diff options
Diffstat (limited to 'thirdparty/libwebp/enc/analysis.c')
| -rw-r--r-- | thirdparty/libwebp/enc/analysis.c | 501 | 
1 files changed, 501 insertions, 0 deletions
diff --git a/thirdparty/libwebp/enc/analysis.c b/thirdparty/libwebp/enc/analysis.c new file mode 100644 index 0000000000..b55128fd48 --- /dev/null +++ b/thirdparty/libwebp/enc/analysis.c @@ -0,0 +1,501 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Macroblock analysis +// +// Author: Skal (pascal.massimino@gmail.com) + +#include <stdlib.h> +#include <string.h> +#include <assert.h> + +#include "./vp8enci.h" +#include "./cost.h" +#include "../utils/utils.h" + +#define MAX_ITERS_K_MEANS  6 + +//------------------------------------------------------------------------------ +// Smooth the segment map by replacing isolated block by the majority of its +// neighbours. + +static void SmoothSegmentMap(VP8Encoder* const enc) { +  int n, x, y; +  const int w = enc->mb_w_; +  const int h = enc->mb_h_; +  const int majority_cnt_3_x_3_grid = 5; +  uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp)); +  assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec + +  if (tmp == NULL) return; +  for (y = 1; y < h - 1; ++y) { +    for (x = 1; x < w - 1; ++x) { +      int cnt[NUM_MB_SEGMENTS] = { 0 }; +      const VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; +      int majority_seg = mb->segment_; +      // Check the 8 neighbouring segment values. +      cnt[mb[-w - 1].segment_]++;  // top-left +      cnt[mb[-w + 0].segment_]++;  // top +      cnt[mb[-w + 1].segment_]++;  // top-right +      cnt[mb[   - 1].segment_]++;  // left +      cnt[mb[   + 1].segment_]++;  // right +      cnt[mb[ w - 1].segment_]++;  // bottom-left +      cnt[mb[ w + 0].segment_]++;  // bottom +      cnt[mb[ w + 1].segment_]++;  // bottom-right +      for (n = 0; n < NUM_MB_SEGMENTS; ++n) { +        if (cnt[n] >= majority_cnt_3_x_3_grid) { +          majority_seg = n; +          break; +        } +      } +      tmp[x + y * w] = majority_seg; +    } +  } +  for (y = 1; y < h - 1; ++y) { +    for (x = 1; x < w - 1; ++x) { +      VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; +      mb->segment_ = tmp[x + y * w]; +    } +  } +  WebPSafeFree(tmp); +} + +//------------------------------------------------------------------------------ +// set segment susceptibility alpha_ / beta_ + +static WEBP_INLINE int clip(int v, int m, int M) { +  return (v < m) ? m : (v > M) ? M : v; +} + +static void SetSegmentAlphas(VP8Encoder* const enc, +                             const int centers[NUM_MB_SEGMENTS], +                             int mid) { +  const int nb = enc->segment_hdr_.num_segments_; +  int min = centers[0], max = centers[0]; +  int n; + +  if (nb > 1) { +    for (n = 0; n < nb; ++n) { +      if (min > centers[n]) min = centers[n]; +      if (max < centers[n]) max = centers[n]; +    } +  } +  if (max == min) max = min + 1; +  assert(mid <= max && mid >= min); +  for (n = 0; n < nb; ++n) { +    const int alpha = 255 * (centers[n] - mid) / (max - min); +    const int beta = 255 * (centers[n] - min) / (max - min); +    enc->dqm_[n].alpha_ = clip(alpha, -127, 127); +    enc->dqm_[n].beta_ = clip(beta, 0, 255); +  } +} + +//------------------------------------------------------------------------------ +// Compute susceptibility based on DCT-coeff histograms: +// the higher, the "easier" the macroblock is to compress. + +#define MAX_ALPHA 255                // 8b of precision for susceptibilities. +#define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha. +#define DEFAULT_ALPHA (-1) +#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha)) + +static int FinalAlphaValue(int alpha) { +  alpha = MAX_ALPHA - alpha; +  return clip(alpha, 0, MAX_ALPHA); +} + +static int GetAlpha(const VP8Histogram* const histo) { +  // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer +  // values which happen to be mostly noise. This leaves the maximum precision +  // for handling the useful small values which contribute most. +  const int max_value = histo->max_value; +  const int last_non_zero = histo->last_non_zero; +  const int alpha = +      (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0; +  return alpha; +} + +static void InitHistogram(VP8Histogram* const histo) { +  histo->max_value = 0; +  histo->last_non_zero = 1; +} + +static void MergeHistograms(const VP8Histogram* const in, +                            VP8Histogram* const out) { +  if (in->max_value > out->max_value) { +    out->max_value = in->max_value; +  } +  if (in->last_non_zero > out->last_non_zero) { +    out->last_non_zero = in->last_non_zero; +  } +} + +//------------------------------------------------------------------------------ +// Simplified k-Means, to assign Nb segments based on alpha-histogram + +static void AssignSegments(VP8Encoder* const enc, +                           const int alphas[MAX_ALPHA + 1]) { +  // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an +  // explicit check is needed to avoid spurious warning about 'n + 1' exceeding +  // array bounds of 'centers' with some compilers (noticed with gcc-4.9). +  const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ? +                 enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS; +  int centers[NUM_MB_SEGMENTS]; +  int weighted_average = 0; +  int map[MAX_ALPHA + 1]; +  int a, n, k; +  int min_a = 0, max_a = MAX_ALPHA, range_a; +  // 'int' type is ok for histo, and won't overflow +  int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; + +  assert(nb >= 1); +  assert(nb <= NUM_MB_SEGMENTS); + +  // bracket the input +  for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {} +  min_a = n; +  for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {} +  max_a = n; +  range_a = max_a - min_a; + +  // Spread initial centers evenly +  for (k = 0, n = 1; k < nb; ++k, n += 2) { +    assert(n < 2 * nb); +    centers[k] = min_a + (n * range_a) / (2 * nb); +  } + +  for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough +    int total_weight; +    int displaced; +    // Reset stats +    for (n = 0; n < nb; ++n) { +      accum[n] = 0; +      dist_accum[n] = 0; +    } +    // Assign nearest center for each 'a' +    n = 0;    // track the nearest center for current 'a' +    for (a = min_a; a <= max_a; ++a) { +      if (alphas[a]) { +        while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) { +          n++; +        } +        map[a] = n; +        // accumulate contribution into best centroid +        dist_accum[n] += a * alphas[a]; +        accum[n] += alphas[a]; +      } +    } +    // All point are classified. Move the centroids to the +    // center of their respective cloud. +    displaced = 0; +    weighted_average = 0; +    total_weight = 0; +    for (n = 0; n < nb; ++n) { +      if (accum[n]) { +        const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n]; +        displaced += abs(centers[n] - new_center); +        centers[n] = new_center; +        weighted_average += new_center * accum[n]; +        total_weight += accum[n]; +      } +    } +    weighted_average = (weighted_average + total_weight / 2) / total_weight; +    if (displaced < 5) break;   // no need to keep on looping... +  } + +  // Map each original value to the closest centroid +  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { +    VP8MBInfo* const mb = &enc->mb_info_[n]; +    const int alpha = mb->alpha_; +    mb->segment_ = map[alpha]; +    mb->alpha_ = centers[map[alpha]];  // for the record. +  } + +  if (nb > 1) { +    const int smooth = (enc->config_->preprocessing & 1); +    if (smooth) SmoothSegmentMap(enc); +  } + +  SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas. +} + +//------------------------------------------------------------------------------ +// Macroblock analysis: collect histogram for each mode, deduce the maximal +// susceptibility and set best modes for this macroblock. +// Segment assignment is done later. + +// Number of modes to inspect for alpha_ evaluation. We don't need to test all +// the possible modes during the analysis phase: we risk falling into a local +// optimum, or be subject to boundary effect +#define MAX_INTRA16_MODE 2 +#define MAX_INTRA4_MODE  2 +#define MAX_UV_MODE      2 + +static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { +  const int max_mode = MAX_INTRA16_MODE; +  int mode; +  int best_alpha = DEFAULT_ALPHA; +  int best_mode = 0; + +  VP8MakeLuma16Preds(it); +  for (mode = 0; mode < max_mode; ++mode) { +    VP8Histogram histo; +    int alpha; + +    InitHistogram(&histo); +    VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC, +                        