diff options
Diffstat (limited to 'thirdparty/libwebp/dec/frame.c')
| -rw-r--r-- | thirdparty/libwebp/dec/frame.c | 812 | 
1 files changed, 812 insertions, 0 deletions
diff --git a/thirdparty/libwebp/dec/frame.c b/thirdparty/libwebp/dec/frame.c new file mode 100644 index 0000000000..22d291d2cd --- /dev/null +++ b/thirdparty/libwebp/dec/frame.c @@ -0,0 +1,812 @@ +// Copyright 2010 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Frame-reconstruction function. Memory allocation. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include <stdlib.h> +#include "./vp8i.h" +#include "../utils/utils.h" + +//------------------------------------------------------------------------------ +// Main reconstruction function. + +static const int kScan[16] = { +  0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS, +  0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS, +  0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS, +  0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS +}; + +static int CheckMode(int mb_x, int mb_y, int mode) { +  if (mode == B_DC_PRED) { +    if (mb_x == 0) { +      return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; +    } else { +      return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; +    } +  } +  return mode; +} + +static void Copy32b(uint8_t* const dst, const uint8_t* const src) { +  memcpy(dst, src, 4); +} + +static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, +                                    uint8_t* const dst) { +  switch (bits >> 30) { +    case 3: +      VP8Transform(src, dst, 0); +      break; +    case 2: +      VP8TransformAC3(src, dst); +      break; +    case 1: +      VP8TransformDC(src, dst); +      break; +    default: +      break; +  } +} + +static void DoUVTransform(uint32_t bits, const int16_t* const src, +                          uint8_t* const dst) { +  if (bits & 0xff) {    // any non-zero coeff at all? +    if (bits & 0xaa) {  // any non-zero AC coefficient? +      VP8TransformUV(src, dst);   // note we don't use the AC3 variant for U/V +    } else { +      VP8TransformDCUV(src, dst); +    } +  } +} + +static void ReconstructRow(const VP8Decoder* const dec, +                           const VP8ThreadContext* ctx) { +  int j; +  int mb_x; +  const int mb_y = ctx->mb_y_; +  const int cache_id = ctx->id_; +  uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; +  uint8_t* const u_dst = dec->yuv_b_ + U_OFF; +  uint8_t* const v_dst = dec->yuv_b_ + V_OFF; + +  // Initialize left-most block. +  for (j = 0; j < 16; ++j) { +    y_dst[j * BPS - 1] = 129; +  } +  for (j = 0; j < 8; ++j) { +    u_dst[j * BPS - 1] = 129; +    v_dst[j * BPS - 1] = 129; +  } + +  // Init top-left sample on left column too. +  if (mb_y > 0) { +    y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; +  } else { +    // we only need to do this init once at block (0,0). +    // Afterward, it remains valid for the whole topmost row. +    memset(y_dst - BPS - 1, 127, 16 + 4 + 1); +    memset(u_dst - BPS - 1, 127, 8 + 1); +    memset(v_dst - BPS - 1, 127, 8 + 1); +  } + +  // Reconstruct one row. +  for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { +    const VP8MBData* const block = ctx->mb_data_ + mb_x; + +    // Rotate in the left samples from previously decoded block. We move four +    // pixels at a time for alignment reason, and because of in-loop filter. +    if (mb_x > 0) { +      for (j = -1; j < 16; ++j) { +        Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); +      } +      for (j = -1; j < 8; ++j) { +        Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); +        Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); +      } +    } +    { +      // bring top samples into the cache +      VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; +      const int16_t* const coeffs = block->coeffs_; +      uint32_t bits = block->non_zero_y_; +      int n; + +      if (mb_y > 0) { +        memcpy(y_dst - BPS, top_yuv[0].y, 16); +        memcpy(u_dst - BPS, top_yuv[0].u, 8); +        memcpy(v_dst - BPS, top_yuv[0].v, 8); +      } + +      // predict and add residuals +      if (block->is_i4x4_) {   // 4x4 +        uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); + +        if (mb_y > 0) { +          if (mb_x >= dec->mb_w_ - 1) {    // on rightmost border +            memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); +          } else { +            memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); +          } +        } +        // replicate the top-right pixels below +        top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; + +        // predict and add residuals for all 4x4 blocks in turn. +        for (n = 0; n < 16; ++n, bits <<= 2) { +          uint8_t* const dst = y_dst + kScan[n]; +          VP8PredLuma4[block->imodes_[n]](dst); +          