diff options
Diffstat (limited to 'thirdparty/libwebp/enc/histogram.c')
| -rw-r--r-- | thirdparty/libwebp/enc/histogram.c | 937 | 
1 files changed, 937 insertions, 0 deletions
diff --git a/thirdparty/libwebp/enc/histogram.c b/thirdparty/libwebp/enc/histogram.c new file mode 100644 index 0000000000..395372b245 --- /dev/null +++ b/thirdparty/libwebp/enc/histogram.c @@ -0,0 +1,937 @@ +// Copyright 2012 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Author: Jyrki Alakuijala (jyrki@google.com) +// +#ifdef HAVE_CONFIG_H +#include "../webp/config.h" +#endif + +#include <math.h> + +#include "./backward_references.h" +#include "./histogram.h" +#include "../dsp/lossless.h" +#include "../utils/utils.h" + +#define MAX_COST 1.e38 + +// Number of partitions for the three dominant (literal, red and blue) symbol +// costs. +#define NUM_PARTITIONS 4 +// The size of the bin-hash corresponding to the three dominant costs. +#define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS) +// Maximum number of histograms allowed in greedy combining algorithm. +#define MAX_HISTO_GREEDY 100 + +static void HistogramClear(VP8LHistogram* const p) { +  uint32_t* const literal = p->literal_; +  const int cache_bits = p->palette_code_bits_; +  const int histo_size = VP8LGetHistogramSize(cache_bits); +  memset(p, 0, histo_size); +  p->palette_code_bits_ = cache_bits; +  p->literal_ = literal; +} + +// Swap two histogram pointers. +static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) { +  VP8LHistogram* const tmp = *A; +  *A = *B; +  *B = tmp; +} + +static void HistogramCopy(const VP8LHistogram* const src, +                          VP8LHistogram* const dst) { +  uint32_t* const dst_literal = dst->literal_; +  const int dst_cache_bits = dst->palette_code_bits_; +  const int histo_size = VP8LGetHistogramSize(dst_cache_bits); +  assert(src->palette_code_bits_ == dst_cache_bits); +  memcpy(dst, src, histo_size); +  dst->literal_ = dst_literal; +} + +int VP8LGetHistogramSize(int cache_bits) { +  const int literal_size = VP8LHistogramNumCodes(cache_bits); +  const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size; +  assert(total_size <= (size_t)0x7fffffff); +  return (int)total_size; +} + +void VP8LFreeHistogram(VP8LHistogram* const histo) { +  WebPSafeFree(histo); +} + +void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) { +  WebPSafeFree(histo); +} + +void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs, +                            VP8LHistogram* const histo) { +  VP8LRefsCursor c = VP8LRefsCursorInit(refs); +  while (VP8LRefsCursorOk(&c)) { +    VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos); +    VP8LRefsCursorNext(&c); +  } +} + +void VP8LHistogramCreate(VP8LHistogram* const p, +                         const VP8LBackwardRefs* const refs, +                         int palette_code_bits) { +  if (palette_code_bits >= 0) { +    p->palette_code_bits_ = palette_code_bits; +  } +  HistogramClear(p); +  VP8LHistogramStoreRefs(refs, p); +} + +void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) { +  p->palette_code_bits_ = palette_code_bits; +  HistogramClear(p); +} + +VP8LHistogram* VP8LAllocateHistogram(int cache_bits) { +  VP8LHistogram* histo = NULL; +  const int total_size = VP8LGetHistogramSize(cache_bits); +  uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); +  if (memory == NULL) return NULL; +  histo = (VP8LHistogram*)memory; +  // literal_ won't necessary be aligned. +  histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); +  VP8LHistogramInit(histo, cache_bits); +  return histo; +} + +VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { +  int i; +  VP8LHistogramSet* set; +  const int histo_size = VP8LGetHistogramSize(cache_bits); +  const size_t total_size = +      sizeof(*set) + size * (sizeof(*set->histograms) + +      histo_size + WEBP_ALIGN_CST); +  uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); +  if (memory == NULL) return NULL; + +  set = (VP8LHistogramSet*)memory; +  memory += sizeof(*set); +  set->histograms = (VP8LHistogram**)memory; +  memory += size * sizeof(*set->histograms); +  set->max_size = size; +  set->size = size; +  for (i = 0; i < size; ++i) { +    memory = (uint8_t*)WEBP_ALIGN(memory); +    set->histograms[i] = (VP8LHistogram*)memory; +    // literal_ won't necessary be aligned. +    set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); +    