + 1]; static uint16_t kGammaToLinearTab[256]; static volatile int kGammaTablesOk = 0; static void InitGammaTables(void); @@ -93,13 +100,13 @@ static void InitGammaTables(void); WEBP_DSP_INIT_FUNC(InitGammaTables) { if (!kGammaTablesOk) { int v; - const double scale = (double)(1 << kGammaTabFix) / kGammaScale; + const double scale = (double)(1 << GAMMA_TAB_FIX) / kGammaScale; const double norm = 1. / 255.; for (v = 0; v <= 255; ++v) { kGammaToLinearTab[v] = (uint16_t)(pow(norm * v, kGamma) * kGammaScale + .5); } - for (v = 0; v <= kGammaTabSize; ++v) { + for (v = 0; v <= GAMMA_TAB_SIZE; ++v) { kLinearToGammaTab[v] = (int)(255. * pow(scale * v, 1. / kGamma) + .5); } kGammaTablesOk = 1; @@ -111,12 +118,12 @@ static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { } static WEBP_INLINE int Interpolate(int v) { - const int tab_pos = v >> (kGammaTabFix + 2); // integer part + const int tab_pos = v >> (GAMMA_TAB_FIX + 2); // integer part const int x = v & ((kGammaTabScale << 2) - 1); // fractional part const int v0 = kLinearToGammaTab[tab_pos]; const int v1 = kLinearToGammaTab[tab_pos + 1]; const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x); // interpolate - assert(tab_pos + 1 < kGammaTabSize + 1); + assert(tab_pos + 1 < GAMMA_TAB_SIZE + 1); return y; } @@ -124,7 +131,7 @@ static WEBP_INLINE int Interpolate(int v) { // U/V value, suitable for RGBToU/V calls. static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { const int y = Interpolate(base_value << shift); // final uplifted value - return (y + kGammaTabRounder) >> kGammaTabFix; // descale + return (y + kGammaTabRounder) >> GAMMA_TAB_FIX; // descale } #else @@ -158,415 +165,41 @@ static int RGBToV(int r, int g, int b, VP8Random* const rg) { //------------------------------------------------------------------------------ // Sharp RGB->YUV conversion -static const int kNumIterations = 4; static const int kMinDimensionIterativeConversion = 4; -// We could use SFIX=0 and only uint8_t for fixed_y_t, but it produces some -// banding sometimes. Better use extra precision. -#define SFIX 2 // fixed-point precision of RGB and Y/W -typedef int16_t fixed_t; // signed type with extra SFIX precision for UV -typedef uint16_t fixed_y_t; // unsigned type with extra SFIX precision for W - -#define SHALF (1 << SFIX >> 1) -#define MAX_Y_T ((256 << SFIX) - 1) -#define SROUNDER (1 << (YUV_FIX + SFIX - 1)) - -#if defined(USE_GAMMA_COMPRESSION) - -// We use tables of different size and precision for the Rec709 / BT2020 -// transfer function. -#define kGammaF (1./0.45) -static uint32_t kLinearToGammaTabS[kGammaTabSize + 2]; -#define GAMMA_TO_LINEAR_BITS 14 -static uint32_t kGammaToLinearTabS[MAX_Y_T + 1]; // size scales with Y_FIX -static volatile int kGammaTablesSOk = 0; -static void InitGammaTablesS(void); - -WEBP_DSP_INIT_FUNC(InitGammaTablesS) { - assert(2 * GAMMA_TO_LINEAR_BITS < 32); // we use uint32_t intermediate values - if (!kGammaTablesSOk) { - int v; - const double norm = 1. / MAX_Y_T; - const double scale = 1. / kGammaTabSize; - const double a = 0.09929682680944; - const double thresh = 0.018053968510807; - const double final_scale = 1 << GAMMA_TO_LINEAR_BITS; - for (v = 0; v <= MAX_Y_T; ++v) { - const double g = norm * v; - double value; - if (g <= thresh * 4.5) { - value = g / 4.5; - } else { - const double a_rec = 