diff options
Diffstat (limited to 'thirdparty/libwebp/src/dsp/lossless.c')
-rw-r--r-- | thirdparty/libwebp/src/dsp/lossless.c | 666 |
1 files changed, 666 insertions, 0 deletions
diff --git a/thirdparty/libwebp/src/dsp/lossless.c b/thirdparty/libwebp/src/dsp/lossless.c new file mode 100644 index 0000000000..83f553d9ad --- /dev/null +++ b/thirdparty/libwebp/src/dsp/lossless.c @@ -0,0 +1,666 @@ +// Copyright 2012 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Image transforms and color space conversion methods for lossless decoder. +// +// Authors: Vikas Arora (vikaas.arora@gmail.com) +// Jyrki Alakuijala (jyrki@google.com) +// Urvang Joshi (urvang@google.com) + +#include "src/dsp/dsp.h" + +#include <assert.h> +#include <math.h> +#include <stdlib.h> +#include "src/dec/vp8li_dec.h" +#include "src/utils/endian_inl_utils.h" +#include "src/dsp/lossless.h" +#include "src/dsp/lossless_common.h" + +#define MAX_DIFF_COST (1e30f) + +//------------------------------------------------------------------------------ +// Image transforms. + +static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { + return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1); +} + +static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { + return Average2(Average2(a0, a2), a1); +} + +static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, + uint32_t a2, uint32_t a3) { + return Average2(Average2(a0, a1), Average2(a2, a3)); +} + +static WEBP_INLINE uint32_t Clip255(uint32_t a) { + if (a < 256) { + return a; + } + // return 0, when a is a negative integer. + // return 255, when a is positive. + return ~a >> 24; +} + +static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { + return Clip255(a + b - c); +} + +static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, + uint32_t c2) { + const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); + const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, + (c1 >> 16) & 0xff, + (c2 >> 16) & 0xff); + const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, + (c1 >> 8) & 0xff, + (c2 >> 8) & 0xff); + const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); + return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; +} + +static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { + return Clip255(a + (a - b) / 2); +} + +static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, + uint32_t c2) { + const uint32_t ave = Average2(c0, c1); + const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); + const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); + const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); + const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); + return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; +} + +// gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is +// inlined. +#if defined(__arm__) && LOCAL_GCC_VERSION <= 0x409 +# define LOCAL_INLINE __attribute__ ((noinline)) +#else +# define LOCAL_INLINE WEBP_INLINE +#endif + +static LOCAL_INLINE int Sub3(int a, int b, int c) { + const int pb = b - c; + const int pa = a - c; + return abs(pb) - abs(pa); +} + +#undef LOCAL_INLINE + +static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { + const int pa_minus_pb = + Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + + Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + + Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + + Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); + return (pa_minus_pb <= 0) ? a : b; +} + +//------------------------------------------------------------------------------ +// Predictors + +static uint32_t Predictor0_C(uint32_t left, const uint32_t* const top) { + (void)top; + (void)left; + return ARGB_BLACK; +} +static uint32_t Predictor1_C(uint32_t left, const uint32_t* const top) { + (void)top; + return left; +} +static uint32_t Predictor2_C(uint32_t left, const uint32_t* const top) { + (void)left; + return top[0]; +} +static uint32_t Predictor3_C(uint32_t left, const uint32_t* const top) { + (void)left; + return top[1]; +} +static uint32_t Predictor4_C(uint32_t