VP8LHistogramInit(set->histograms[i], cache_bits); +    memory += histo_size; +  } +  return set; +} + +// ----------------------------------------------------------------------------- + +void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo, +                                     const PixOrCopy* const v) { +  if (PixOrCopyIsLiteral(v)) { +    ++histo->alpha_[PixOrCopyLiteral(v, 3)]; +    ++histo->red_[PixOrCopyLiteral(v, 2)]; +    ++histo->literal_[PixOrCopyLiteral(v, 1)]; +    ++histo->blue_[PixOrCopyLiteral(v, 0)]; +  } else if (PixOrCopyIsCacheIdx(v)) { +    const int literal_ix = +        NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v); +    ++histo->literal_[literal_ix]; +  } else { +    int code, extra_bits; +    VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits); +    ++histo->literal_[NUM_LITERAL_CODES + code]; +    VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits); +    ++histo->distance_[code]; +  } +} + +// ----------------------------------------------------------------------------- +// Entropy-related functions. + +static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) { +  double mix; +  if (entropy->nonzeros < 5) { +    if (entropy->nonzeros <= 1) { +      return 0; +    } +    // Two symbols, they will be 0 and 1 in a Huffman code. +    // Let's mix in a bit of entropy to favor good clustering when +    // distributions of these are combined. +    if (entropy->nonzeros == 2) { +      return 0.99 * entropy->sum + 0.01 * entropy->entropy; +    } +    // No matter what the entropy says, we cannot be better than min_limit +    // with Huffman coding. I am mixing a bit of entropy into the +    // min_limit since it produces much better (~0.5 %) compression results +    // perhaps because of better entropy clustering. +    if (entropy->nonzeros == 3) { +      mix = 0.95; +    } else { +      mix = 0.7;  // nonzeros == 4. +    } +  } else { +    mix = 0.627; +  } + +  { +    double min_limit = 2 * entropy->sum - entropy->max_val; +    min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy; +    return (entropy->entropy < min_limit) ? min_limit : entropy->entropy; +  } +} + +double VP8LBitsEntropy(const uint32_t* const array, int n, +                       uint32_t* const trivial_symbol) { +  VP8LBitEntropy entropy; +  VP8LBitsEntropyUnrefined(array, n, &entropy); +  if (trivial_symbol != NULL) { +    *trivial_symbol = +        (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM; +  } + +  return BitsEntropyRefine(&entropy); +} + +static double InitialHuffmanCost(void) { +  // Small bias because Huffman code length is typically not stored in +  // full length. +  static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; +  static const double kSmallBias = 9.1; +  return kHuffmanCodeOfHuffmanCodeSize - kSmallBias; +} + +// Finalize the Huffman cost based on streak numbers and length type (<3 or >=3) +static double FinalHuffmanCost(const VP8LStreaks* const stats) { +  double retval = InitialHuffmanCost(); +  retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1]; +  retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1]; +  retval += 1.796875 * stats->streaks[0][0]; +  retval += 3.28125 * stats->streaks[1][0]; +  return retval; +} + +// Get the symbol entropy for the distribution 'population'. +// Set 'trivial_sym', if there's only one symbol present in the distribution. +static double PopulationCost(const uint32_t* const population, int length, +                             uint32_t* const trivial_sym) { +  VP8LBitEntropy bit_entropy; +  VP8LStreaks stats; +  VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats); +  if (trivial_sym != NULL) { +    *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code +                                               : VP8L_NON_TRIVIAL_SYM; +  } + +  return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); +} + +static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X, +                                             const uint32_t* const Y, +                                             int length) { +  VP8LBitEntropy bit_entropy; +  VP8LStreaks stats; +  VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats); + +  return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); +} + +// Estimates the Entropy + Huffman + other block overhead size