it->yuv_p_ + VP8I16ModeOffsets[mode], +                        0, 16, &histo); +    alpha = GetAlpha(&histo); +    if (IS_BETTER_ALPHA(alpha, best_alpha)) { +      best_alpha = alpha; +      best_mode = mode; +    } +  } +  VP8SetIntra16Mode(it, best_mode); +  return best_alpha; +} + +static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it, +                                   int best_alpha) { +  uint8_t modes[16]; +  const int max_mode = MAX_INTRA4_MODE; +  int i4_alpha; +  VP8Histogram total_histo; +  int cur_histo = 0; +  InitHistogram(&total_histo); + +  VP8IteratorStartI4(it); +  do { +    int mode; +    int best_mode_alpha = DEFAULT_ALPHA; +    VP8Histogram histos[2]; +    const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; + +    VP8MakeIntra4Preds(it); +    for (mode = 0; mode < max_mode; ++mode) { +      int alpha; + +      InitHistogram(&histos[cur_histo]); +      VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode], +                          0, 1, &histos[cur_histo]); +      alpha = GetAlpha(&histos[cur_histo]); +      if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) { +        best_mode_alpha = alpha; +        modes[it->i4_] = mode; +        cur_histo ^= 1;   // keep track of best histo so far. +      } +    } +    // accumulate best histogram +    MergeHistograms(&histos[cur_histo ^ 1], &total_histo); +    // Note: we reuse the original samples for predictors +  } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF_ENC)); + +  i4_alpha = GetAlpha(&total_histo); +  if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) { +    VP8SetIntra4Mode(it, modes); +    best_alpha = i4_alpha; +  } +  return best_alpha; +} + +static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { +  int best_alpha = DEFAULT_ALPHA; +  int best_mode = 0; +  const int max_mode = MAX_UV_MODE; +  int mode; + +  VP8MakeChroma8Preds(it); +  for (mode = 0; mode < max_mode; ++mode) { +    VP8Histogram histo; +    int alpha; +    InitHistogram(&histo); +    VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC, +                        it->yuv_p_ + VP8UVModeOffsets[mode], +                        16, 16 + 4 + 4, &histo); +    alpha = GetAlpha(&histo); +    if (IS_BETTER_ALPHA(alpha, best_alpha)) { +      best_alpha = alpha; +      best_mode = mode; +    } +  } +  VP8SetIntraUVMode(it, best_mode); +  return best_alpha; +} + +static void MBAnalyze(VP8EncIterator* const it, +                      int alphas[MAX_ALPHA + 1], +                      int* const alpha, int* const uv_alpha) { +  const VP8Encoder* const enc = it->enc_; +  int best_alpha, best_uv_alpha; + +  VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED +  VP8SetSkip(it, 0);         // not skipped +  VP8SetSegment(it, 0);      // default segment, spec-wise. + +  best_alpha = MBAnalyzeBestIntra16Mode(it); +  if (enc->method_ >= 5) { +    // We go and make a fast decision for intra4/intra16. +    // It's usually not a good and definitive pick, but helps seeding the stats +    // about level bit-cost. +    // TODO(skal): improve criterion. +    best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha); +  } +  best_uv_alpha = MBAnalyzeBestUVMode(it); + +  // Final susceptibility mix +  best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2; +  best_alpha = FinalAlphaValue(best_alpha); +  alphas[best_alpha]++; +  it->mb_->alpha_ = best_alpha;   // for later remapping. + +  // Accumulate for later complexity analysis. +  *alpha += best_alpha;   // mixed susceptibility (not just luma) +  *uv_alpha += best_uv_alpha; +} + +static void DefaultMBInfo(VP8MBInfo* const mb) { +  mb->type_ = 1;     // I16x16 +  mb->uv_mode_ = 0; +  mb->skip_ = 0;     // not skipped +  mb->segment_ = 0;  // default segment +  mb->alpha_ = 0; +} + +//------------------------------------------------------------------------------ +// Main analysis loop: +// Collect all susceptibilities for each macroblock and record their +// distribution in alphas[]. Segments is assigned a-posteriori, based on +// this histogram. +// We also pick an intra16 prediction mode, which shouldn't be considered +// final except for fast-encode settings. We can also pick some intra4 modes +// and decide intra4/intra16, but that's usually almost always a bad choice at +// this stage. + +static void