1. / (1. + a); - value = pow(a_rec * (g + a), kGammaF); - } - kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5); - } - for (v = 0; v <= kGammaTabSize; ++v) { - const double g = scale * v; - double value; - if (g <= thresh) { - value = 4.5 * g; - } else { - value = (1. + a) * pow(g, 1. / kGammaF) - a; - } - // we already incorporate the 1/2 rounding constant here - kLinearToGammaTabS[v] = - (uint32_t)(MAX_Y_T * value) + (1 << GAMMA_TO_LINEAR_BITS >> 1); - } - // to prevent small rounding errors to cause read-overflow: - kLinearToGammaTabS[kGammaTabSize + 1] = kLinearToGammaTabS[kGammaTabSize]; - kGammaTablesSOk = 1; - } -} - -// return value has a fixed-point precision of GAMMA_TO_LINEAR_BITS -static WEBP_INLINE uint32_t GammaToLinearS(int v) { - return kGammaToLinearTabS[v]; -} - -static WEBP_INLINE uint32_t LinearToGammaS(uint32_t value) { - // 'value' is in GAMMA_TO_LINEAR_BITS fractional precision - const uint32_t v = value * kGammaTabSize; - const uint32_t tab_pos = v >> GAMMA_TO_LINEAR_BITS; - // fractional part, in GAMMA_TO_LINEAR_BITS fixed-point precision - const uint32_t x = v - (tab_pos << GAMMA_TO_LINEAR_BITS); // fractional part - // v0 / v1 are in GAMMA_TO_LINEAR_BITS fixed-point precision (range [0..1]) - const uint32_t v0 = kLinearToGammaTabS[tab_pos + 0]; - const uint32_t v1 = kLinearToGammaTabS[tab_pos + 1]; - // Final interpolation. Note that rounding is already included. - const uint32_t v2 = (v1 - v0) * x; // note: v1 >= v0. - const uint32_t result = v0 + (v2 >> GAMMA_TO_LINEAR_BITS); - return result; -} - -#else - -static void InitGammaTablesS(void) {} -static WEBP_INLINE uint32_t GammaToLinearS(int v) { - return (v << GAMMA_TO_LINEAR_BITS) / MAX_Y_T; -} -static WEBP_INLINE uint32_t LinearToGammaS(uint32_t value) { - return (MAX_Y_T * value) >> GAMMA_TO_LINEAR_BITS; -} - -#endif // USE_GAMMA_COMPRESSION - -//------------------------------------------------------------------------------ - -static uint8_t clip_8b(fixed_t v) { - return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u; -} - -static fixed_y_t clip_y(int y) { - return (!(y & ~MAX_Y_T)) ? (fixed_y_t)y : (y < 0) ? 0 : MAX_Y_T; -} - -//------------------------------------------------------------------------------ - -static int RGBToGray(int r, int g, int b) { - const int luma = 13933 * r + 46871 * g + 4732 * b + YUV_HALF; - return (luma >> YUV_FIX); -} - -static uint32_t ScaleDown(int a, int b, int c, int d) { - const uint32_t A = GammaToLinearS(a); - const uint32_t B = GammaToLinearS(b); - const uint32_t C = GammaToLinearS(c); - const uint32_t D = GammaToLinearS(d); - return LinearToGammaS((A + B + C + D + 2) >> 2); -} - -static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w) { - int i; - for (i = 0; i < w; ++i) { - const uint32_t R = GammaToLinearS(src[0 * w + i]); - const uint32_t G = GammaToLinearS(src[1 * w + i]); - const uint32_t B = GammaToLinearS(src[2 * w + i]); - const uint32_t Y = RGBToGray(R, G, B); - dst[i] = (fixed_y_t)LinearToGammaS(Y); - } -} - -static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2, - fixed_t* dst, int uv_w) { - int i; - for (i = 0; i < uv_w; ++i) { - const int r = ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1], - src2[0 * uv_w + 0], src2[0 * uv_w + 1]); - const int g = ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1], - src2[2 * uv_w + 