cost. +double VP8LHistogramEstimateBits(const VP8LHistogram* const p) { +  return +      PopulationCost( +          p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL) +      + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL) +      + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL) +      + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL) +      + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL) +      + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES) +      + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES); +} + +// ----------------------------------------------------------------------------- +// Various histogram combine/cost-eval functions + +static int GetCombinedHistogramEntropy(const VP8LHistogram* const a, +                                       const VP8LHistogram* const b, +                                       double cost_threshold, +                                       double* cost) { +  const int palette_code_bits = a->palette_code_bits_; +  assert(a->palette_code_bits_ == b->palette_code_bits_); +  *cost += GetCombinedEntropy(a->literal_, b->literal_, +                              VP8LHistogramNumCodes(palette_code_bits)); +  *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES, +                                 b->literal_ + NUM_LITERAL_CODES, +                                 NUM_LENGTH_CODES); +  if (*cost > cost_threshold) return 0; + +  *cost += GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES); +  if (*cost > cost_threshold) return 0; + +  *cost += GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES); +  if (*cost > cost_threshold) return 0; + +  *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES); +  if (*cost > cost_threshold) return 0; + +  *cost += GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES); +  *cost += +      VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES); +  if (*cost > cost_threshold) return 0; + +  return 1; +} + +// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing +// to the threshold value 'cost_threshold'. The score returned is +//  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed. +// Since the previous score passed is 'cost_threshold', we only need to compare +// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out +// early. +static double HistogramAddEval(const VP8LHistogram* const a, +                               const VP8LHistogram* const b, +                               VP8LHistogram* const out, +                               double cost_threshold) { +  double cost = 0; +  const double sum_cost = a->bit_cost_ + b->bit_cost_; +  cost_threshold += sum_cost; + +  if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) { +    VP8LHistogramAdd(a, b, out); +    out->bit_cost_ = cost; +    out->palette_code_bits_ = a->palette_code_bits_; +    out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) ? +        a->trivial_symbol_ : VP8L_NON_TRIVIAL_SYM; +  } + +  return cost - sum_cost; +} + +// Same as HistogramAddEval(), except that the resulting histogram +// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit +// the term C(b) which is constant over all the evaluations. +static double HistogramAddThresh(const VP8LHistogram* const a, +                                 const VP8LHistogram* const b, +                                 double cost_threshold) { +  double cost = -a->bit_cost_; +  GetCombinedHistogramEntropy(a, b, cost_threshold, &cost); +  return cost; +} + +// ----------------------------------------------------------------------------- + +// The structure to keep track of cost range for the three dominant entropy +// symbols. +// TODO(skal): Evaluate if float can be used here instead of double for +// representing the entropy costs. +typedef struct { +  double literal_max_; +  double literal_min_; +  double red_max_; +  double red_min_; +  double blue_max_; +  double blue_min_; +} DominantCostRange; + +static void DominantCostRangeInit(DominantCostRange* const c) { +  c->literal_max_ = 0.; +  c->literal_min_ = MAX_COST; +  c->red_max_ = 0.; +  c->red_min_ = MAX_COST; +  c->blue_max_ = 0.; +  c->blue_min_ = MAX_COST; +} + +static void UpdateDominantCostRange( +    const VP8LHistogram* const h, DominantCostRange* const c) { +  if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_; +  if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_; +  