diff options
Diffstat (limited to 'thirdparty/icu4c/common/ucnv2022.cpp')
-rw-r--r-- | thirdparty/icu4c/common/ucnv2022.cpp | 3973 |
1 files changed, 3973 insertions, 0 deletions
diff --git a/thirdparty/icu4c/common/ucnv2022.cpp b/thirdparty/icu4c/common/ucnv2022.cpp new file mode 100644 index 0000000000..169ad4c526 --- /dev/null +++ b/thirdparty/icu4c/common/ucnv2022.cpp @@ -0,0 +1,3973 @@ +// © 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +********************************************************************** +* Copyright (C) 2000-2016, International Business Machines +* Corporation and others. All Rights Reserved. +********************************************************************** +* file name: ucnv2022.cpp +* encoding: UTF-8 +* tab size: 8 (not used) +* indentation:4 +* +* created on: 2000feb03 +* created by: Markus W. Scherer +* +* Change history: +* +* 06/29/2000 helena Major rewrite of the callback APIs. +* 08/08/2000 Ram Included support for ISO-2022-JP-2 +* Changed implementation of toUnicode +* function +* 08/21/2000 Ram Added support for ISO-2022-KR +* 08/29/2000 Ram Seperated implementation of EBCDIC to +* ucnvebdc.c +* 09/20/2000 Ram Added support for ISO-2022-CN +* Added implementations for getNextUChar() +* for specific 2022 country variants. +* 10/31/2000 Ram Implemented offsets logic functions +*/ + +#include "unicode/utypes.h" + +#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION + +#include "unicode/ucnv.h" +#include "unicode/uset.h" +#include "unicode/ucnv_err.h" +#include "unicode/ucnv_cb.h" +#include "unicode/utf16.h" +#include "ucnv_imp.h" +#include "ucnv_bld.h" +#include "ucnv_cnv.h" +#include "ucnvmbcs.h" +#include "cstring.h" +#include "cmemory.h" +#include "uassert.h" + +#ifdef U_ENABLE_GENERIC_ISO_2022 +/* + * I am disabling the generic ISO-2022 converter after proposing to do so on + * the icu mailing list two days ago. + * + * Reasons: + * 1. It does not fully support the ISO-2022/ECMA-35 specification with all of + * its designation sequences, single shifts with return to the previous state, + * switch-with-no-return to UTF-16BE or similar, etc. + * This is unlike the language-specific variants like ISO-2022-JP which + * require a much smaller repertoire of ISO-2022 features. + * These variants continue to be supported. + * 2. I believe that no one is really using the generic ISO-2022 converter + * but rather always one of the language-specific variants. + * Note that ICU's generic ISO-2022 converter has always output one escape + * sequence followed by UTF-8 for the whole stream. + * 3. Switching between subcharsets is extremely slow, because each time + * the previous converter is closed and a new one opened, + * without any kind of caching, least-recently-used list, etc. + * 4. The code is currently buggy, and given the above it does not seem + * reasonable to spend the time on maintenance. + * 5. ISO-2022 subcharsets should normally be used with 7-bit byte encodings. + * This means, for example, that when ISO-8859-7 is designated, the following + * ISO-2022 bytes 00..7f should be interpreted as ISO-8859-7 bytes 80..ff. + * The ICU ISO-2022 converter does not handle this - and has no information + * about which subconverter would have to be shifted vs. which is designed + * for 7-bit ISO-2022. + * + * Markus Scherer 2003-dec-03 + */ +#endif + +#if !UCONFIG_ONLY_HTML_CONVERSION +static const char SHIFT_IN_STR[] = "\x0F"; +// static