left, const uint32_t* const top) { + (void)left; + return top[-1]; +} +static uint32_t Predictor5_C(uint32_t left, const uint32_t* const top) { + const uint32_t pred = Average3(left, top[0], top[1]); + return pred; +} +static uint32_t Predictor6_C(uint32_t left, const uint32_t* const top) { + const uint32_t pred = Average2(left, top[-1]); + return pred; +} +static uint32_t Predictor7_C(uint32_t left, const uint32_t* const top) { + const uint32_t pred = Average2(left, top[0]); + return pred; +} +static uint32_t Predictor8_C(uint32_t left, const uint32_t* const top) { + const uint32_t pred = Average2(top[-1], top[0]); + (void)left; + return pred; +} +static uint32_t Predictor9_C(uint32_t left, const uint32_t* const top) { + const uint32_t pred = Average2(top[0], top[1]); + (void)left; + return pred; +} +static uint32_t Predictor10_C(uint32_t left, const uint32_t* const top) { + const uint32_t pred = Average4(left, top[-1], top[0], top[1]); + return pred; +} +static uint32_t Predictor11_C(uint32_t left, const uint32_t* const top) { + const uint32_t pred = Select(top[0], left, top[-1]); + return pred; +} +static uint32_t Predictor12_C(uint32_t left, const uint32_t* const top) { + const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); + return pred; +} +static uint32_t Predictor13_C(uint32_t left, const uint32_t* const top) { + const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); + return pred; +} + +GENERATE_PREDICTOR_ADD(Predictor0_C, PredictorAdd0_C) +static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + uint32_t left = out[-1]; + for (i = 0; i < num_pixels; ++i) { + out[i] = left = VP8LAddPixels(in[i], left); + } + (void)upper; +} +GENERATE_PREDICTOR_ADD(Predictor2_C, PredictorAdd2_C) +GENERATE_PREDICTOR_ADD(Predictor3_C, PredictorAdd3_C) +GENERATE_PREDICTOR_ADD(Predictor4_C, PredictorAdd4_C) +GENERATE_PREDICTOR_ADD(Predictor5_C, PredictorAdd5_C) +GENERATE_PREDICTOR_ADD(Predictor6_C, PredictorAdd6_C) +GENERATE_PREDICTOR_ADD(Predictor7_C, PredictorAdd7_C) +GENERATE_PREDICTOR_ADD(Predictor8_C, PredictorAdd8_C) +GENERATE_PREDICTOR_ADD(Predictor9_C, PredictorAdd9_C) +GENERATE_PREDICTOR_ADD(Predictor10_C, PredictorAdd10_C) +GENERATE_PREDICTOR_ADD(Predictor11_C, PredictorAdd11_C) +GENERATE_PREDICTOR_ADD(Predictor12_C, PredictorAdd12_C) +GENERATE_PREDICTOR_ADD(Predictor13_C, PredictorAdd13_C) + +//------------------------------------------------------------------------------ + +// Inverse prediction. +static void PredictorInverseTransform_C(const VP8LTransform* const transform, + int y_start, int y_end, + const uint32_t* in, uint32_t* out) { + const int width = transform->xsize_; + if (y_start == 0) { // First Row follows the L (mode=1) mode. + PredictorAdd0_C(in, NULL, 1, out); + PredictorAdd1_C(in + 1, NULL, width - 1, out + 1); + in += width; + out += width; + ++y_start; + } + + { + int y = y_start; + const int tile_width = 1 << transform->bits_; + const int mask = tile_width - 1; + const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); + const uint32_t* pred_mode_base = + transform->data_ + (y >> transform->bits_) * tiles_per_row; + + while (y < y_end) { + const uint32_t* pred_mode_src = pred_mode_base; + int x = 1; + // First pixel follows the T (mode=2) mode. + PredictorAdd2_C(in, out - width, 1, out); + // .. the rest: + while (x < width) { + const VP8LPredictorAddSubFunc pred_func = + VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf]; + int x_end = (x & ~mask) + tile_width; + if (x_end > width) x_end = width; + pred_func(in + x, out + x - width, x_end - x, out + x); + x = x_end; + } + in += width; + out += width; + ++y; + if ((y & mask) == 0) { // Use the same mask, since tiles are squares. + pred_mode_base += tiles_per_row; + } + } + } +} + +// Add green to blue and red channels (i.e. perform the inverse transform of +// 'subtract green'). +void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels, + uint32_t* dst) { + int i; + for (i = 0; i < num_pixels; ++i) { + const uint32_t argb = src[i]; + const uint32_t green = ((argb >> 8) & 0xff); + uint32_t