DoTransform(bits, coeffs + n * 16, dst); +        } +      } else {    // 16x16 +        const int pred_func = CheckMode(mb_x, mb_y, block->imodes_[0]); +        VP8PredLuma16[pred_func](y_dst); +        if (bits != 0) { +          for (n = 0; n < 16; ++n, bits <<= 2) { +            DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); +          } +        } +      } +      { +        // Chroma +        const uint32_t bits_uv = block->non_zero_uv_; +        const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); +        VP8PredChroma8[pred_func](u_dst); +        VP8PredChroma8[pred_func](v_dst); +        DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); +        DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); +      } + +      // stash away top samples for next block +      if (mb_y < dec->mb_h_ - 1) { +        memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); +        memcpy(top_yuv[0].u, u_dst +  7 * BPS,  8); +        memcpy(top_yuv[0].v, v_dst +  7 * BPS,  8); +      } +    } +    // Transfer reconstructed samples from yuv_b_ cache to final destination. +    { +      const int y_offset = cache_id * 16 * dec->cache_y_stride_; +      const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; +      uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; +      uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; +      uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; +      for (j = 0; j < 16; ++j) { +        memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); +      } +      for (j = 0; j < 8; ++j) { +        memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); +        memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); +      } +    } +  } +} + +//------------------------------------------------------------------------------ +// Filtering + +// kFilterExtraRows[] = How many extra lines are needed on the MB boundary +// for caching, given a filtering level. +// Simple filter:  up to 2 luma samples are read and 1 is written. +// Complex filter: up to 4 luma samples are read and 3 are written. Same for +//                 U/V, so it's 8 samples total (because of the 2x upsampling). +static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; + +static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { +  const VP8ThreadContext* const ctx = &dec->thread_ctx_; +  const int cache_id = ctx->id_; +  const int y_bps = dec->cache_y_stride_; +  const VP8FInfo* const f_info = ctx->f_info_ + mb_x; +  uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; +  const int ilevel = f_info->f_ilevel_; +  const int limit = f_info->f_limit_; +  if (limit == 0) { +    return; +  } +  assert(limit >= 3); +  if (dec->filter_type_ == 1) {   // simple +    if (mb_x > 0) { +      VP8SimpleHFilter16(y_dst, y_bps, limit + 4); +    } +    if (f_info->f_inner_) { +      VP8SimpleHFilter16i(y_dst, y_bps, limit); +    } +    if (mb_y > 0) { +      VP8SimpleVFilter16(y_dst, y_bps, limit + 4); +    } +    if (f_info->f_inner_) { +      VP8SimpleVFilter16i(y_dst, y_bps, limit); +    } +  } else {    // complex +    const int uv_bps = dec->cache_uv_stride_; +    uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; +    uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; +    const int hev_thresh = f_info->hev_thresh_; +    if (mb_x > 0) { +      VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); +      VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); +    } +    if (f_info->f_inner_) { +      VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); +      VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); +    } +    if (mb_y > 0) { +      VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); +      VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); +    } +    if (f_info->f_inner_) { +      VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); +      VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); +    } +  } +} + +// Filter the decoded macroblock row (if needed) +static void FilterRow(const VP8Decoder* const dec) { +  int mb_x; +  const int mb_y = dec->thread_ctx_.mb_y_; +  assert(dec->thread_ctx_.filter_row_); +  for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { +    DoFilter(dec, mb_x, mb_y); +  } +} + +//------------------------------------------------------------------------------ +// Precompute the filtering strength for each segment and each i4x4/i16x16 mode. + +static void PrecomputeFilterStrengths(VP8Decoder* const dec) { +  if (dec->filter_type_ > 0) { +    int s; +    const VP8FilterHeader* const hdr = &dec->filter_hdr_; +    for (s = 0; s < NUM_MB_SEGMENTS; ++s) { +      int i4x4; +      // First, compute the initial level +      int base_level; +      if (dec->segment_hdr_.use_segment_) { +        base_level = dec->segment_hdr_.filter_strength_[s]; +        if (!dec->segment_hdr_.absolute_delta_) { +          base_level += hdr->level_; +        } +      } else { +        base_level = hdr->level_; +      } +      for (i4x4 = 0; i4x4 <= 1; ++i4x4) { +        VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; +        int level = base_level; +        if (hdr->use_lf_delta_) { +          level += hdr->ref_lf_delta_[0]; +          if (i4x4) { +            level += hdr->mode_lf_delta_[0]; +          } +        } +        level = (level < 0) ? 