if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_; +  if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_; +  if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_; +  if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_; +} + +static void UpdateHistogramCost(VP8LHistogram* const h) { +  uint32_t alpha_sym, red_sym, blue_sym; +  const double alpha_cost = +      PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym); +  const double distance_cost = +      PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) + +      VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES); +  const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_); +  h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) + +                     VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES, +                                   NUM_LENGTH_CODES); +  h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym); +  h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym); +  h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ + +                 alpha_cost + distance_cost; +  if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) { +    h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM; +  } else { +    h->trivial_symbol_ = +        ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0); +  } +} + +static int GetBinIdForEntropy(double min, double max, double val) { +  const double range = max - min; +  if (range > 0.) { +    const double delta = val - min; +    return (int)((NUM_PARTITIONS - 1e-6) * delta / range); +  } else { +    return 0; +  } +} + +static int GetHistoBinIndex(const VP8LHistogram* const h, +                            const DominantCostRange* const c, int low_effort) { +  int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_, +                                  h->literal_cost_); +  assert(bin_id < NUM_PARTITIONS); +  if (!low_effort) { +    bin_id = bin_id * NUM_PARTITIONS +           + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_); +    bin_id = bin_id * NUM_PARTITIONS +           + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_); +    assert(bin_id < BIN_SIZE); +  } +  return bin_id; +} + +// Construct the histograms from backward references. +static void HistogramBuild( +    int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs, +    VP8LHistogramSet* const image_histo) { +  int x = 0, y = 0; +  const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); +  VP8LHistogram** const histograms = image_histo->histograms; +  VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs); +  assert(histo_bits > 0); +  while (VP8LRefsCursorOk(&c)) { +    const PixOrCopy* const v = c.cur_pos; +    const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); +    VP8LHistogramAddSinglePixOrCopy(histograms[ix], v); +    x += PixOrCopyLength(v); +    while (x >= xsize) { +      x -= xsize; +      ++y; +    } +    VP8LRefsCursorNext(&c); +  } +} + +// Copies the histograms and computes its bit_cost. +static void HistogramCopyAndAnalyze( +    VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) { +  int i; +  const int histo_size = orig_histo->size; +  VP8LHistogram** const orig_histograms = orig_histo->histograms; +  VP8LHistogram** const histograms = image_histo->histograms; +  for (i = 0; i < histo_size; ++i) { +    VP8LHistogram* const histo = orig_histograms[i]; +    UpdateHistogramCost(histo); +    // Copy histograms from orig_histo[] to image_histo[]. +    HistogramCopy(histo, histograms[i]); +  } +} + +// Partition histograms to different entropy bins for three dominant (literal, +// red and blue) symbol costs and compute the histogram aggregate bit_cost. +static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo, +                                       int16_t* const bin_map, int low_effort) { +  int i; +  VP8LHistogram** const histograms = image_histo->histograms; +  const int histo_size = image_histo->size; +  const int bin_depth = histo_size + 1; +  DominantCostRange cost_range; +  DominantCostRangeInit(&cost_range); + +  // Analyze the dominant (literal, red and blue) entropy costs. +  for (i = 0; i < histo_size; ++i) { +    VP8LHistogram* const histo = histograms[i]; +    UpdateDominantCostRange(histo, &cost_range); +  } + +  // bin-hash histograms on three of the dominant (literal, red and blue) +  // symbol costs. +  