red_blue = (argb & 0x00ff00ffu); + red_blue += (green << 16) | green; + red_blue &= 0x00ff00ffu; + dst[i] = (argb & 0xff00ff00u) | red_blue; + } +} + +static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, + int8_t color) { + return ((int)color_pred * color) >> 5; +} + +static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, + VP8LMultipliers* const m) { + m->green_to_red_ = (color_code >> 0) & 0xff; + m->green_to_blue_ = (color_code >> 8) & 0xff; + m->red_to_blue_ = (color_code >> 16) & 0xff; +} + +void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, + const uint32_t* src, int num_pixels, + uint32_t* dst) { + int i; + for (i = 0; i < num_pixels; ++i) { + const uint32_t argb = src[i]; + const uint32_t green = argb >> 8; + const uint32_t red = argb >> 16; + int new_red = red & 0xff; + int new_blue = argb & 0xff; + new_red += ColorTransformDelta(m->green_to_red_, green); + new_red &= 0xff; + new_blue += ColorTransformDelta(m->green_to_blue_, green); + new_blue += ColorTransformDelta(m->red_to_blue_, new_red); + new_blue &= 0xff; + dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); + } +} + +// Color space inverse transform. +static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform, + int y_start, int y_end, + const uint32_t* src, uint32_t* dst) { + const int width = transform->xsize_; + const int tile_width = 1 << transform->bits_; + const int mask = tile_width - 1; + const int safe_width = width & ~mask; + const int remaining_width = width - safe_width; + const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); + int y = y_start; + const uint32_t* pred_row = + transform->data_ + (y >> transform->bits_) * tiles_per_row; + + while (y < y_end) { + const uint32_t* pred = pred_row; + VP8LMultipliers m = { 0, 0, 0 }; + const uint32_t* const src_safe_end = src + safe_width; + const uint32_t* const src_end = src + width; + while (src < src_safe_end) { + ColorCodeToMultipliers(*pred++, &m); + VP8LTransformColorInverse(&m, src, tile_width, dst); + src += tile_width; + dst += tile_width; + } + if (src < src_end) { // Left-overs using C-version. + ColorCodeToMultipliers(*pred++, &m); + VP8LTransformColorInverse(&m, src, remaining_width, dst); + src += remaining_width; + dst += remaining_width; + } + ++y; + if ((y & mask) == 0) pred_row += tiles_per_row; + } +} + +// Separate out pixels packed together using pixel-bundling. +// We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). +#define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \ + GET_INDEX, GET_VALUE) \ +static void F_NAME(const TYPE* src, const uint32_t* const color_map, \ + TYPE* dst, int y_start, int y_end, int width) { \ + int y; \ + for (y = y_start; y < y_end; ++y) { \ + int x; \ + for (x = 0; x < width; ++x) { \ + *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ + } \ + } \ +} \ +STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \ + int y_start, int y_end, const TYPE* src, \ + TYPE* dst) { \ + int y; \ + const int bits_per_pixel = 8 >> transform->bits_; \ + const int width = transform->xsize_; \ + const uint32_t* const color_map = transform->data_; \ + if (bits_per_pixel < 8) { \ + const int pixels_per_byte = 1 << transform->bits_; \ + const int count_mask = pixels_per_byte - 1; \ + const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ + for (y = y_start; y < y_end; ++y) { \ + uint32_t packed_pixels = 0; \ + int x; \ + for (x = 0; x < width; ++x) { \ + /* We need to load fresh 'packed_pixels' once every */ \ + /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ + /* is a power of 2, so can just use a mask for that, instead of */ \ + /* decrementing a counter. */ \ + if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ + *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ + packed_pixels >>= bits_per_pixel; \ + } \ + } \ + } else { \ + VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \ + } \ +} + +COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static, + uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue) +COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, , + uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue) + +#undef