0], src2[2 * uv_w + 1]); - const int b = ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1], - src2[4 * uv_w + 0], src2[4 * uv_w + 1]); - const int W = RGBToGray(r, g, b); - dst[0 * uv_w] = (fixed_t)(r - W); - dst[1 * uv_w] = (fixed_t)(g - W); - dst[2 * uv_w] = (fixed_t)(b - W); - dst += 1; - src1 += 2; - src2 += 2; - } -} - -static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) { - int i; - for (i = 0; i < w; ++i) { - y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]); - } -} - -//------------------------------------------------------------------------------ - -static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0) { - const int v0 = (A * 3 + B + 2) >> 2; - return clip_y(v0 + W0); -} - //------------------------------------------------------------------------------ +// Main function -static WEBP_INLINE fixed_y_t UpLift(uint8_t a) { // 8bit -> SFIX - return ((fixed_y_t)a << SFIX) | SHALF; -} - -static void ImportOneRow(const uint8_t* const r_ptr, - const uint8_t* const g_ptr, - const uint8_t* const b_ptr, - int step, - int pic_width, - fixed_y_t* const dst) { - int i; - const int w = (pic_width + 1) & ~1; - for (i = 0; i < pic_width; ++i) { - const int off = i * step; - dst[i + 0 * w] = UpLift(r_ptr[off]); - dst[i + 1 * w] = UpLift(g_ptr[off]); - dst[i + 2 * w] = UpLift(b_ptr[off]); - } - if (pic_width & 1) { // replicate rightmost pixel - dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1]; - dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1]; - dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1]; - } -} - -static void InterpolateTwoRows(const fixed_y_t* const best_y, - const fixed_t* prev_uv, - const fixed_t* cur_uv, - const fixed_t* next_uv, - int w, - fixed_y_t* out1, - fixed_y_t* out2) { - const int uv_w = w >> 1; - const int len = (w - 1) >> 1; // length to filter - int k = 3; - while (k-- > 0) { // process each R/G/B segments in turn - // special boundary case for i==0 - out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0]); - out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w]); - - WebPSharpYUVFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1); - WebPSharpYUVFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1); - - // special boundary case for i == w - 1 when w is even - if (!(w & 1)) { - out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1], - best_y[w - 1 + 0]); - out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1], - best_y[w - 1 + w]); - } - out1 += w; - out2 += w; - prev_uv += uv_w; - cur_uv += uv_w; - next_uv += uv_w; - } -} - -static WEBP_INLINE uint8_t ConvertRGBToY(int r, int g, int b) { - const int luma = 16839 * r + 33059 * g + 6420 * b + SROUNDER; - return clip_8b(16 + (luma >> (YUV_FIX + SFIX))); -} +extern void SharpYuvInit(VP8CPUInfo cpu_info_func); -static WEBP_INLINE uint8_t ConvertRGBToU(int r, int g, int b) { - const int u = -9719 * r - 19081 * g + 28800 * b + SROUNDER; - return clip_8b(128 + (u >> (YUV_FIX + SFIX))); -} +static void SafeInitSharpYuv(void) { +#if defined(WEBP_USE_THREAD) && !defined(_WIN32) + static pthread_mutex_t initsharpyuv_lock = PTHREAD_MUTEX_INITIALIZER; + if (pthread_mutex_lock(&initsharpyuv_lock)) return; +#endif -static WEBP_INLINE uint8_t ConvertRGBToV(int r, int g, int b) { - const int v = +28800 * r - 24116 * g - 4684 * b + SROUNDER; - return clip_8b(128 + (v >> (YUV_FIX + SFIX))); -} + SharpYuvInit(VP8GetCPUInfo); -static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv, - WebPPicture* const picture) { - int i, j; - uint8_t* dst_y = picture->y; - uint8_t* dst_u = picture->u; - uint8_t* dst_v = picture->v; - const fixed_t* const best_uv_base = best_uv; - const int w = (picture->width + 1) & ~1; - const int h = (picture->height + 1) & ~1; - const int uv_w = w >> 1; - const int uv_h = h >> 1; - for (best_uv = best_uv_base, j = 0; j < picture->height; ++j) { - for (i = 0; i < picture->width; ++i) { - const int off = (i >> 1); - const int W = best_y[i]; - const int r = best_uv[off + 0 * uv_w] + W; - const int g = best_uv[off + 1 * uv_w] + W; - const int b = best_uv[off + 2 * uv_w] + W; - dst_y[i] = ConvertRGBToY(r, g, b); - } - best_y += w; - best_uv += (j & 1) * 3 * uv_w; - dst_y += picture->y_stride; - } - for (best_uv = best_uv_base, j = 0; j < uv_h; ++j) { - for (i = 0; i < uv_w; ++i) { - const int off = i; - const int r = best_uv[off + 0 * uv_w]; - const int g = best_uv[off + 1 * uv_w]; - const int b = best_uv[off + 2 * uv_w]; - dst_u[i] = ConvertRGBToU(r, g, b); - dst_v[i] = ConvertRGBToV(r, g, b); - } - best_uv += 3 * uv_w; - dst_u += picture->uv_stride; - dst_v += picture->uv_stride; - } - return 1; +#if defined(WEBP_USE_THREAD) && !defined(_WIN32) + (void)pthread_mutex_unlock(&initsharpyuv_lock); +#endif } -//------------------------------------------------------------------------------ -// Main function - -#define SAFE_ALLOC(W, H, T) ((T*)WebPSafeMalloc((W) * (H), sizeof(T))) - static int PreprocessARGB(const uint8_t* r_ptr, const uint8_t* g_ptr, const uint8_t* b_ptr, int step, int rgb_stride, WebPPicture* const picture) { - // we expand the right/bottom border if needed - const int w = (picture->width + 1) & ~1; - const int h = (picture->height + 1) & ~1; - const int uv_w = w >> 1; - const int uv_h = h >> 1; - uint64_t prev_diff_y_sum = ~0; - int j, iter; - - // TODO(skal): allocate one big memory chunk. But for now, it's easier - // for valgrind debugging to have several chunks. - fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch - fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t); - fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t); - fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t); - fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); - fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); - fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t); - fixed_y_t* best_y = best_y_base; - fixed_y_t* target_y = target_y_base; - fixed_t* best_uv = best_uv_base; - fixed_t* target_uv = target_uv_base; - const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h); - int ok; - - if (best_y_base == NULL || best_uv_base == NULL || - target_y_base == NULL || target_uv_base == NULL || - best_rgb_y == NULL || best_rgb_uv == NULL || - tmp_buffer == NULL) { - ok = WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); - goto End; - } - assert(picture->width >= kMinDimensionIterativeConversion); - assert(picture->height >= kMinDimensionIterativeConversion); - - WebPInitConvertARGBToYUV(); - - // Import RGB samples to W/RGB representation. - for (j = 0; j < picture->height; j += 2) { - const int is_last_row = (j == picture->height - 1); - fixed_y_t* const src1 = tmp_buffer + 0 * w; - fixed_y_t* const