const char SHIFT_OUT_STR[] = "\x0E"; +#endif + +#define CR 0x0D +#define LF 0x0A +#define H_TAB 0x09 +#define V_TAB 0x0B +#define SPACE 0x20 + +enum { + HWKANA_START=0xff61, + HWKANA_END=0xff9f +}; + +/* + * 94-character sets with native byte values A1..FE are encoded in ISO 2022 + * as bytes 21..7E. (Subtract 0x80.) + * 96-character sets with native byte values A0..FF are encoded in ISO 2022 + * as bytes 20..7F. (Subtract 0x80.) + * Do not encode C1 control codes with native bytes 80..9F + * as bytes 00..1F (C0 control codes). + */ +enum { + GR94_START=0xa1, + GR94_END=0xfe, + GR96_START=0xa0, + GR96_END=0xff +}; + +/* + * ISO 2022 control codes must not be converted from Unicode + * because they would mess up the byte stream. + * The bit mask 0x0800c000 has bits set at bit positions 0xe, 0xf, 0x1b + * corresponding to SO, SI, and ESC. + */ +#define IS_2022_CONTROL(c) (((c)<0x20) && (((uint32_t)1<<(c))&0x0800c000)!=0) + +/* for ISO-2022-JP and -CN implementations */ +typedef enum { + /* shared values */ + INVALID_STATE=-1, + ASCII = 0, + + SS2_STATE=0x10, + SS3_STATE, + + /* JP */ + ISO8859_1 = 1 , + ISO8859_7 = 2 , + JISX201 = 3, + JISX208 = 4, + JISX212 = 5, + GB2312 =6, + KSC5601 =7, + HWKANA_7BIT=8, /* Halfwidth Katakana 7 bit */ + + /* CN */ + /* the first few enum constants must keep their values because they correspond to myConverterArray[] */ + GB2312_1=1, + ISO_IR_165=2, + CNS_11643=3, + + /* + * these are used in StateEnum and ISO2022State variables, + * but CNS_11643 must be used to index into myConverterArray[] + */ + CNS_11643_0=0x20, + CNS_11643_1, + CNS_11643_2, + CNS_11643_3, + CNS_11643_4, + CNS_11643_5, + CNS_11643_6, + CNS_11643_7 +} StateEnum; + +/* is the StateEnum charset value for a DBCS charset? */ +#if UCONFIG_ONLY_HTML_CONVERSION +#define IS_JP_DBCS(cs) (JISX208==(cs)) +#else +#define IS_JP_DBCS(cs) (JISX208<=(cs) && (cs)<=KSC5601) +#endif + +#define CSM(cs) ((uint16_t)1<<(cs)) + +/* + * Each of these charset masks (with index x) contains a bit for a charset in exact correspondence + * to whether that charset is used in the corresponding version x of ISO_2022,locale=ja,version=x + * + * Note: The converter uses some leniency: + * - The escape sequence ESC ( I for half-width 7-bit Katakana is recognized in + * all versions, not just JIS7 and JIS8. + * - ICU does not distinguish between different versions of JIS X 0208. + */ +#if UCONFIG_ONLY_HTML_CONVERSION +enum { MAX_JA_VERSION=0 }; +#else +enum { MAX_JA_VERSION=4 }; +#endif +static const uint16_t jpCharsetMasks[MAX_JA_VERSION+1]={ + CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT), +#if !UCONFIG_ONLY_HTML_CONVERSION + CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212), + CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7), + CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7), + CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7) +#endif +}; + +typedef enum { + ASCII1=0, + LATIN1, + SBCS, + DBCS, + MBCS, + HWKANA +}Cnv2022Type; + +typedef struct ISO2022State { + int8_t cs[4]; /* charset number for SI (G0)/SO (G1)/SS2 (G2)/SS3 (G3) */ + int8_t g; /* 0..3 for G0..G3 (SI/SO/SS2/SS3) */ + int8_t prevG; /* g before single shift (SS2 or SS3) */ +} ISO2022State; + +#define UCNV_OPTIONS_VERSION_MASK 0xf +#define UCNV_2022_MAX_CONVERTERS 10 + +typedef struct{ + UConverterSharedData *myConverterArray[UCNV_2022_MAX_CONVERTERS]; + UConverter *currentConverter; + Cnv2022Type