COLOR_INDEX_INVERSE + +void VP8LInverseTransform(const VP8LTransform* const transform, + int row_start, int row_end, + const uint32_t* const in, uint32_t* const out) { + const int width = transform->xsize_; + assert(row_start < row_end); + assert(row_end <= transform->ysize_); + switch (transform->type_) { + case SUBTRACT_GREEN: + VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out); + break; + case PREDICTOR_TRANSFORM: + PredictorInverseTransform_C(transform, row_start, row_end, in, out); + if (row_end != transform->ysize_) { + // The last predicted row in this iteration will be the top-pred row + // for the first row in next iteration. + memcpy(out - width, out + (row_end - row_start - 1) * width, + width * sizeof(*out)); + } + break; + case CROSS_COLOR_TRANSFORM: + ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out); + break; + case COLOR_INDEXING_TRANSFORM: + if (in == out && transform->bits_ > 0) { + // Move packed pixels to the end of unpacked region, so that unpacking + // can occur seamlessly. + // Also, note that this is the only transform that applies on + // the effective width of VP8LSubSampleSize(xsize_, bits_). All other + // transforms work on effective width of xsize_. + const int out_stride = (row_end - row_start) * width; + const int in_stride = (row_end - row_start) * + VP8LSubSampleSize(transform->xsize_, transform->bits_); + uint32_t* const src = out + out_stride - in_stride; + memmove(src, out, in_stride * sizeof(*src)); + ColorIndexInverseTransform_C(transform, row_start, row_end, src, out); + } else { + ColorIndexInverseTransform_C(transform, row_start, row_end, in, out); + } + break; + } +} + +//------------------------------------------------------------------------------ +// Color space conversion. + +static int is_big_endian(void) { + static const union { + uint16_t w; + uint8_t b[2]; + } tmp = { 1 }; + return (tmp.b[0] != 1); +} + +void VP8LConvertBGRAToRGB_C(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + *dst++ = (argb >> 16) & 0xff; + *dst++ = (argb >> 8) & 0xff; + *dst++ = (argb >> 0) & 0xff; + } +} + +void VP8LConvertBGRAToRGBA_C(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + *dst++ = (argb >> 16) & 0xff; + *dst++ = (argb >> 8) & 0xff; + *dst++ = (argb >> 0) & 0xff; + *dst++ = (argb >> 24) & 0xff; + } +} + +void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); + const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); +#if (WEBP_SWAP_16BIT_CSP == 1) + *dst++ = ba; + *dst++ = rg; +#else + *dst++ = rg; + *dst++ = ba; +#endif + } +} + +void VP8LConvertBGRAToRGB565_C(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); + const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); +#if (WEBP_SWAP_16BIT_CSP == 1) + *dst++ = gb; + *dst++ = rg; +#else + *dst++ = rg; + *dst++ = gb; +#endif + } +} + +void VP8LConvertBGRAToBGR_C(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + *dst++ = (argb >> 0) & 0xff; + *dst++ = (argb >> 8) & 0xff; + *dst++ = (argb >> 16) & 0xff; + } +} + +static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, + int swap_on_big_endian) { + if (is_big_endian() == swap_on_big_endian) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + WebPUint32ToMem(dst, BSwap32(argb)); + dst += sizeof(argb); + } + } else { + memcpy(dst, src, num_pixels * sizeof(*src)); + } +} + +void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, + WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { + switch (out_colorspace) { + case MODE_RGB: + VP8LConvertBGRAToRGB(in_data, num_pixels, rgba); + break; + case MODE_RGBA: + VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); + break; + case MODE_rgbA: + VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); + WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); + break; + case MODE_BGR: + VP8LConvertBGRAToBGR(in_data, num_pixels, rgba); + break; + case MODE_BGRA: + CopyOrSwap(in_data, num_pixels, rgba, 1); + break; + case MODE_bgrA: + CopyOrSwap(in_data, num_pixels, rgba, 1); + WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); + break; + case MODE_ARGB: + CopyOrSwap(in_data, num_pixels, rgba, 0); + break; + case MODE_Argb: + CopyOrSwap(in_data, num_pixels, rgba, 0); + WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0); + break; + case MODE_RGBA_4444: + VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); + break; + case MODE_rgbA_4444: + VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); + WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0); + break; + case MODE_RGB_565: + VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); + break; + default: + assert(0); // Code flow should not reach here. + } +} + +//------------------------------------------------------------------------------ + +VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed; +VP8LPredictorAddSubFunc VP8LPredictorsAdd[16]; +VP8LPredictorFunc VP8LPredictors[16]; + +// exposed plain-C implementations +VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16]; +VP8LPredictorFunc VP8LPredictors_C[16]; + +VP8LTransformColorInverseFunc VP8LTransformColorInverse; + +VP8LConvertFunc VP8LConvertBGRAToRGB; +VP8LConvertFunc VP8LConvertBGRAToRGBA; +VP8LConvertFunc VP8LConvertBGRAToRGBA4444; +VP8LConvertFunc VP8LConvertBGRAToRGB565; +VP8LConvertFunc VP8LConvertBGRAToBGR; + +VP8LMapARGBFunc VP8LMapColor32b; +VP8LMapAlphaFunc VP8LMapColor8b; + +extern void VP8LDspInitSSE2(void); +extern void VP8LDspInitNEON(void); +extern void VP8LDspInitMIPSdspR2(void); +extern void VP8LDspInitMSA(void); + +static volatile VP8CPUInfo lossless_last_cpuinfo_used = + (VP8CPUInfo)&lossless_last_cpuinfo_used; + +#define COPY_PREDICTOR_ARRAY(IN, OUT) do { \ + (OUT)[0] = IN##0_C; \ + (OUT)[1] = IN##1_C; \ + (OUT)[2] = IN##2_C; \ + (OUT)[3] = IN##3_C; \ + (OUT)[4] = IN##4_C; \ + (OUT)[5] = IN##5_C; \ + (OUT)[6] = IN##6_C; \ + (OUT)[7] = IN##7_C; \ + (OUT)[8] = IN##8_C; \ + (OUT)[9] = IN##9_C; \ + (OUT)[10] = IN##10_C; \ + (OUT)[11] = IN##11_C; \ + (OUT)[12] = IN##12_C; \ + (OUT)[13] = IN##13_C; \ + (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \ + (OUT)[15] = IN##0_C; \ +} while (0); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) { + if (lossless_last_cpuinfo_used == VP8GetCPUInfo) return; + + COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors) + COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors_C) + COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd) + COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C) + +#if !WEBP_NEON_OMIT_C_CODE + VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; + + VP8LTransformColorInverse = VP8LTransformColorInverse_C; + + VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; + VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; + VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; +#endif + + VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; + VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; + + VP8LMapColor32b = MapARGB_C; + VP8LMapColor8b = MapAlpha_C; + + // If defined, use CPUInfo() to overwrite some pointers with faster versions. + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_USE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + VP8LDspInitSSE2(); + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + VP8LDspInitMIPSdspR2(); + } +#endif +#if defined(WEBP_USE_MSA) + if (VP8GetCPUInfo(kMSA)) { + VP8LDspInitMSA(); + } +#endif + } + +#if defined(WEBP_USE_NEON) + if (WEBP_NEON_OMIT_C_CODE || + (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { + VP8LDspInitNEON(); + } +#endif + + assert(VP8LAddGreenToBlueAndRed != NULL); + assert(VP8LTransformColorInverse != NULL); + assert(VP8LConvertBGRAToRGBA != NULL); + assert(VP8LConvertBGRAToRGB != NULL); + assert(VP8LConvertBGRAToBGR != NULL); + assert(VP8LConvertBGRAToRGBA4444 != NULL); + assert(VP8LConvertBGRAToRGB565 != NULL); + assert(VP8LMapColor32b != NULL); + assert(VP8LMapColor8b != NULL); + + lossless_last_cpuinfo_used = VP8GetCPUInfo; +} +#undef COPY_PREDICTOR_ARRAY + +//------------------------------------------------------------------------------ |