src2 = tmp_buffer + 3 * w; - - // prepare two rows of input - ImportOneRow(r_ptr, g_ptr, b_ptr, step, picture->width, src1); - if (!is_last_row) { - ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride, - step, picture->width, src2); - } else { - memcpy(src2, src1, 3 * w * sizeof(*src2)); - } - StoreGray(src1, best_y + 0, w); - StoreGray(src2, best_y + w, w); - - UpdateW(src1, target_y, w); - UpdateW(src2, target_y + w, w); - UpdateChroma(src1, src2, target_uv, uv_w); - memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv)); - best_y += 2 * w; - best_uv += 3 * uv_w; - target_y += 2 * w; - target_uv += 3 * uv_w; - r_ptr += 2 * rgb_stride; - g_ptr += 2 * rgb_stride; - b_ptr += 2 * rgb_stride; - } - - // Iterate and resolve clipping conflicts. - for (iter = 0; iter < kNumIterations; ++iter) { - const fixed_t* cur_uv = best_uv_base; - const fixed_t* prev_uv = best_uv_base; - uint64_t diff_y_sum = 0; - - best_y = best_y_base; - best_uv = best_uv_base; - target_y = target_y_base; - target_uv = target_uv_base; - for (j = 0; j < h; j += 2) { - fixed_y_t* const src1 = tmp_buffer + 0 * w; - fixed_y_t* const src2 = tmp_buffer + 3 * w; - { - const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0); - InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w, src1, src2); - prev_uv = cur_uv; - cur_uv = next_uv; - } - - UpdateW(src1, best_rgb_y + 0 * w, w); - UpdateW(src2, best_rgb_y + 1 * w, w); - UpdateChroma(src1, src2, best_rgb_uv, uv_w); - - // update two rows of Y and one row of RGB - diff_y_sum += WebPSharpYUVUpdateY(target_y, best_rgb_y, best_y, 2 * w); - WebPSharpYUVUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w); - - best_y += 2 * w; - best_uv += 3 * uv_w; - target_y += 2 * w; - target_uv += 3 * uv_w; - } - // test exit condition - if (iter > 0) { - if (diff_y_sum < diff_y_threshold) break; - if (diff_y_sum > prev_diff_y_sum) break; - } - prev_diff_y_sum = diff_y_sum; + const int ok = SharpYuvConvert( + r_ptr, g_ptr, b_ptr, step, rgb_stride, /*rgb_bit_depth=*/8, + picture->y, picture->y_stride, picture->u, picture->uv_stride, picture->v, + picture->uv_stride, /*yuv_bit_depth=*/8, picture->width, + picture->height, SharpYuvGetConversionMatrix(kSharpYuvMatrixWebp)); + if (!ok) { + return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); } - // final reconstruction - ok = ConvertWRGBToYUV(best_y_base, best_uv_base, picture); - - End: - WebPSafeFree(best_y_base); - WebPSafeFree(best_uv_base); - WebPSafeFree(target_y_base); - WebPSafeFree(target_uv_base); - WebPSafeFree(best_rgb_y); - WebPSafeFree(best_rgb_uv); - WebPSafeFree(tmp_buffer); return ok; } -#undef SAFE_ALLOC //------------------------------------------------------------------------------ // "Fast" regular RGB->YUV @@ -591,8 +224,8 @@ static const int kAlphaFix = 19; // and constant are adjusted very tightly to fit 32b arithmetic. // In particular, they use the fact that the operands for 'v / a' are actually // derived as v = (a0.p0 + a1.p1 + a2.p2 + a3.p3) and a = a0 + a1 + a2 + a3 -// with ai in [0..255] and pi in [0..1<<kGammaFix). The constraint to avoid -// overflow is: kGammaFix + kAlphaFix <= 31. +// with ai in [0..255] and pi in [0..1<<GAMMA_FIX). The constraint to avoid +// overflow is: GAMMA_FIX + kAlphaFix <= 31. static const uint32_t kInvAlpha[4 * 0xff + 1] = { 0, /* alpha = 0 */ 