currentType; + ISO2022State toU2022State, fromU2022State; + uint32_t key; + uint32_t version; +#ifdef U_ENABLE_GENERIC_ISO_2022 + UBool isFirstBuffer; +#endif + UBool isEmptySegment; + char name[30]; + char locale[3]; +}UConverterDataISO2022; + +/* Protos */ +/* ISO-2022 ----------------------------------------------------------------- */ + +/*Forward declaration */ +U_CFUNC void U_CALLCONV +ucnv_fromUnicode_UTF8(UConverterFromUnicodeArgs * args, + UErrorCode * err); +U_CFUNC void U_CALLCONV +ucnv_fromUnicode_UTF8_OFFSETS_LOGIC(UConverterFromUnicodeArgs * args, + UErrorCode * err); + +#define ESC_2022 0x1B /*ESC*/ + +typedef enum +{ + INVALID_2022 = -1, /*Doesn't correspond to a valid iso 2022 escape sequence*/ + VALID_NON_TERMINAL_2022 = 0, /*so far corresponds to a valid iso 2022 escape sequence*/ + VALID_TERMINAL_2022 = 1, /*corresponds to a valid iso 2022 escape sequence*/ + VALID_MAYBE_TERMINAL_2022 = 2 /*so far matches one iso 2022 escape sequence, but by adding more characters might match another escape sequence*/ +} UCNV_TableStates_2022; + +/* +* The way these state transition arrays work is: +* ex : ESC$B is the sequence for JISX208 +* a) First Iteration: char is ESC +* i) Get the value of ESC from normalize_esq_chars_2022[] with int value of ESC as index +* int x = normalize_esq_chars_2022[27] which is equal to 1 +* ii) Search for this value in escSeqStateTable_Key_2022[] +* value of x is stored at escSeqStateTable_Key_2022[0] +* iii) Save this index as offset +* iv) Get state of this sequence from escSeqStateTable_Value_2022[] +* escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022 +* b) Switch on this state and continue to next char +* i) Get the value of $ from normalize_esq_chars_2022[] with int value of $ as index +* which is normalize_esq_chars_2022[36] == 4 +* ii) x is currently 1(from above) +* x<<=5 -- x is now 32 +* x+=normalize_esq_chars_2022[36] +* now x is 36 +* iii) Search for this value in escSeqStateTable_Key_2022[] +* value of x is stored at escSeqStateTable_Key_2022[2], so offset is 2 +* iv) Get state of this sequence from escSeqStateTable_Value_2022[] +* escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022 +* c) Switch on this state and continue to next char +* i) Get the value of B from normalize_esq_chars_2022[] with int value of B as index +* ii) x is currently 36 (from above) +* x<<=5 -- x is now 1152 +* x+=normalize_esq_chars_2022[66] +* now x is 1161 +* iii) Search for this value in escSeqStateTable_Key_2022[] +* value of x is stored at escSeqStateTable_Key_2022[21], so offset is 21 +* iv) Get state of this sequence from escSeqStateTable_Value_2022[21] +* escSeqStateTable_Value_2022[offset], which is VALID_TERMINAL_2022 +* v) Get the converter name form escSeqStateTable_Result_2022[21] which is JISX208 +*/ + + +/*Below are the 3 arrays depicting a state transition table*/ +static const int8_t normalize_esq_chars_2022[256] = { +/* 0 1 2 3 4 5 6 7 8 9 */ + + 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,4 ,7 ,29 ,0 + ,2 ,24 ,26 ,27 ,0 ,3 ,23 ,6 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,5 ,8 ,9 ,10 ,11 ,12 + ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,25 ,28 + ,0 ,0 ,21 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,22 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 + ,0 ,0 ,0 ,0 ,0 ,0 +}; + +#ifdef U_ENABLE_GENERIC_ISO_2022 +/* + * When the generic ISO-2022 converter is completely removed, not just