diff options
Diffstat (limited to 'thirdparty/libwebp/src/dsp/dec_sse2.c')
-rw-r--r-- | thirdparty/libwebp/src/dsp/dec_sse2.c | 1227 |
1 files changed, 1227 insertions, 0 deletions
diff --git a/thirdparty/libwebp/src/dsp/dec_sse2.c b/thirdparty/libwebp/src/dsp/dec_sse2.c new file mode 100644 index 0000000000..b3840faf3a --- /dev/null +++ b/thirdparty/libwebp/src/dsp/dec_sse2.c @@ -0,0 +1,1227 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 version of some decoding functions (idct, loop filtering). +// +// Author: somnath@google.com (Somnath Banerjee) +// cduvivier@google.com (Christian Duvivier) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) + +// The 3-coeff sparse transform in SSE2 is not really faster than the plain-C +// one it seems => disable it by default. Uncomment the following to enable: +#if !defined(USE_TRANSFORM_AC3) +#define USE_TRANSFORM_AC3 0 // ALTERNATE_CODE +#endif + +#include <emmintrin.h> +#include "src/dsp/common_sse2.h" +#include "src/dec/vp8i_dec.h" +#include "src/utils/utils.h" + +//------------------------------------------------------------------------------ +// Transforms (Paragraph 14.4) + +static void Transform_SSE2(const int16_t* in, uint8_t* dst, int do_two) { + // This implementation makes use of 16-bit fixed point versions of two + // multiply constants: + // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 + // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 + // + // To be able to use signed 16-bit integers, we use the following trick to + // have constants within range: + // - Associated constants are obtained by subtracting the 16-bit fixed point + // version of one: + // k = K - (1 << 16) => K = k + (1 << 16) + // K1 = 85267 => k1 = 20091 + // K2 = 35468 => k2 = -30068 + // - The multiplication of a variable by a constant become the sum of the + // variable and the multiplication of that variable by the associated + // constant: + // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x + const __m128i k1 = _mm_set1_epi16(20091); + const __m128i k2 = _mm_set1_epi16(-30068); + __m128i T0, T1, T2, T3; + + // Load and concatenate the transform coefficients (we'll do two transforms + // in parallel). In the case of only one transform, the second half of the + // vectors will just contain random value we'll never use nor store. + __m128i in0, in1, in2, in3; + { + in0 = _mm_loadl_epi64((const __m128i*)&in[0]); + in1 = _mm_loadl_epi64((const __m128i*)&in[4]); + in2 = _mm_loadl_epi64((const __m128i*)&in[8]); + in3 = _mm_loadl_epi64((const __m128i*)&in[12]); + // a00 a10 a20 a30 x x x x + // a01 a11 a21 a31 x x x x + // a02 a12 a22 a32 x x x x + // a03 a13 a23 a33 x x x x + if (do_two) { + const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); + const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); + const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); + const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); + in0 = _mm_unpacklo_epi64(in0, inB0); + in1 = _mm_unpacklo_epi64(in1, inB1); + in2 = _mm_unpacklo_epi64(in2, inB2); + in3 = _mm_unpacklo_epi64(in3, inB3); + // a00 a10 a20 a30 b00 b10 b20 b30 + // a01 a11 a21 a31 b01 b11 b21 b31 + // a02 a12 a22 a32 b02 b12 b22 b32 + // a03 a13 a23 a33 b03 b13 b23 b33 + } + } + + // Vertical pass and subsequent transpose. + { + // First pass, c and d calculations are longer because of the "trick" + // multiplications. + const __m128i a = _mm_add_epi16(in0, in2); + const __m128i b = _mm_sub_epi16(in0, in2); + // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 + const __m128i c1 = _mm_mulhi_epi16(in1, k2); + const __m128i c2 = _mm_mulhi_epi16(in3, k1); + const __m128i c3 = _mm_sub_epi16(in1, in3); + const __m128i c4 = _mm_sub_epi16(c1, c2); + const __m128i c = _mm_add_epi16(c3, c4); + // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 + const __m128i d1 = _mm_mulhi_epi16(in1, k1); + const __m128i d2 = _mm_mulhi_epi16(in3, k2); + const __m128i d3 = _mm_add_epi16(in1, in3); + const __m128i d4 = _mm_add_epi16(d1, d2); + const __m128i d = _mm_add_epi16(d3, d4); + + // Second pass. + const __m128i tmp0 = _mm_add_epi16(a, d); + const __m128i tmp1 = _mm_add_epi16(b, c); + const __m128i tmp2 = _mm_sub_epi16(b, c); + const __m128i tmp3 = _mm_sub_epi16(a, d); + + // Transpose the two 4x4. + VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); + } + + // Horizontal pass and subsequent transpose. + { + // First pass, c and d calculations are longer because of the "trick" + // multiplications. + const __m128i four = _mm_set1_epi16(4); + const __m128i dc = _mm_add_epi16(T0, four); + const __m128i a = _mm_add_epi16(dc, T2); + const __m128i b = _mm_sub_epi16(dc, T2); + // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 + const __m128i c1 = _mm_mulhi_epi16(T1, k2); + const __m128i c2 = _mm_mulhi_epi16(T3, k1); + const __m128i c3 = _mm_sub_epi16(T1, T3); + const __m128i c4 = _mm_sub_epi16(c1, c2); + const __m128i c = _mm_add_epi16(c3, c4); + // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 + const __m128i d1 = _mm_mulhi_epi16(T1, k1); + const __m128i d2 = _mm_mulhi_epi16(T3, k2); + const __m128i d3 = _mm_add_epi16(T1, T3); + const __m128i d4 = _mm_add_epi16(d1, d2); + const __m128i d = _mm_add_epi16(d3, d4); + + // Second pass. + const __m128i tmp0 = _mm_add_epi16(a, d); + const __m128i tmp1 = _mm_add_epi16(b, c); + const __m128i tmp2 = _mm_sub_epi16(b, c); + const __m128i tmp3 = _mm_sub_epi16(a, d); + const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); + const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); + const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); + const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); + + // Transpose the two 4x4. + VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, + &T2, &T3); + } + + // Add inverse transform to 'dst' and store. + { + const __m128i zero = _mm_setzero_si128(); + // Load the reference(s). + __m128i dst0, dst1, dst2, dst3; + if (do_two) { + // Load eight bytes/pixels per line. + dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS)); + dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS)); + dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS)); + dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS)); + } else { + // Load four bytes/pixels per line. + dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS)); + dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS)); + dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS)); + dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS)); + } + // Convert to 16b. + dst0 = _mm_unpacklo_epi8(dst0, zero); + dst1 = _mm_unpacklo_epi8(dst1, zero); + dst2 = _mm_unpacklo_epi8(dst2, zero); + dst3 = _mm_unpacklo_epi8(dst3, zero); + // Add the inverse transform(s). + dst0 = _mm_add_epi16(dst0, T0); + dst1 = _mm_add_epi16(dst1, T1); + dst2 = _mm_add_epi16(dst2, T2); + dst3 = _mm_add_epi16(dst3, T3); + // Unsigned saturate to 8b. + dst0 = _mm_packus_epi16(dst0, dst0); + dst1 = _mm_packus_epi16(dst1, dst1); + dst2 = _mm_packus_epi16(dst2, dst2); + dst3 = _mm_packus_epi16(dst3, dst3); + // Store the results. + if (do_two) { + // Store eight bytes/pixels per line. + _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0); + _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1); + _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2); + _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3); + } else { + // Store four bytes/pixels per line. + WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); + WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); + WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); + WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); + } + } +} + +#if (USE_TRANSFORM_AC3 == 1) +#define MUL(a, b) (((a) * (b)) >> 16) +static void TransformAC3(const int16_t* in, uint8_t* dst) { + static const int kC1 = 20091 + (1 << 16); + static const int kC2 = 35468; + const __m128i A = _mm_set1_epi16(in[0] + 4); + const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2)); + const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1)); + const int c1 = MUL(in[1], kC2); + const int d1 = MUL(in[1], kC1); + const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1); + const __m128i B = _mm_adds_epi16(A, CD); + const __m128i m0 = _mm_adds_epi16(B, d4); + const __m128i m1 = _mm_adds_epi16(B, c4); + const __m128i m2 = _mm_subs_epi16(B, c4); + const __m128i m3 = _mm_subs_epi16(B, d4); + const __m128i zero = _mm_setzero_si128(); + // Load the source pixels. + __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS)); + __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS)); + __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS)); + __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS)); + // Convert to 16b. + dst0 = _mm_unpacklo_epi8(dst0, zero); + dst1 = _mm_unpacklo_epi8(dst1, zero); + dst2 = _mm_unpacklo_epi8(dst2, zero); + dst3 = _mm_unpacklo_epi8(dst3, zero); + // Add the inverse transform. + dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3)); + dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3)); + dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3)); + dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3)); + // Unsigned saturate to 8b. + dst0 = _mm_packus_epi16(dst0, dst0); + dst1 = _mm_packus_epi16(dst1, dst1); + dst2 = _mm_packus_epi16(dst2, dst2); + dst3 = _mm_packus_epi16(dst3, dst3); + // Store the results. + WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); + WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); + WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); + WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); +} +#undef MUL +#endif // USE_TRANSFORM_AC3 + +//------------------------------------------------------------------------------ +// Loop Filter (Paragraph 15) + +// Compute abs(p - q) = subs(p - q) OR subs(q - p) +#define MM_ABS(p, q) _mm_or_si128( \ + _mm_subs_epu8((q), (p)), \ + _mm_subs_epu8((p), (q))) + +// Shift each byte of "x" by 3 bits while preserving by the sign bit. +static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) { + const __m128i zero = _mm_setzero_si128(); + const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x); + const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x); + const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8); + const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8); + *x = _mm_packs_epi16(lo_1, hi_1); +} + +#define FLIP_SIGN_BIT2(a, b) { \ + (a) = _mm_xor_si128(a, sign_bit); \ + (b) = _mm_xor_si128(b, sign_bit); \ +} + +#define FLIP_SIGN_BIT4(a, b, c, d) { \ + FLIP_SIGN_BIT2(a, b); \ + FLIP_SIGN_BIT2(c, d); \ +} + +// input/output is