ResetAllMBInfo(VP8Encoder* const enc) { +  int n; +  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { +    DefaultMBInfo(&enc->mb_info_[n]); +  } +  // Default susceptibilities. +  enc->dqm_[0].alpha_ = 0; +  enc->dqm_[0].beta_ = 0; +  // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value. +  enc->alpha_ = 0; +  enc->uv_alpha_ = 0; +  WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_); +} + +// struct used to collect job result +typedef struct { +  WebPWorker worker; +  int alphas[MAX_ALPHA + 1]; +  int alpha, uv_alpha; +  VP8EncIterator it; +  int delta_progress; +} SegmentJob; + +// main work call +static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) { +  int ok = 1; +  if (!VP8IteratorIsDone(it)) { +    uint8_t tmp[32 + WEBP_ALIGN_CST]; +    uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp); +    do { +      // Let's pretend we have perfect lossless reconstruction. +      VP8IteratorImport(it, scratch); +      MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha); +      ok = VP8IteratorProgress(it, job->delta_progress); +    } while (ok && VP8IteratorNext(it)); +  } +  return ok; +} + +static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) { +  int i; +  for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i]; +  dst->alpha += src->alpha; +  dst->uv_alpha += src->uv_alpha; +} + +// initialize the job struct with some TODOs +static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job, +                           int start_row, int end_row) { +  WebPGetWorkerInterface()->Init(&job->worker); +  job->worker.data1 = job; +  job->worker.data2 = &job->it; +  job->worker.hook = (WebPWorkerHook)DoSegmentsJob; +  VP8IteratorInit(enc, &job->it); +  VP8IteratorSetRow(&job->it, start_row); +  VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_); +  memset(job->alphas, 0, sizeof(job->alphas)); +  job->alpha = 0; +  job->uv_alpha = 0; +  // only one of both jobs can record the progress, since we don't +  // expect the user's hook to be multi-thread safe +  job->delta_progress = (start_row == 0) ? 20 : 0; +} + +// main entry point +int VP8EncAnalyze(VP8Encoder* const enc) { +  int ok = 1; +  const int do_segments = +      enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation. +      (enc->segment_hdr_.num_segments_ > 1) || +      (enc->method_ == 0);  // for method 0, we need preds_[] to be filled. +  if (do_segments) { +    const int last_row = enc->mb_h_; +    // We give a little more than a half work to the main thread. +    const int split_row = (9 * last_row + 15) >> 4; +    const int total_mb = last_row * enc->mb_w_; +#ifdef WEBP_USE_THREAD +    const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it +    const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow); +#else +    const int do_mt = 0; +#endif +    const WebPWorkerInterface* const worker_interface = +        WebPGetWorkerInterface(); +    SegmentJob main_job; +    if (do_mt) { +      SegmentJob side_job; +      // Note the use of '&' instead of '&&' because we must call the functions +      // no matter what. +      InitSegmentJob(enc, &main_job, 0, split_row); +      InitSegmentJob(enc, &side_job, split_row, last_row); +      // we don't need to call Reset() on main_job.worker, since we're calling +      // WebPWorkerExecute() on it +      ok &= worker_interface->Reset(&side_job.worker); +      // launch the two jobs in parallel +      if (ok) { +        worker_interface->Launch(&side_job.worker); +        worker_interface->Execute(&main_job.worker); +        ok &= worker_interface->Sync(&side_job.worker); +        ok &= worker_interface->Sync(&main_job.worker); +      } +      worker_interface->End(&side_job.worker); +      if (ok) MergeJobs(&side_job, &main_job);  // merge results together +    } else { +      // Even for single-thread case, we use the generic Worker tools. +      InitSegmentJob(enc, &main_job, 0, last_row); +      worker_interface->Execute(&main_job.worker); +      ok &= worker_interface->Sync(&main_job.worker); +    } +    worker_interface->End(&main_job.worker); +    if (ok) { +      enc->alpha_ = main_job.alpha / total_mb; +      enc->uv_alpha_ = main_job.uv_alpha / total_mb; +      AssignSegments(enc, main_job.alphas); +    } +  } else {   // Use only one default segment. +    ResetAllMBInfo(enc); +  } +  return ok; +} +  |