disabled + * per #ifdef, then the following state table and the associated tables that are + * dimensioned with MAX_STATES_2022 should be trimmed. + * + * Especially, VALID_MAYBE_TERMINAL_2022 will not be used any more, and all of + * the associated escape sequences starting with ESC ( B should be removed. + * This includes the ones with key values 1097 and all of the ones above 1000000. + * + * For the latter, the tables can simply be truncated. + * For the former, since the tables must be kept parallel, it is probably best + * to simply duplicate an adjacent table cell, parallel in all tables. + * + * It may make sense to restructure the tables, especially by using small search + * tables for the variants instead of indexing them parallel to the table here. + */ +#endif + +#define MAX_STATES_2022 74 +static const int32_t escSeqStateTable_Key_2022[MAX_STATES_2022] = { +/* 0 1 2 3 4 5 6 7 8 9 */ + + 1 ,34 ,36 ,39 ,55 ,57 ,60 ,61 ,1093 ,1096 + ,1097 ,1098 ,1099 ,1100 ,1101 ,1102 ,1103 ,1104 ,1105 ,1106 + ,1109 ,1154 ,1157 ,1160 ,1161 ,1176 ,1178 ,1179 ,1254 ,1257 + ,1768 ,1773 ,1957 ,35105 ,36933 ,36936 ,36937 ,36938 ,36939 ,36940 + ,36942 ,36943 ,36944 ,36945 ,36946 ,36947 ,36948 ,37640 ,37642 ,37644 + ,37646 ,37711 ,37744 ,37745 ,37746 ,37747 ,37748 ,40133 ,40136 ,40138 + ,40139 ,40140 ,40141 ,1123363 ,35947624 ,35947625 ,35947626 ,35947627 ,35947629 ,35947630 + ,35947631 ,35947635 ,35947636 ,35947638 +}; + +#ifdef U_ENABLE_GENERIC_ISO_2022 + +static const char* const escSeqStateTable_Result_2022[MAX_STATES_2022] = { + /* 0 1 2 3 4 5 6 7 8 9 */ + + NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,"latin1" ,"latin1" + ,"latin1" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"JISX0201" ,"JISX0201" ,"latin1" + ,"latin1" ,NULL ,"JISX-208" ,"ibm-5478" ,"JISX-208" ,NULL ,NULL ,NULL ,NULL ,"UTF8" + ,"ISO-8859-1" ,"ISO-8859-7" ,"JIS-X-208" ,NULL ,"ibm-955" ,"ibm-367" ,"ibm-952" ,"ibm-949" ,"JISX-212" ,"ibm-1383" + ,"ibm-952" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-5478" ,"ibm-949" ,"ISO-IR-165" + ,"CNS-11643-1992,1" ,"CNS-11643-1992,2" ,"CNS-11643-1992,3" ,"CNS-11643-1992,4" ,"CNS-11643-1992,5" ,"CNS-11643-1992,6" ,"CNS-11643-1992,7" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" + ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,NULL ,"latin1" ,"ibm-912" ,"ibm-913" ,"ibm-914" ,"ibm-813" ,"ibm-1089" + ,"ibm-920" ,"ibm-915" ,"ibm-915" ,"latin1" +}; + +#endif + +static const int8_t escSeqStateTable_Value_2022[MAX_STATES_2022] = { +/* 0 1 2 3 4 5 6 7 8 9 */ + VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 + ,VALID_MAYBE_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 + ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 + ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 + ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 + ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 + ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 + ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 +}; + +/* Type def for refactoring changeState_2022 code*/ +typedef enum{ +#ifdef U_ENABLE_GENERIC_ISO_2022 + ISO_2022=0, +#endif + ISO_2022_JP=1, +#if !UCONFIG_ONLY_HTML_CONVERSION + ISO_2022_KR=2, + ISO_2022_CN=3 +#endif +} Variant2022; + +/*********** ISO 2022 Converter Protos ***********/ +static void U_CALLCONV +_ISO2022Open(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *errorCode); + +static void U_CALLCONV + _ISO2022Close(UConverter *converter); + +static void U_CALLCONV +_ISO2022Reset(UConverter *converter, UConverterResetChoice choice); + +U_CDECL_BEGIN +static const char * U_CALLCONV +_ISO2022getName(const UConverter* cnv); +U_CDECL_END + +static void U_CALLCONV +_ISO_2022_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err); + +U_CDECL_BEGIN +static UConverter * U_CALLCONV +_ISO_2022_SafeClone(const UConverter *cnv, void *stackBuffer, int32_t *pBufferSize, UErrorCode *status); + +U_CDECL_END + +#ifdef U_ENABLE_GENERIC_ISO_2022 +static void U_CALLCONV +T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs* args, UErrorCode* err); +#endif + +namespace { + +/*const UConverterSharedData _ISO2022Data;*/ +extern const UConverterSharedData _ISO2022JPData; + +#if !UCONFIG_ONLY_HTML_CONVERSION +extern const UConverterSharedData _ISO2022KRData; +extern const UConverterSharedData _ISO2022CNData; +#endif + +} // namespace + +/*************** Converter implementations ******************/ + +/* The purpose of this function is to get around gcc compiler warnings. */ +static inline void +fromUWriteUInt8(UConverter *cnv, + const char *bytes, int32_t length, + uint8_t **target, const char *targetLimit, + int32_t **offsets, + int32_t sourceIndex, + UErrorCode *pErrorCode) +{ + char *targetChars = (char *)*target; + ucnv_fromUWriteBytes(cnv, bytes, length, &targetChars, targetLimit, + offsets, sourceIndex, pErrorCode); + *target = (uint8_t*)targetChars; + +} + +static inline void +setInitialStateToUnicodeKR(UConverter* /*converter*/, UConverterDataISO2022 *myConverterData){ + if(myConverterData->version == 1) { + UConverter *cnv = myConverterData->currentConverter; + + cnv->toUnicodeStatus=0; /* offset */ + cnv->mode=0; /* state */ + cnv->toULength=0; /* byteIndex */ + } +} + +static inline void +setInitialStateFromUnicodeKR(UConverter* converter,UConverterDataISO2022 *myConverterData){ + /* in ISO-2022-KR the designator sequence appears only once + * in a file so we append it only once + */ + if( converter->charErrorBufferLength==0){ + + converter->charErrorBufferLength = 4; + converter->charErrorBuffer[0] = 0x1b; + converter->charErrorBuffer[1] = 0x24; + converter->charErrorBuffer[2] = 0x29; + converter->charErrorBuffer[3] = 0x43; + } + if(myConverterData->version == 1) { + UConverter *cnv = myConverterData->currentConverter; + + cnv->fromUChar32=0; + cnv->fromUnicodeStatus=1; /* prevLength */ + } +} + +static void U_CALLCONV +_ISO2022Open(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *errorCode){ + + char myLocale[7]={' ',' ',' ',' ',' ',' ', '\0'}; + + cnv->extraInfo = uprv_malloc (sizeof (UConverterDataISO2022)); + if(cnv->extraInfo != NULL) { + UConverterNamePieces stackPieces; + UConverterLoadArgs stackArgs=UCNV_LOAD_ARGS_INITIALIZER; + UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) cnv->extraInfo; + uint32_t version; + + stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable; + + uprv_memset(myConverterData, 0, sizeof(UConverterDataISO2022)); + myConverterData->currentType = ASCII1; + cnv->fromUnicodeStatus =FALSE; + if(pArgs->locale){ + uprv_strncpy(myLocale, pArgs->locale, sizeof(myLocale)-1); + } + version = pArgs->options & UCNV_OPTIONS_VERSION_MASK; + myConverterData->version = version; + if(myLocale[0]=='j' && (myLocale[1]=='a'|| myLocale[1]=='p') && + (myLocale[2]=='_' || myLocale[2]=='\0')) + { + /* open the required converters and cache them */ + if(version>MAX_JA_VERSION) { + // ICU 