524288, 262144, 174762, 131072, 104857, 87381, 74898, 65536, @@ -818,11 +451,20 @@ static WEBP_INLINE void AccumulateRGB(const uint8_t* const r_ptr, dst[0] = SUM4(r_ptr + j, step); dst[1] = SUM4(g_ptr + j, step); dst[2] = SUM4(b_ptr + j, step); + // MemorySanitizer may raise false positives with data that passes through + // RGBA32PackedToPlanar_16b_SSE41() due to incorrect modeling of shuffles. + // See https://crbug.com/webp/573. +#ifdef WEBP_MSAN + dst[3] = 0; +#endif } if (width & 1) { dst[0] = SUM2(r_ptr + j); dst[1] = SUM2(g_ptr + j); dst[2] = SUM2(b_ptr + j); +#ifdef WEBP_MSAN + dst[3] = 0; +#endif } } @@ -863,18 +505,18 @@ static int ImportYUVAFromRGBA(const uint8_t* r_ptr, use_iterative_conversion = 0; } - if (!WebPPictureAllocYUVA(picture, width, height)) { + if (!WebPPictureAllocYUVA(picture)) { return 0; } if (has_alpha) { assert(step == 4); #if defined(USE_GAMMA_COMPRESSION) && defined(USE_INVERSE_ALPHA_TABLE) - assert(kAlphaFix + kGammaFix <= 31); + assert(kAlphaFix + GAMMA_FIX <= 31); #endif } if (use_iterative_conversion) { - InitGammaTablesS(); + SafeInitSharpYuv(); if (!PreprocessARGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, picture)) { return 0; } @@ -1044,7 +686,7 @@ int WebPPictureYUVAToARGB(WebPPicture* picture) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); } // Allocate a new argb buffer (discarding the previous one). - if (!WebPPictureAllocARGB(picture, picture->width, picture->height)) return 0; + if (!WebPPictureAllocARGB(picture)) return 0; picture->use_argb = 1; // Convert @@ -1106,6 +748,8 @@ static int Import(WebPPicture* const picture, const int width = picture->width; const int height = picture->height; + if (abs(rgb_stride) < (import_alpha ? 4 : 3) * width) return 0; + if (!picture->use_argb) { const uint8_t* a_ptr = import_alpha ? rgb + 3 : NULL; return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride, @@ -1163,24 +807,24 @@ static int Import(WebPPicture* const picture, #if !defined(WEBP_REDUCE_CSP) int WebPPictureImportBGR(WebPPicture* picture, - const uint8_t* rgb, int rgb_stride) { - return (picture != NULL && rgb != NULL) - ? Import(picture, rgb, rgb_stride, 3, 1, 0) + const uint8_t* bgr, int bgr_stride) { + return (picture != NULL && bgr != NULL) + ? Import(picture, bgr, bgr_stride, 3, 1, 0) : 0; } int WebPPictureImportBGRA(WebPPicture* picture, - const uint8_t* rgba, int rgba_stride) { - return (picture != NULL && rgba != NULL) - ? Import(picture, rgba, rgba_stride, 4, 1, 1) + const uint8_t* bgra, int bgra_stride) { + return (picture != NULL && bgra != NULL) + ? Import(picture, bgra, bgra_stride, 4, 1, 1) : 0; } int WebPPictureImportBGRX(WebPPicture* picture, - const uint8_t* rgba, int rgba_stride) { - return (picture != NULL && rgba != NULL) - ? Import(picture, rgba, rgba_stride, 4, 1, 0) + const uint8_t* bgrx, int bgrx_stride) { + return (picture != NULL && bgrx != NULL) + ? Import(picture, bgrx, bgrx_stride, 4, 1, 0) : 0; } @@ -1201,9 +845,9 @@ int WebPPictureImportRGBA(WebPPicture* picture, } int WebPPictureImportRGBX(WebPPicture* picture, - const uint8_t* rgba, int rgba_stride) { - return (picture != NULL && rgba != NULL) - ? Import(picture, rgba, rgba_stride, 4, 0, 0) + const uint8_t* rgbx, int rgbx_stride) { + return (picture != NULL && rgbx != NULL) + ? Import(picture, rgbx, rgbx_stride, 4, 0, 0) : 0; } |