for (i = 0; i < histo_size; ++i) { +    const VP8LHistogram* const histo = histograms[i]; +    const int bin_id = GetHistoBinIndex(histo, &cost_range, low_effort); +    const int bin_offset = bin_id * bin_depth; +    // bin_map[n][0] for every bin 'n' maintains the counter for the number of +    // histograms in that bin. +    // Get and increment the num_histos in that bin. +    const int num_histos = ++bin_map[bin_offset]; +    assert(bin_offset + num_histos < bin_depth * BIN_SIZE); +    // Add histogram i'th index at num_histos (last) position in the bin_map. +    bin_map[bin_offset + num_histos] = i; +  } +} + +// Compact the histogram set by removing unused entries. +static void HistogramCompactBins(VP8LHistogramSet* const image_histo) { +  VP8LHistogram** const histograms = image_histo->histograms; +  int i, j; + +  for (i = 0, j = 0; i < image_histo->size; ++i) { +    if (histograms[i] != NULL && histograms[i]->bit_cost_ != 0.) { +      if (j < i) { +        histograms[j] = histograms[i]; +        histograms[i] = NULL; +      } +      ++j; +    } +  } +  image_histo->size = j; +} + +static VP8LHistogram* HistogramCombineEntropyBin( +    VP8LHistogramSet* const image_histo, +    VP8LHistogram* cur_combo, +    int16_t* const bin_map, int bin_depth, int num_bins, +    double combine_cost_factor, int low_effort) { +  int bin_id; +  VP8LHistogram** const histograms = image_histo->histograms; + +  for (bin_id = 0; bin_id < num_bins; ++bin_id) { +    const int bin_offset = bin_id * bin_depth; +    const int num_histos = bin_map[bin_offset]; +    const int idx1 = bin_map[bin_offset + 1]; +    int num_combine_failures = 0; +    int n; +    for (n = 2; n <= num_histos; ++n) { +      const int idx2 = bin_map[bin_offset + n]; +      if (low_effort) { +        // Merge all histograms with the same bin index, irrespective of cost of +        // the merged histograms. +        VP8LHistogramAdd(histograms[idx1], histograms[idx2], histograms[idx1]); +        histograms[idx2]->bit_cost_ = 0.; +      } else { +        const double bit_cost_idx2 = histograms[idx2]->bit_cost_; +        if (bit_cost_idx2 > 0.) { +          const double bit_cost_thresh = -bit_cost_idx2 * combine_cost_factor; +          const double curr_cost_diff = +              HistogramAddEval(histograms[idx1], histograms[idx2], +                               cur_combo, bit_cost_thresh); +          if (curr_cost_diff < bit_cost_thresh) { +            // Try to merge two histograms only if the combo is a trivial one or +            // the two candidate histograms are already non-trivial. +            // For some images, 'try_combine' turns out to be false for a lot of +            // histogram pairs. In that case, we fallback to combining +            // histograms as usual to avoid increasing the header size. +            const int try_combine = +                (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) || +                ((histograms[idx1]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) && +                 (histograms[idx2]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM)); +            const int max_combine_failures = 32; +            if (try_combine || (num_combine_failures >= max_combine_failures)) { +              HistogramSwap(&cur_combo, &histograms[idx1]); +              histograms[idx2]->bit_cost_ = 0.; +            } else { +              ++num_combine_failures; +            } +          } +        } +      } +    } +    if (low_effort) { +      // Update the bit_cost for the merged histograms (per bin index). +      UpdateHistogramCost(histograms[idx1]); +    } +  } +  HistogramCompactBins(image_histo); +  return cur_combo; +} + +static uint32_t MyRand(uint32_t *seed) { +  *seed *= 16807U; +  if (*seed == 0) { +    *seed = 1; +  } +  return *seed; +} + +// ----------------------------------------------------------------------------- +// Histogram pairs priority queue + +// Pair of histograms. Negative idx1 value means that pair is out-of-date. +typedef struct { +  int idx1; +  int idx2; +  double cost_diff; +  double cost_combo; +} HistogramPair; + +typedef struct { +  HistogramPair* queue; +  int size; +  int max_size; +} HistoQueue; + +static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) { +  histo_queue->size = 0; +  // max_index^2 for the queue size is safe. If you look at +  // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes +  // data to the queue, you insert at most: +  // - max_index*(max_index-1)/2 (the first two for loops) +  // - max_index - 1 in the last for loop at the first iteration of the while +  //   loop, max_index - 2 at the second iteration ... therefore +  //   max_index*(max_index-1)/2 overall too +  histo_queue->max_size = max_index * max_index; +  // We allocate max_size + 1 because the last element at index "size" is +  // used as temporary data (and it could be up to max_size). +  histo_queue->queue = WebPSafeMalloc(histo_queue->max_size + 1, +                                      sizeof(*histo_queue->queue)); +  return histo_queue->queue != NULL; +} + +static void HistoQueueClear(HistoQueue* const histo_queue) { +  assert(histo_queue != NULL); +  WebPSafeFree(histo_queue->queue); +} + +static void SwapHistogramPairs(HistogramPair *p1, +                               HistogramPair *p2) { +  const HistogramPair tmp = *p1; +  *p1 = *p2; +  *p2 = tmp; +} + +// Given a valid priority queue in range [0, queue_size) this function checks +// whether histo_queue[queue_size] should be accepted and swaps it with the +// front if it is smaller. Otherwise, it leaves it as is. +static void UpdateQueueFront(HistoQueue* const histo_queue) { +  if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return; + +  if (histo_queue->queue[histo_queue->size].cost_diff < +      histo_queue->queue[0].cost_diff) { +    SwapHistogramPairs(histo_queue->queue, +                       histo_queue->queue + histo_queue->size); +  } +  ++histo_queue->size; + +  // We cannot add more elements than the capacity. +  // The allocation adds an extra element to the official capacity so that +  // histo_queue->queue[histo_queue->max_size] is read/written within bound. +  assert(histo_queue->size <= histo_queue->max_size); +} + +// ----------------------------------------------------------------------------- + +static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2, +                        HistogramPair* const pair) { +  VP8LHistogram* h1; +  VP8LHistogram* h2; +  double sum_cost; + +  if (idx1 > idx2) { +    const int tmp = idx2; +    idx2 = idx1; +    idx1 = tmp; +  } +  pair->idx1 = idx1; +  pair->idx2 = idx2; +  h1 = histograms[idx1]; +  h2 = histograms[idx2]; +  sum_cost = h1->bit_cost_ + h2->bit_cost_; +  pair->cost_combo = 0.; +  GetCombinedHistogramEntropy(h1, h2, sum_cost, &pair->cost_combo); +  pair->cost_diff = pair->cost_combo - sum_cost; +} + +// Combines histograms by continuously choosing the one with the highest cost +// reduction. +static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) { +  int ok = 0; +  int image_histo_size = image_histo->size; +  int i, j; +  VP8LHistogram** const histograms = image_histo->histograms; +  // Indexes of remaining histograms. +  int* const clusters = WebPSafeMalloc(image_histo_size, sizeof(*clusters)); +  // Priority queue of histogram pairs. +  HistoQueue histo_queue; + +  if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) { +    goto End; +  } + +  for (i = 0; i < image_histo_size; ++i) { +    // Initialize clusters indexes. +    clusters[i] = i; +    for (j = i + 1; j < image_histo_size; ++j) { +      // Initialize positions array. +      PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size]); +      UpdateQueueFront(&histo_queue); +    } +  } + +  while (image_histo_size > 1 && histo_queue.size > 0) { +    HistogramPair* copy_to; +    const int idx1 = histo_queue.queue[0].idx1; +    const int idx2 = histo_queue.queue[0].idx2; +    VP8LHistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]); +    histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo; +    // Remove merged histogram. +    for (i = 0; i + 1 < image_histo_size; ++i) { +      if (clusters[i] >= idx2) { +        clusters[i] = clusters[i + 1]; +      } +    } +    --image_histo_size; + +    // Remove pairs intersecting the just combined best pair. This will +    // therefore pop the head of the queue. +    copy_to = histo_queue.queue; +    for (i = 0; i < histo_queue.size; ++i) { +      HistogramPair* const p = histo_queue.queue + i; +      if (p->idx1 == idx1 || p->idx2 == idx1 || +          p->idx1 == idx2 || p->idx2 == idx2) { +        // Do not copy the invalid pair. +        continue; +      } +      if (p->cost_diff < histo_queue.queue[0].cost_diff) { +        // Replace the top of the queue if we found better. +        SwapHistogramPairs(histo_queue.queue, p); +      } +      SwapHistogramPairs(copy_to, p); +      ++copy_to; +    } +    histo_queue.size = (int)(copy_to - histo_queue.queue); + +    // Push new pairs formed with combined histogram to the queue. +    for (i = 0; i < image_histo_size; ++i) { +      if (clusters[i] != idx1) { +        PreparePair(histograms, idx1, clusters[i], +                    &histo_queue.queue[histo_queue.size]); +        UpdateQueueFront(&histo_queue); +      } +    } +  } +  // Move remaining histograms to the beginning of the array. +  for (i = 0; i < image_histo_size; ++i) { +    if (i != clusters[i]) {  // swap the two histograms +      HistogramSwap(&histograms[i], &histograms[clusters[i]]); +    } +  } + +  image_histo->size = image_histo_size; +  ok = 1; + + End: +  WebPSafeFree(clusters); +  HistoQueueClear(&histo_queue); +  return ok; +} + +static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo, +                                       VP8LHistogram* tmp_histo, +                                       VP8LHistogram* best_combo, +                                       int quality, int min_cluster_size) { +  int iter; +  uint32_t seed = 0; +  int tries_with_no_success = 0; +  int image_histo_size = image_histo->size; +  const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8; +  const int outer_iters = image_histo_size * iter_mult; +  const int num_pairs = image_histo_size / 2; +  const int num_tries_no_success = outer_iters / 2; +  VP8LHistogram** const histograms = image_histo->histograms; + +  // Collapse similar histograms in 'image_histo'. +  ++min_cluster_size; +  for (iter = 0; +       iter < outer_iters && image_histo_size >= min_cluster_size; +       ++iter) { +    double best_cost_diff = 0.; +    int best_idx1 = -1, best_idx2 = 1; +    int j; +    const int num_tries = +        (num_pairs < image_histo_size) ? num_pairs : image_histo_size; +    seed += iter; +    for (j = 0; j < num_tries; ++j) { +      double curr_cost_diff; +      // Choose two histograms at random and try to combine them. +      const uint32_t idx1 = MyRand(&seed) % image_histo_size; +      const uint32_t tmp = (j & 7) + 1; +      const uint32_t diff = +          (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1); +      const uint32_t idx2 = (idx1 + diff + 1) % image_histo_size; +      if (idx1 == idx2) { +        continue; +      } + +      // Calculate cost reduction on combining. +      curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2], +                                        tmp_histo, best_cost_diff); +      if (curr_cost_diff < best_cost_diff) {    // found a better pair? +        HistogramSwap(&best_combo, &tmp_histo); +        best_cost_diff = curr_cost_diff; +        best_idx1 = idx1; +        best_idx2 = idx2; +      } +    } + +    if (best_idx1 >= 0) { +      HistogramSwap(&best_combo, &histograms[best_idx1]); +      // swap best_idx2 slot with last one (which is now unused) +      --image_histo_size; +      if (best_idx2 != image_histo_size) { +        HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]); +        histograms[image_histo_size] = NULL; +      } +      tries_with_no_success = 0; +    } +    if (++tries_with_no_success >= num_tries_no_success) { +      break; +    } +  } +  image_histo->size = image_histo_size; +} + +// ----------------------------------------------------------------------------- +// Histogram refinement + +// Find the best 'out' histogram for each of the 'in' histograms. +// Note: we assume that out[]->bit_cost_ is already up-to-date. +static void HistogramRemap(const VP8LHistogramSet* const in, +                           const VP8LHistogramSet* const out, +                           uint16_t* const symbols) { +  int i; +  VP8LHistogram** const in_histo = in->histograms; +  VP8LHistogram** const out_histo = out->histograms; +  const int in_size = in->size; +  const int out_size = out->size; +  if (out_size > 1) { +    for (i = 0; i < in_size; ++i) { +      int best_out = 0; +      double best_bits = MAX_COST; +      int k; +      for (k = 0; k < out_size; ++k) { +        const double cur_bits = +            HistogramAddThresh(out_histo[k], in_histo[i], best_bits); +        if (k == 0 || cur_bits < best_bits) { +          