uint8_t +static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1, + const __m128i* const p0, + const __m128i* const q0, + const __m128i* const q1, + int hev_thresh, __m128i* const not_hev) { + const __m128i zero = _mm_setzero_si128(); + const __m128i t_1 = MM_ABS(*p1, *p0); + const __m128i t_2 = MM_ABS(*q1, *q0); + + const __m128i h = _mm_set1_epi8(hev_thresh); + const __m128i t_max = _mm_max_epu8(t_1, t_2); + + const __m128i t_max_h = _mm_subs_epu8(t_max, h); + *not_hev = _mm_cmpeq_epi8(t_max_h, zero); // not_hev <= t1 && not_hev <= t2 +} + +// input pixels are int8_t +static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1, + const __m128i* const p0, + const __m128i* const q0, + const __m128i* const q1, + __m128i* const delta) { + // beware of addition order, for saturation! + const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 + const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0); // q0 - p0 + const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0); // p1 - q1 + 1 * (q0 - p0) + const __m128i s2 = _mm_adds_epi8(q0_p0, s1); // p1 - q1 + 2 * (q0 - p0) + const __m128i s3 = _mm_adds_epi8(q0_p0, s2); // p1 - q1 + 3 * (q0 - p0) + *delta = s3; +} + +// input and output are int8_t +static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0, + __m128i* const q0, + const __m128i* const fl) { + const __m128i k3 = _mm_set1_epi8(3); + const __m128i k4 = _mm_set1_epi8(4); + __m128i v3 = _mm_adds_epi8(*fl, k3); + __m128i v4 = _mm_adds_epi8(*fl, k4); + + SignedShift8b_SSE2(&v4); // v4 >> 3 + SignedShift8b_SSE2(&v3); // v3 >> 3 + *q0 = _mm_subs_epi8(*q0, v4); // q0 -= v4 + *p0 = _mm_adds_epi8(*p0, v3); // p0 += v3 +} + +// Updates values of 2 pixels at MB edge during complex filtering. +// Update operations: +// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)] +// Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip). +static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi, + const __m128i* const a0_lo, + const __m128i* const a0_hi) { + const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7); + const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7); + const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi); + const __m128i sign_bit = _mm_set1_epi8(0x80); + *pi = _mm_adds_epi8(*pi, delta); + *qi = _mm_subs_epi8(*qi, delta); + FLIP_SIGN_BIT2(*pi, *qi); +} + +// input pixels are uint8_t +static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1, + const __m128i* const p0, + const __m128i* const q0, + const __m128i* const q1, + int thresh, __m128i* const mask) { + const __m128i m_thresh = _mm_set1_epi8(thresh); + const __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1) + const __m128i kFE = _mm_set1_epi8(0xFE); + const __m128i t2 = _mm_and_si128(t1, kFE); // set lsb of each byte to zero + const __m128i t3 = _mm_srli_epi16(t2, 1); // abs(p1 - q1) / 2 + + const __m128i t4 = MM_ABS(*p0, *q0); // abs(p0 - q0) + const __m128i t5 = _mm_adds_epu8(t4, t4); // abs(p0 - q0) * 2 + const __m128i t6 = _mm_adds_epu8(t5, t3); // abs(p0-q0)*2 + abs(p1-q1)/2 + + const __m128i t7 = _mm_subs_epu8(t6, m_thresh); // mask <= m_thresh + *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128()); +} + +//------------------------------------------------------------------------------ +// Edge filtering functions + +// Applies filter on 2 pixels (p0 and q0) +static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0, + __m128i* const q0, __m128i* const q1, + int thresh) { + __m128i a, mask; + const __m128i sign_bit = _mm_set1_epi8(0x80); + // convert p1/q1 to int8_t (for GetBaseDelta_SSE2) + const __m128i p1s = _mm_xor_si128(*p1, sign_bit); + const __m128i q1s = _mm_xor_si128(*q1, sign_bit); + + NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask); + + FLIP_SIGN_BIT2(*p0, *q0); + GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a); + a = _mm_and_si128(a, mask); // mask filter values we don't care about + DoSimpleFilter_SSE2(p0, q0, &a); + FLIP_SIGN_BIT2(*p0, *q0); +} + +// Applies filter on 4 pixels (p1, p0, q0 and q1) +static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0, + __m128i* const q0, __m128i* const q1, + const __m128i* const mask, + int hev_thresh) { + const __m128i zero = _mm_setzero_si128(); + const __m128i sign_bit = _mm_set1_epi8(0x80); + const __m128i k64 = _mm_set1_epi8(64); + const __m128i k3 = _mm_set1_epi8(3); + const __m128i k4 = _mm_set1_epi8(4); + __m128i not_hev; + __m128i t1, t2, t3; + + // compute hev mask + GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev); + + // convert to signed values + FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); + + t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 + t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1) + t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0 + t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0) + t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0) + t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0) + t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about + + t2 = _mm_adds_epi8(t1, k3); // 3 * (q0 - p0) + hev(p1 - q1) + 3 + t3 = _mm_adds_epi8(t1, k4); // 3 * (q0 - p0) + hev(p1 - q1) + 4 + SignedShift8b_SSE2(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3 + SignedShift8b_SSE2(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3 + *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2 + *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3 + FLIP_SIGN_BIT2(*p0, *q0); + + // this is equivalent to signed (a + 1) >> 1 calculation + t2 = _mm_add_epi8(t3, sign_bit); + t3 = _mm_avg_epu8(t2, zero); + t3 = _mm_sub_epi8(t3, k64); + + t3 = _mm_and_si128(not_hev, t3); // if !hev + *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3 + *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3 + FLIP_SIGN_BIT2(*p1, *q1); +} + +// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2) +static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1, + __m128i* const p0, __m128i* const q0, + __m128i* const q1, __m128i* const q2, + const __m128i* const mask, + int hev_thresh) { + const __m128i zero = _mm_setzero_si128(); + const __m128i sign_bit = _mm_set1_epi8(0x80); + __m128i a, not_hev; + + // compute hev mask + GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev); + + FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); + FLIP_SIGN_BIT2(*p2, *q2); + GetBaseDelta_SSE2(p1, p0, q0, q1, &a); + + { // do simple filter on pixels with hev + const __m128i m = _mm_andnot_si128(not_hev, *mask); + const __m128i f = _mm_and_si128(a, m); + DoSimpleFilter_SSE2(p0, q0, &f); + } + + { // do strong filter on pixels with not hev + const __m128i k9 = _mm_set1_epi16(0x0900); + const __m128i k63 = _mm_set1_epi16(63); + + const __m128i m = _mm_and_si128(not_hev, *mask); + const __m128i f = _mm_and_si128(a, m); + + const __m128i f_lo = _mm_unpacklo_epi8(zero, f); + const __m128i f_hi = _mm_unpackhi_epi8(zero, f); + + const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9); // Filter (lo) * 9 + const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9); // Filter (hi) * 9 + + const __m128i a2_lo = _mm_add_epi16(f9_lo, k63); // Filter * 9 + 63 + const __m128i a2_hi = _mm_add_epi16(f9_hi, k63); // Filter * 9 + 63 + + const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo); // Filter * 18 + 63 + const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi); // Filter * 18 + 63 + + const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63 + const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63 + + Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi); + Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi); + Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi); + } +} + +// reads 8 rows across a vertical edge. +static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride, + __m128i* const p, __m128i* const q) { + // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00 + // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10 + const __m128i A0 = _mm_set_epi32( + WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]), + WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride])); + const __m128i A1 = _mm_set_epi32( + WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]), + WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride])); + + // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 + // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20 + const __m128i B0 = _mm_unpacklo_epi8(A0, A1); + const __m128i B1 = _mm_unpackhi_epi8(A0, A1); + + // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 + // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 + const __m128i C0 = _mm_unpacklo_epi16(B0, B1); + const __m128i C1 = _mm_unpackhi_epi16(B0, B1); + + // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 + // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 + *p = _mm_unpacklo_epi32(C0, C1); + *q = _mm_unpackhi_epi32(C0, C1); +} + +static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0, + const uint8_t* const r8, + int stride, + __m128i* const p1, __m128i* const p0, + __m128i* const q0, __m128i* const q1) { + // Assume the pixels around the edge (|) are numbered as follows + // 00 01 | 02 03 + // 10 11 | 12 13 + // ... | ... + // e0 e1 | e2 e3 + // f0 f1 | f2 f3 + // + // r0 is pointing to the 0th row (00) + // r8 is pointing to the 8th row (80) + + // Load + // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 + // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 + // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 + // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 + Load8x4_SSE2(r0, stride, p1, q0); + Load8x4_SSE2(r8, stride, p0, q1); + + { + // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 + // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 + // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 + // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 + const __m128i t1 = *p1; + const __m128i t2 = *q0; + *p1 = _mm_unpacklo_epi64(t1, *p0); + *p0 = _mm_unpackhi_epi64(t1, *p0); + *q0 = _mm_unpacklo_epi64(t2, *q1); + *q1 = _mm_unpackhi_epi64(t2, *q1); + } +} + +static WEBP_INLINE void Store4x4_SSE2(__m128i* const x, + uint8_t* dst, int stride) { + int i; + for (i = 0; i < 4; ++i, dst += stride) { + WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x)); + *x = _mm_srli_si128(*x, 4); + } +} + +// Transpose back and store +static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1, + const __m128i* const p0, + const __m128i* const q0, + const __m128i* const q1, + uint8_t* r0, uint8_t* r8, + int stride) { + __m128i t1, p1_s, p0_s, q0_s, q1_s; + + // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 + // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 + t1 = *p0; + p0_s = _mm_unpacklo_epi8(*p1, t1); + p1_s = _mm_unpackhi_epi8(*p1, t1); + + // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 + // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 + t1 = *q0; + q0_s = _mm_unpacklo_epi8(t1, *q1); + q1_s = _mm_unpackhi_epi8(t1, *q1); + + // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 + // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 + t1 = p0_s; + p0_s = _mm_unpacklo_epi16(t1, q0_s); + q0_s = _mm_unpackhi_epi16(t1, q0_s); + + // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 + // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 + t1 = p1_s; + p1_s = _mm_unpacklo_epi16(t1, q1_s); + q1_s = _mm_unpackhi_epi16(t1, q1_s); + + Store4x4_SSE2(&p0_s, r0, stride); + r0 += 4 * stride; + Store4x4_SSE2(&q0_s, r0, stride); + + Store4x4_SSE2(&p1_s, r8, stride); + r8 += 4 * stride; + Store4x4_SSE2(&q1_s, r8, stride); +} + +//------------------------------------------------------------------------------ +// Simple In-loop filtering (Paragraph 15.2) + +static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) { + // Load + __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]); + __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]); + __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]); + __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]); + + DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh); + + // Store + _mm_storeu_si128((__m128i*)&p[-stride], p0); + _mm_storeu_si128((__m128i*)&p[0], q0); +} + +static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) { + __m128i p1, p0, q0, q1; + + p -= 2; // beginning of p1 + + Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); + DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh); + Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride); +} + +static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4 * stride; + SimpleVFilter16_SSE2(p, stride, thresh); + } +} + +static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4; + SimpleHFilter16_SSE2(p, stride, thresh); + } +} + +//------------------------------------------------------------------------------ +// Complex In-loop filtering (Paragraph 15.3) + +#define MAX_DIFF1(p3, p2, p1, p0, m) do { \ + (m) = MM_ABS(p1, p0); \ + (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \ + (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \ +} while (0) + +#define MAX_DIFF2(p3, p2, p1, p0, m) do { \ + (m) = _mm_max_epu8(m, MM_ABS(p1, p0)); \ + (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \ + (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \ +} while (0) + +#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \ + (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]); \ + (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]); \ + (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]); \ + (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]); \ +} + +#define LOADUV_H_EDGE(p, u, v, stride) do { \ + const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \ + const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \ + (p) = _mm_unpacklo_epi64(U, V); \ +} while (0) + +#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \ + LOADUV_H_EDGE(e1, u, v, 0 * (stride)); \ + LOADUV_H_EDGE(e2, u, v, 1 * (stride)); \ + LOADUV_H_EDGE(e3, u, v, 2 * (stride)); \ + LOADUV_H_EDGE(e4, u, v, 3 * (stride)); \ +} + +#define STOREUV(p, u, v, stride) { \ + _mm_storel_epi64((__m128i*)&(u)[(stride)], p); \ + (p) = _mm_srli_si128(p, 8); \ + _mm_storel_epi64((__m128i*)&(v)[(stride)], p); \ +} + +static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1, + const __m128i* const p0, + const __m128i* const q0, + const __m128i* const q1, + int thresh, int ithresh, + __m128i* const mask) { + const __m128i it = _mm_set1_epi8(ithresh); + const __m128i diff = _mm_subs_epu8(*mask, it); + const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128()); + __m128i filter_mask; + NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask); + *mask = _mm_and_si128(thresh_mask, filter_mask); +} + +// on macroblock edges +static void VFilter16_SSE2(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i t1; + __m128i mask; + __m128i p2, p1, p0, q0, q1, q2; + + // Load p3, p2, p1, p0 + LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0); + MAX_DIFF1(t1, p2, p1, p0, mask); + + // Load q0, q1, q2, q3 + LOAD_H_EDGES4(p, stride, q0, q1, q2, t1); + MAX_DIFF2(t1, q2, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); + + // Store + _mm_storeu_si128((__m128i*)&p[-3 * stride], p2); + _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); + _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); + _mm_storeu_si128((__m128i*)&p[+0 * stride], q0); + _mm_storeu_si128((__m128i*)&p[+1 * stride], q1); + _mm_storeu_si128((__m128i*)&p[+2 * stride], q2); +} + +static void HFilter16_SSE2(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i mask; + __m128i p3, p2, p1, p0, q0, q1, q2, q3; + + uint8_t* const b = p - 4; + Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); + MAX_DIFF1(p3, p2, p1, p0, mask); + + Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); + MAX_DIFF2(q3, q2, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); + + Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride); + Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride); +} + +// on