0 : (level > 63) ? 63 : level; +        if (level > 0) { +          int ilevel = level; +          if (hdr->sharpness_ > 0) { +            if (hdr->sharpness_ > 4) { +              ilevel >>= 2; +            } else { +              ilevel >>= 1; +            } +            if (ilevel > 9 - hdr->sharpness_) { +              ilevel = 9 - hdr->sharpness_; +            } +          } +          if (ilevel < 1) ilevel = 1; +          info->f_ilevel_ = ilevel; +          info->f_limit_ = 2 * level + ilevel; +          info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; +        } else { +          info->f_limit_ = 0;  // no filtering +        } +        info->f_inner_ = i4x4; +      } +    } +  } +} + +//------------------------------------------------------------------------------ +// Dithering + +// minimal amp that will provide a non-zero dithering effect +#define MIN_DITHER_AMP 4 + +#define DITHER_AMP_TAB_SIZE 12 +static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { +  // roughly, it's dqm->uv_mat_[1] +  8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 +}; + +void VP8InitDithering(const WebPDecoderOptions* const options, +                      VP8Decoder* const dec) { +  assert(dec != NULL); +  if (options != NULL) { +    const int d = options->dithering_strength; +    const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; +    const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); +    if (f > 0) { +      int s; +      int all_amp = 0; +      for (s = 0; s < NUM_MB_SEGMENTS; ++s) { +        VP8QuantMatrix* const dqm = &dec->dqm_[s]; +        if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { +          // TODO(skal): should we specially dither more for uv_quant_ < 0? +          const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; +          dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; +        } +        all_amp |= dqm->dither_; +      } +      if (all_amp != 0) { +        VP8InitRandom(&dec->dithering_rg_, 1.0f); +        dec->dither_ = 1; +      } +    } +    // potentially allow alpha dithering +    dec->alpha_dithering_ = options->alpha_dithering_strength; +    if (dec->alpha_dithering_ > 100) { +      dec->alpha_dithering_ = 100; +    } else if (dec->alpha_dithering_ < 0) { +      dec->alpha_dithering_ = 0; +    } +  } +} + +// Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 +static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { +  uint8_t dither[64]; +  int i; +  for (i = 0; i < 8 * 8; ++i) { +    dither[i] = VP8RandomBits2(rg, VP8_DITHER_AMP_BITS + 1, amp); +  } +  VP8DitherCombine8x8(dither, dst, bps); +} + +static void DitherRow(VP8Decoder* const dec) { +  int mb_x; +  assert(dec->dither_); +  for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { +    const VP8ThreadContext* const ctx = &dec->thread_ctx_; +    const VP8MBData* const data = ctx->mb_data_ + mb_x; +    const int cache_id = ctx->id_; +    const int uv_bps = dec->cache_uv_stride_; +    if (data->dither_ >= MIN_DITHER_AMP) { +      uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; +      uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; +      Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); +      Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); +    } +  } +} + +//------------------------------------------------------------------------------ +// This function is called after a row of macroblocks is finished decoding. +// It also takes into account the following restrictions: +//  * In case of in-loop filtering, we must hold off sending some of the bottom +//    pixels as they are yet unfiltered. They will be when the next macroblock +//    row is decoded. Meanwhile, we must preserve them by rotating them in the +//    cache area. This doesn't hold for the very bottom row of the uncropped +//    picture of course. +//  * we must clip the remaining pixels against the cropping area. The VP8Io +//    struct must have the following fields set correctly before calling put(): + +#define MACROBLOCK_VPOS(mb_y)  ((mb_y) * 16)    // vertical position of a MB + +// Finalize and transmit a complete row. Return false in case of user-abort. +static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { +  int ok = 1; +  const VP8ThreadContext* const ctx = &dec->thread_ctx_; +  const int cache_id = ctx->id_; +  const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; +  