best_bits = cur_bits; +          best_out = k; +        } +      } +      symbols[i] = best_out; +    } +  } else { +    assert(out_size == 1); +    for (i = 0; i < in_size; ++i) { +      symbols[i] = 0; +    } +  } + +  // Recompute each out based on raw and symbols. +  for (i = 0; i < out_size; ++i) { +    HistogramClear(out_histo[i]); +  } + +  for (i = 0; i < in_size; ++i) { +    const int idx = symbols[i]; +    VP8LHistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]); +  } +} + +static double GetCombineCostFactor(int histo_size, int quality) { +  double combine_cost_factor = 0.16; +  if (quality < 90) { +    if (histo_size > 256) combine_cost_factor /= 2.; +    if (histo_size > 512) combine_cost_factor /= 2.; +    if (histo_size > 1024) combine_cost_factor /= 2.; +    if (quality <= 50) combine_cost_factor /= 2.; +  } +  return combine_cost_factor; +} + +int VP8LGetHistoImageSymbols(int xsize, int ysize, +                             const VP8LBackwardRefs* const refs, +                             int quality, int low_effort, +                             int histo_bits, int cache_bits, +                             VP8LHistogramSet* const image_histo, +                             VP8LHistogramSet* const tmp_histos, +                             uint16_t* const histogram_symbols) { +  int ok = 0; +  const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1; +  const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1; +  const int image_histo_raw_size = histo_xsize * histo_ysize; +  const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE; + +  // The bin_map for every bin follows following semantics: +  // bin_map[n][0] = num_histo; // The number of histograms in that bin. +  // bin_map[n][1] = index of first histogram in that bin; +  // bin_map[n][num_histo] = index of last histogram in that bin; +  // bin_map[n][num_histo + 1] ... bin_map[n][bin_depth - 1] = unused indices. +  const int bin_depth = image_histo_raw_size + 1; +  int16_t* bin_map = NULL; +  VP8LHistogramSet* const orig_histo = +      VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits); +  VP8LHistogram* cur_combo; +  const int entropy_combine = +      (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100); + +  if (orig_histo == NULL) goto Error; + +  // Don't attempt linear bin-partition heuristic for: +  // histograms of small sizes, as bin_map will be very sparse and; +  // Maximum quality (q==100), to preserve the compression gains at that level. +  if (entropy_combine) { +    const int bin_map_size = bin_depth * entropy_combine_num_bins; +    bin_map = (int16_t*)WebPSafeCalloc(bin_map_size, sizeof(*bin_map)); +    if (bin_map == NULL) goto Error; +  } + +  // Construct the histograms from backward references. +  HistogramBuild(xsize, histo_bits, refs, orig_histo); +  // Copies the histograms and computes its bit_cost. +  HistogramCopyAndAnalyze(orig_histo, image_histo); + +  cur_combo = tmp_histos->histograms[1];  // pick up working slot +  if (entropy_combine) { +    const double combine_cost_factor = +        GetCombineCostFactor(image_histo_raw_size, quality); +    HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort); +    // Collapse histograms with similar entropy. +    cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo, bin_map, +                                           bin_depth, entropy_combine_num_bins, +                                           combine_cost_factor, low_effort); +  } + +  // Don't combine the histograms using stochastic and greedy heuristics for +  // low-effort compression mode. +  if (!low_effort || !entropy_combine) { +    const float x = quality / 100.f; +    // cubic ramp between 1 and MAX_HISTO_GREEDY: +    const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1)); +    HistogramCombineStochastic(image_histo, tmp_histos->histograms[0], +                               cur_combo, quality, threshold_size); +    if ((image_histo->size <= threshold_size) && +        !HistogramCombineGreedy(image_histo)) { +      goto Error; +    } +  } + +  // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also. +  // Find the optimal map from original histograms to the final ones. +  HistogramRemap(orig_histo, image_histo, histogram_symbols); + +  ok = 1; + + Error: +  WebPSafeFree(bin_map); +  VP8LFreeHistogramSet(orig_histo); +  return ok; +}  |