three inner edges +static void VFilter16i_SSE2(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + int k; + __m128i p3, p2, p1, p0; // loop invariants + + LOAD_H_EDGES4(p, stride, p3, p2, p1, p0); // prologue + + for (k = 3; k > 0; --k) { + __m128i mask, tmp1, tmp2; + uint8_t* const b = p + 2 * stride; // beginning of p1 + p += 4 * stride; + + MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask + LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2); + MAX_DIFF2(p3, p2, tmp1, tmp2, mask); + + // p3 and p2 are not just temporary variables here: they will be + // re-used for next span. And q2/q3 will become p1/p0 accordingly. + ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); + DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh); + + // Store + _mm_storeu_si128((__m128i*)&b[0 * stride], p1); + _mm_storeu_si128((__m128i*)&b[1 * stride], p0); + _mm_storeu_si128((__m128i*)&b[2 * stride], p3); + _mm_storeu_si128((__m128i*)&b[3 * stride], p2); + + // rotate samples + p1 = tmp1; + p0 = tmp2; + } +} + +static void HFilter16i_SSE2(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + int k; + __m128i p3, p2, p1, p0; // loop invariants + + Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0); // prologue + + for (k = 3; k > 0; --k) { + __m128i mask, tmp1, tmp2; + uint8_t* const b = p + 2; // beginning of p1 + + p += 4; // beginning of q0 (and next span) + + MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask + Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2); + MAX_DIFF2(p3, p2, tmp1, tmp2, mask); + + ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); + DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh); + + Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride); + + // rotate samples + p1 = tmp1; + p0 = tmp2; + } +} + +// 8-pixels wide variant, for chroma filtering +static void VFilter8_SSE2(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i mask; + __m128i t1, p2, p1, p0, q0, q1, q2; + + // Load p3, p2, p1, p0 + LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0); + MAX_DIFF1(t1, p2, p1, p0, mask); + + // Load q0, q1, q2, q3 + LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1); + MAX_DIFF2(t1, q2, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); + + // Store + STOREUV(p2, u, v, -3 * stride); + STOREUV(p1, u, v, -2 * stride); + STOREUV(p0, u, v, -1 * stride); + STOREUV(q0, u, v, 0 * stride); + STOREUV(q1, u, v, 1 * stride); + STOREUV(q2, u, v, 2 * stride); +} + +static void HFilter8_SSE2(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i mask; + __m128i p3, p2, p1, p0, q0, q1, q2, q3; + + uint8_t* const tu = u - 4; + uint8_t* const tv = v - 4; + Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0); + MAX_DIFF1(p3, p2, p1, p0, mask); + + Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3); + MAX_DIFF2(q3, q2, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); + + Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride); + Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride); +} + +static void VFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i mask; + __m128i t1, t2, p1, p0, q0, q1; + + // Load p3, p2, p1, p0 + LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0); + MAX_DIFF1(t2, t1, p1, p0, mask); + + u += 4 * stride; + v += 4 * stride; + + // Load q0, q1, q2, q3 + LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2); + MAX_DIFF2(t2, t1, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh); + + // Store + STOREUV(p1, u, v, -2 * stride); + STOREUV(p0, u, v, -1 * stride); + STOREUV(q0, u, v, 0 * stride); + STOREUV(q1, u, v, 1 * stride); +} + +static void HFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i mask; + __m128i t1, t2, p1, p0, q0, q1; + Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 + MAX_DIFF1(t2, t1, p1, p0, mask); + + u += 4; // beginning of q0 + v += 4; + Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 + MAX_DIFF2(t2, t1, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh); + + u -= 2; // beginning of p1 + v -= 2; + Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride); +} + +//------------------------------------------------------------------------------ +// 4x4 predictions + +#define DST(x, y) dst[(x) + (y) * BPS] +#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) + +// We use the following 8b-arithmetic tricks: +// (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 +// where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] +// and: +// (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb +// where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 +// and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 + +static void VE4_SSE2(uint8_t* dst) { // vertical + const __m128i one = _mm_set1_epi8(1); + const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); + const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); + const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); + const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); + const __m128i b = _mm_subs_epu8(a, lsb); + const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); + const uint32_t vals = _mm_cvtsi128_si32(avg); + int i; + for (i = 0; i < 4; ++i) { + WebPUint32ToMem(dst + i * BPS, vals); + } +} + +static void LD4_SSE2(uint8_t* dst) { // Down-Left + const __m128i one = _mm_set1_epi8(1); + const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); + const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); + const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); + const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3); + const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); + const __m128i avg2 = _mm_subs_epu8(avg1, lsb); + const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); + WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); + WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); + WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); + WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); +} + +static void VR4_SSE2(uint8_t* dst) { // Vertical-Right + const __m128i one = _mm_set1_epi8(1); + const int I = dst[-1 + 0 * BPS]; + const int J = dst[-1 + 1 * BPS]; + const int K = dst[-1 + 2 * BPS]; + const int X = dst[-1 - BPS]; + const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); + const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); + const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); + const __m128i _XABCD = _mm_slli_si128(XABCD, 1); + const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0); + const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); + const __m128i avg2 = _mm_subs_epu8(avg1, lsb); + const __m128i efgh = _mm_avg_epu8(avg2, XABCD); + WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); + WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); + WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); + WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); + + // these two are hard to implement in SSE2, so we keep the C-version: + DST(0, 2) = AVG3(J, I, X); + DST(0, 3) = AVG3(K, J, I); +} + +static void VL4_SSE2(uint8_t* dst) { // Vertical-Left + const __m128i one = _mm_set1_epi8(1); + const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); + const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); + const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); + const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); + const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); + const __m128i avg3 = _mm_avg_epu8(avg1, avg2); + const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); + const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); + const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); + const __m128i abbc = _mm_or_si128(ab, bc); + const __m128i lsb2 = _mm_and_si128(abbc, lsb1); + const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); + const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); + WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); + WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); + WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); + WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); + + // these two are hard to get and irregular + DST(3, 2) = (extra_out >> 0) & 0xff; + DST(3, 3) = (extra_out >> 8) & 0xff; +} + +static void RD4_SSE2(uint8_t* dst) { // Down-right + const __m128i one = _mm_set1_epi8(1); + const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); + const __m128i ____XABCD = _mm_slli_si128(XABCD, 4); + const uint32_t I = dst[-1 + 0 * BPS]; + const uint32_t J = dst[-1 + 1 * BPS]; + const uint32_t K = dst[-1 + 2 * BPS]; + const uint32_t L = dst[-1 + 3 * BPS]; + const __m128i LKJI_____ = + _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24)); + const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD); + const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); + const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); + const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); + const __m128i avg2 = _mm_subs_epu8(avg1, lsb); + const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); + WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); + WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); + WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); + WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); +} + +#undef DST +#undef AVG3 + +//------------------------------------------------------------------------------ +// Luma 16x16 + +static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) { + const uint8_t* top = dst - BPS; + const __m128i zero = _mm_setzero_si128(); + int y; + if (size == 4) { + const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top)); + const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); + for (y = 0; y < 4; ++y, dst += BPS) { + const int val = dst[-1] - top[-1]; + const __m128i base = _mm_set1_epi16(val); + const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); + WebPUint32ToMem(dst, _mm_cvtsi128_si32(out)); + } + } else if (size == 8) { + const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); + const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); + for (y = 0; y < 8; ++y, dst += BPS) { + const int val = dst[-1] - top[-1]; + const __m128i base = _mm_set1_epi16(val); + const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); + _mm_storel_epi64((__m128i*)dst, out); + } + } else { + const __m128i top_values = _mm_loadu_si128((const __m128i*)top); + const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); + const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); + for (y = 0; y < 16; ++y, dst += BPS) { + const int val = dst[-1] - top[-1]; + const __m128i base = _mm_set1_epi16(val); + const __m128i out_0 = _mm_add_epi16(base, top_base_0); + const __m128i out_1 = _mm_add_epi16(base, top_base_1); + const __m128i out = _mm_packus_epi16(out_0, out_1); + _mm_storeu_si128((__m128i*)dst, out); + } + } +} + +static void TM4_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 4); } +static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); } +static void TM16_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 16); } + +static void VE16_SSE2(uint8_t* dst) { + const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); + int j; + for (j = 0; j < 16; ++j) { + _mm_storeu_si128((__m128i*)(dst + j * BPS), top); + } +} + +static void HE16_SSE2(uint8_t* dst) { // horizontal + int j; + for (j = 16; j > 0; --j) { + const __m128i values = _mm_set1_epi8(dst[-1]); + _mm_storeu_si128((__m128i*)dst, values); + dst += BPS; + } +} + +static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) { + int j; + const __m128i values = _mm_set1_epi8(v); + for (j = 0; j < 16; ++j) { + _mm_storeu_si128((__m128i*)(dst + j * BPS), values); + } +} + +static void DC16_SSE2(uint8_t* dst) { // DC + const __m128i zero = _mm_setzero_si128(); + const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); + const __m128i sad8x2 = _mm_sad_epu8(top, zero); + // sum the two sads: sad8x2[0:1] + sad8x2[8:9] + const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); + int left = 0; + int j; + for (j = 0; j < 16; ++j) { + left += dst[-1 + j * BPS]; + } + { + const int DC = _mm_cvtsi128_si32(sum) + left + 16; + Put16_SSE2(DC >> 5, dst); + } +} + +static void DC16NoTop_SSE2(uint8_t* dst) { // DC with top samples unavailable + int DC = 8; + int j; + for (j = 0; j < 16; ++j) { + DC += dst[-1 + j * BPS]; + } + Put16_SSE2(DC >> 4, dst); +} + +static void DC16NoLeft_SSE2(uint8_t* dst) { // DC with left samples unavailable + const __m128i zero = _mm_setzero_si128(); + const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); + const __m128i sad8x2 = _mm_sad_epu8(top, zero); + // sum the two sads: sad8x2[0:1] + sad8x2[8:9] + const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); + const int DC = _mm_cvtsi128_si32(sum) + 8; + Put16_SSE2(DC >> 4, dst); +} + +static void DC16NoTopLeft_SSE2(uint8_t* dst) { // DC with no top & left samples + Put16_SSE2(0x80, dst); +} + +//------------------------------------------------------------------------------ +// Chroma + +static void VE8uv_SSE2(uint8_t* dst) { // vertical + int j; + const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); + for (j = 0; j < 8; ++j) { + _mm_storel_epi64((__m128i*)(dst + j * BPS), top); + } +} + +// helper for chroma-DC predictions +static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) { + int j; + const __m128i values = _mm_set1_epi8(v); + for (j = 0; j < 8; ++j) { + _mm_storel_epi64((__m128i*)(dst + j * BPS), values); + } +} + +static void DC8uv_SSE2(uint8_t* dst) { // DC + const __m128i zero = _mm_setzero_si128(); + const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); + const __m128i sum = _mm_sad_epu8(top, zero); + int left = 0; + int j; + for (j = 0; j < 8; ++j) { + left += dst[-1 + j * BPS]; + } + { + const int DC = _mm_cvtsi128_si32(sum) + left + 8; + Put8x8uv_SSE2(DC >> 4, dst); + } +} + +static void DC8uvNoLeft_SSE2(uint8_t* dst) { // DC with no left samples + const __m128i zero = _mm_setzero_si128(); + const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); + const __m128i sum = _mm_sad_epu8(top, zero); + const int DC = _mm_cvtsi128_si32(sum) + 4; + Put8x8uv_SSE2(DC >> 3, dst); +} + +static void DC8uvNoTop_SSE2(uint8_t* dst) { // DC with no top samples + int dc0 = 4; + int i; + for (i = 0; i < 8; ++i) { + dc0 += dst[-1 + i * BPS]; + } + Put8x8uv_SSE2(dc0 >> 3, dst); +} + +static void DC8uvNoTopLeft_SSE2(uint8_t* dst) { // DC with nothing + Put8x8uv_SSE2(0x80, dst); +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8DspInitSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) { + VP8Transform = Transform_SSE2; +#if (USE_TRANSFORM_AC3 == 1) + VP8TransformAC3 = TransformAC3_SSE2; +#endif + + VP8VFilter16 = VFilter16_SSE2; + VP8HFilter16 = HFilter16_SSE2; + VP8VFilter8 = VFilter8_SSE2; + VP8HFilter8 = HFilter8_SSE2; + VP8VFilter16i = VFilter16i_SSE2; + VP8HFilter16i = HFilter16i_SSE2; + VP8VFilter8i = VFilter8i_SSE2; + VP8HFilter8i = HFilter8i_SSE2; + + VP8SimpleVFilter16 = SimpleVFilter16_SSE2; + VP8SimpleHFilter16 = SimpleHFilter16_SSE2; + VP8SimpleVFilter16i = SimpleVFilter16i_SSE2; + VP8SimpleHFilter16i = SimpleHFilter16i_SSE2; + + VP8PredLuma4[1] = TM4_SSE2; + VP8PredLuma4[2] = VE4_SSE2; + VP8PredLuma4[4] = RD4_SSE2; + VP8PredLuma4[5] = VR4_SSE2; + VP8PredLuma4[6] = LD4_SSE2; + VP8PredLuma4[7] = VL4_SSE2; + + VP8PredLuma16[0] = DC16_SSE2; + VP8PredLuma16[1] = TM16_SSE2; + VP8PredLuma16[2] = VE16_SSE2; + VP8PredLuma16[3] = HE16_SSE2; + VP8PredLuma16[4] = DC16NoTop_SSE2; + VP8PredLuma16[5] = DC16NoLeft_SSE2; + VP8PredLuma16[6] = DC16NoTopLeft_SSE2; + + VP8PredChroma8[0] = DC8uv_SSE2; + VP8PredChroma8[1] = TM8uv_SSE2; + VP8PredChroma8[2] = VE8uv_SSE2; + VP8PredChroma8[4] = DC8uvNoTop_SSE2; + VP8PredChroma8[5] = DC8uvNoLeft_SSE2; + VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(VP8DspInitSSE2) + +#endif // WEBP_USE_SSE2 |