const int ysize = extra_y_rows * dec->cache_y_stride_; +  const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; +  const int y_offset = cache_id * 16 * dec->cache_y_stride_; +  const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; +  uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; +  uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; +  uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; +  const int mb_y = ctx->mb_y_; +  const int is_first_row = (mb_y == 0); +  const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); + +  if (dec->mt_method_ == 2) { +    ReconstructRow(dec, ctx); +  } + +  if (ctx->filter_row_) { +    FilterRow(dec); +  } + +  if (dec->dither_) { +    DitherRow(dec); +  } + +  if (io->put != NULL) { +    int y_start = MACROBLOCK_VPOS(mb_y); +    int y_end = MACROBLOCK_VPOS(mb_y + 1); +    if (!is_first_row) { +      y_start -= extra_y_rows; +      io->y = ydst; +      io->u = udst; +      io->v = vdst; +    } else { +      io->y = dec->cache_y_ + y_offset; +      io->u = dec->cache_u_ + uv_offset; +      io->v = dec->cache_v_ + uv_offset; +    } + +    if (!is_last_row) { +      y_end -= extra_y_rows; +    } +    if (y_end > io->crop_bottom) { +      y_end = io->crop_bottom;    // make sure we don't overflow on last row. +    } +    io->a = NULL; +    if (dec->alpha_data_ != NULL && y_start < y_end) { +      // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a +      // good idea. +      io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start); +      if (io->a == NULL) { +        return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, +                           "Could not decode alpha data."); +      } +    } +    if (y_start < io->crop_top) { +      const int delta_y = io->crop_top - y_start; +      y_start = io->crop_top; +      assert(!(delta_y & 1)); +      io->y += dec->cache_y_stride_ * delta_y; +      io->u += dec->cache_uv_stride_ * (delta_y >> 1); +      io->v += dec->cache_uv_stride_ * (delta_y >> 1); +      if (io->a != NULL) { +        io->a += io->width * delta_y; +      } +    } +    if (y_start < y_end) { +      io->y += io->crop_left; +      io->u += io->crop_left >> 1; +      io->v += io->crop_left >> 1; +      if (io->a != NULL) { +        io->a += io->crop_left; +      } +      io->mb_y = y_start - io->crop_top; +      io->mb_w = io->crop_right - io->crop_left; +      io->mb_h = y_end - y_start; +      ok = io->put(io); +    } +  } +  // rotate top samples if needed +  if (cache_id + 1 == dec->num_caches_) { +    if (!is_last_row) { +      memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); +      memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); +      memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); +    } +  } + +  return ok; +} + +#undef MACROBLOCK_VPOS + +//------------------------------------------------------------------------------ + +int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { +  int ok = 1; +  VP8ThreadContext* const ctx = &dec->thread_ctx_; +  const int filter_row = +      (dec->filter_type_ > 0) && +      (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); +  if (dec->mt_method_ == 0) { +    // ctx->id_ and ctx->f_info_ are already set +    ctx->mb_y_ = dec->mb_y_; +    ctx->filter_row_ = filter_row; +    ReconstructRow(dec, ctx); +    ok = FinishRow(dec, io); +  } else { +    WebPWorker* const worker = &dec->worker_; +    // Finish previous job *before* updating context +    ok &= WebPGetWorkerInterface()->Sync(worker); +    assert(worker->status_ == OK); +    if (ok) {   // spawn a new deblocking/output job +      ctx->io_ = *io; +      ctx->id_ = dec->cache_id_; +      ctx->mb_y_ = dec->mb_y_; +      ctx->filter_row_ = filter_row; +      if (dec->mt_method_ == 2) {  // swap macroblock data +        VP8MBData* const tmp = ctx->mb_data_; +        ctx->mb_data_ = dec->mb_data_; +        dec->mb_data_ = tmp; +      } else { +        // perform reconstruction directly in main thread +        ReconstructRow(dec, ctx); +      } +      if (filter_row) {            // swap filter info +        VP8FInfo* const tmp = ctx->f_info_; +        ctx->f_info_ = dec->f_info_; +        dec->f_info_ = tmp; +      } +      // (reconstruct)+filter in parallel +      WebPGetWorkerInterface()->Launch(worker); +      if (++dec->cache_id_ == dec->num_caches_) { +        dec->cache_id_ = 0; +      } +    } +  } +  return ok; +} + +//------------------------------------------------------------------------------ +// Finish setting up the decoding parameter once user's setup() is called. + +VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { +  // Call setup() first. This may trigger additional decoding features on 'io'. +  // Note: Afterward, we must call teardown() no matter what. +  if (io->setup != NULL && !io->setup(io)) { +    VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); +    return dec->status_; +  } + +  // Disable filtering per user request +  if (io->bypass_filtering) { +    dec->filter_type_ = 0; +  } +  // TODO(skal): filter type / strength / sharpness forcing + +  // Define the area where we can skip in-loop filtering, in case of cropping. +  // +  // 'Simple' filter reads two luma samples outside of the macroblock +  // and filters one. It doesn't filter the chroma samples. Hence, we can +  // avoid doing the in-loop filtering before crop_top/crop_left position. +  // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. +  // Means: there's a dependency chain that goes all the way up to the +  // top-left corner of the picture (MB #0). We must filter all the previous +  // macroblocks. +  // TODO(skal): add an 'approximate_decoding' option, that won't produce +  // a 1:1 bit-exactness for complex filtering? +  { +    const int extra_pixels = kFilterExtraRows[dec->filter_type_]; +    if (dec->filter_type_ == 2) { +      // For complex filter, we need to preserve the dependency chain. +      dec->tl_mb_x_ = 0; +      dec->tl_mb_y_ = 0; +    } else { +      // For simple filter, we can filter only the cropped region. +      // We include 'extra_pixels' on the other side of the boundary, since +      // vertical or horizontal filtering of the previous macroblock can +      // modify some abutting pixels. +      dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; +      dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; +      if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; +      if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; +    } +    // We need some 'extra' pixels on the right/bottom. +    dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; +    dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; +    if (dec->br_mb_x_ > dec->mb_w_) { +      dec->br_mb_x_ = dec->mb_w_; +    } +    if (dec->br_mb_y_ > dec->mb_h_) { +      dec->br_mb_y_ = dec->mb_h_; +    } +  } +  PrecomputeFilterStrengths(dec); +  return VP8_STATUS_OK; +} + +int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { +  int ok = 1; +  if (dec->mt_method_ > 0) { +    ok = WebPGetWorkerInterface()->Sync(&dec->worker_); +  } + +  if (io->teardown != NULL) { +    io->teardown(io); +  } +  return ok; +} + +//------------------------------------------------------------------------------ +// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. +// +// Reason is: the deblocking filter cannot deblock the bottom horizontal edges +// immediately, and needs to wait for first few rows of the next macroblock to +// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending +// on strength). +// With two threads, the vertical positions of the rows being decoded are: +// Decode:  [ 0..15][16..31][32..47][48..63][64..79][... +// Deblock:         [ 0..11][12..27][28..43][44..59][... +// If we use two threads and two caches of 16 pixels, the sequence would be: +// Decode:  [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... +// Deblock:         [ 0..11][12..27!!][-4..11][12..27][... +// The problem occurs during row [12..15!!] that both the decoding and +// deblocking threads are writing simultaneously. +// With 3 cache lines, one get a safe write pattern: +// Decode:  [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. +// Deblock:         [ 0..11][12..27][28..43][-4..11][12..27][28... +// Note that multi-threaded output _without_ deblocking can make use of two +// cache lines of 16 pixels only, since there's no lagging behind. The decoding +// and output process have non-concurrent writing: +// Decode:  [ 0..15][16..31][ 0..15][16..31][... +// io->put:         [ 0..15][16..31][ 0..15][... + +#define MT_CACHE_LINES 3 +#define ST_CACHE_LINES 1   // 1 cache row only for single-threaded case + +// Initialize multi/single-thread worker +static int InitThreadContext(VP8Decoder* const dec) { +  dec->cache_id_ = 0; +  if (dec->mt_method_ > 0) { +    WebPWorker* const worker = &dec->worker_; +    if (!WebPGetWorkerInterface()->Reset(worker)) { +      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, +                         "thread initialization failed."); +    } +    worker->data1 = dec; +    worker->data2 = (void*)&dec->thread_ctx_.io_; +    worker->hook = (WebPWorkerHook)FinishRow; +    dec->num_caches_ = +      (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; +  } else { +    dec->num_caches_ = ST_CACHE_LINES; +  } +  return 1; +} + +int VP8GetThreadMethod(const WebPDecoderOptions* const options, +                       const WebPHeaderStructure* const headers, +                       int width, int height) { +  if (options == NULL || options->use_threads == 0) { +    return 0; +  } +  (void)headers; +  (void)width; +  (void)height; +  assert(headers == NULL || !headers->is_lossless); +#if defined(WEBP_USE_THREAD) +  if (width < MIN_WIDTH_FOR_THREADS) return 0; +  // TODO(skal): tune the heuristic further +#if 0 +  if (height < 2 * width) return 2; +#endif +  return 2; +#else   // !WEBP_USE_THREAD +  return 0; +#endif +} + +#undef MT_CACHE_LINES +#undef ST_CACHE_LINES + +//------------------------------------------------------------------------------ +// Memory setup + +static int AllocateMemory(VP8Decoder* const dec) { +  const int num_caches = dec->num_caches_; +  const int mb_w = dec->mb_w_; +  // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. +  const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); +  const size_t top_size = sizeof(VP8TopSamples) * mb_w; +  const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); +  const size_t f_info_size = +      (dec->filter_type_ > 0) ? +          mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) +        : 0; +  const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); +  const size_t mb_data_size = +      (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); +  const size_t cache_height = (16 * num_caches +                            + kFilterExtraRows[dec->filter_type_]) * 3 / 2; +  const size_t cache_size = top_size * cache_height; +  // alpha_size is the only one that scales as width x height. +  const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? +      (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; +  const uint64_t needed = (uint64_t)intra_pred_mode_size +                        + top_size + mb_info_size + f_info_size +                        + yuv_size + mb_data_size +                        + cache_size + alpha_size + WEBP_ALIGN_CST; +  uint8_t* mem; + +  if (needed != (size_t)needed) return 0;  // check for overflow +  if (needed > dec->mem_size_) { +    WebPSafeFree(dec->mem_); +    dec->mem_size_ = 0; +    dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); +    if (dec->mem_ == NULL) { +      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, +                         "no memory during frame initialization."); +    } +    // down-cast is ok, thanks to WebPSafeAlloc() above. +    dec->mem_size_ = (size_t)needed; +  } + +  mem = (uint8_t*)dec->mem_; +  dec->intra_t_ = (uint8_t*)mem; +  mem += intra_pred_mode_size; + +  dec->yuv_t_ = (VP8TopSamples*)mem; +  mem += top_size; + +  dec->mb_info_ = ((VP8MB*)mem) + 1; +  mem += mb_info_size; + +  dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; +  mem += f_info_size; +  dec->thread_ctx_.id_ = 0; +  dec->thread_ctx_.f_info_ = dec->f_info_; +  if (dec->mt_method_ > 0) { +    // secondary cache line. The deblocking process need to make use of the +    // filtering strength from previous macroblock row, while the new ones +    // are being decoded in parallel. We'll just swap the pointers. +    dec->thread_ctx_.f_info_ += mb_w; +  } + +  mem = (uint8_t*)WEBP_ALIGN(mem); +  assert((yuv_size & WEBP_ALIGN_CST) == 0); +  dec->yuv_b_ = (uint8_t*)mem; +  mem += yuv_size; + +  dec->mb_data_ = (VP8MBData*)mem; +  dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; +  if (dec->mt_method_ == 2) { +    dec->thread_ctx_.mb_data_ += mb_w; +  } +  mem += mb_data_size; + +  dec->cache_y_stride_ = 16 * mb_w; +  dec->cache_uv_stride_ = 8 * mb_w; +  { +    const int extra_rows = kFilterExtraRows[dec->filter_type_]; +    const int extra_y = extra_rows * dec->cache_y_stride_; +    const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; +    dec->cache_y_ = ((uint8_t*)mem) + extra_y; +    dec->cache_u_ = dec->cache_y_ +                  + 16 * num_caches * dec->cache_y_stride_ + extra_uv; +    dec->cache_v_ = dec->cache_u_ +                  + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; +    dec->cache_id_ = 0; +  } +  mem += cache_size; + +  // alpha plane +  dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; +  mem += alpha_size; +  assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); + +  // note: left/top-info is initialized once for all. +  memset(dec->mb_info_ - 1, 0, mb_info_size); +  VP8InitScanline(dec);   // initialize left too. + +  // initialize top +  memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); + +  return 1; +} + +static void InitIo(VP8Decoder* const dec, VP8Io* io) { +  // prepare 'io' +  io->mb_y = 0; +  io->y = dec->cache_y_; +  io->u = dec->cache_u_; +  io->v = dec->cache_v_; +  io->y_stride = dec->cache_y_stride_; +  io->uv_stride = dec->cache_uv_stride_; +  io->a = NULL; +} + +int VP8InitFrame(VP8Decoder* const dec, VP8Io* const io) { +  if (!InitThreadContext(dec)) return 0;  // call first. Sets dec->num_caches_. +  if (!AllocateMemory(dec)) return 0; +  InitIo(dec, io); +  VP8DspInit();  // Init critical function pointers and look-up tables. +  return 1; +} + +//------------------------------------------------------------------------------  |