55 fails to open a converter for an unsupported version. + // Previously, it fell back to version 0, but that would yield + // unexpected behavior. + *errorCode = U_MISSING_RESOURCE_ERROR; + return; + } + if(jpCharsetMasks[version]&CSM(ISO8859_7)) { + myConverterData->myConverterArray[ISO8859_7] = + ucnv_loadSharedData("ISO8859_7", &stackPieces, &stackArgs, errorCode); + } + myConverterData->myConverterArray[JISX208] = + ucnv_loadSharedData("Shift-JIS", &stackPieces, &stackArgs, errorCode); + if(jpCharsetMasks[version]&CSM(JISX212)) { + myConverterData->myConverterArray[JISX212] = + ucnv_loadSharedData("jisx-212", &stackPieces, &stackArgs, errorCode); + } + if(jpCharsetMasks[version]&CSM(GB2312)) { + myConverterData->myConverterArray[GB2312] = + ucnv_loadSharedData("ibm-5478", &stackPieces, &stackArgs, errorCode); /* gb_2312_80-1 */ + } + if(jpCharsetMasks[version]&CSM(KSC5601)) { + myConverterData->myConverterArray[KSC5601] = + ucnv_loadSharedData("ksc_5601", &stackPieces, &stackArgs, errorCode); + } + + /* set the function pointers to appropriate funtions */ + cnv->sharedData=(UConverterSharedData*)(&_ISO2022JPData); + uprv_strcpy(myConverterData->locale,"ja"); + + (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=ja,version="); + size_t len = uprv_strlen(myConverterData->name); + myConverterData->name[len]=(char)(myConverterData->version+(int)'0'); + myConverterData->name[len+1]='\0'; + } +#if !UCONFIG_ONLY_HTML_CONVERSION + else if(myLocale[0]=='k' && (myLocale[1]=='o'|| myLocale[1]=='r') && + (myLocale[2]=='_' || myLocale[2]=='\0')) + { + if(version>1) { + // ICU 55 fails to open a converter for an unsupported version. + // Previously, it fell back to version 0, but that would yield + // unexpected behavior. + *errorCode = U_MISSING_RESOURCE_ERROR; + return; + } + const char *cnvName; + if(version==1) { + cnvName="icu-internal-25546"; + } else { + cnvName="ibm-949"; + myConverterData->version=version=0; + } + if(pArgs->onlyTestIsLoadable) { + ucnv_canCreateConverter(cnvName, errorCode); /* errorCode carries result */ + uprv_free(cnv->extraInfo); + cnv->extraInfo=NULL; + return; + } else { + myConverterData->currentConverter=ucnv_open(cnvName, errorCode); + if (U_FAILURE(*errorCode)) { + _ISO2022Close(cnv); + return; + } + + if(version==1) { + (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=ko,version=1"); + uprv_memcpy(cnv->subChars, myConverterData->currentConverter->subChars, 4); + cnv->subCharLen = myConverterData->currentConverter->subCharLen; + }else{ + (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=ko,version=0"); + } + + /* initialize the state variables */ + setInitialStateToUnicodeKR(cnv, myConverterData); + setInitialStateFromUnicodeKR(cnv, myConverterData); + + /* set the function pointers to appropriate funtions */ + cnv->sharedData=(UConverterSharedData*)&_ISO2022KRData; + uprv_strcpy(myConverterData->locale,"ko"); + } + } + else if(((myLocale[0]=='z' && myLocale[1]=='h') || (myLocale[0]=='c'&& myLocale[1]=='n'))&& + (myLocale[2]=='_' || myLocale[2]=='\0')) + { + if(version>2) { + // ICU 55 fails to open a converter for an unsupported version. + // Previously, it fell back to version 0, but that would yield + // unexpected behavior. + *errorCode = U_MISSING_RESOURCE_ERROR; + return; + } + + /* open the required converters and cache them */ + myConverterData->myConverterArray[GB2312_1] = + ucnv_loadSharedData("ibm-5478", &stackPieces, &stackArgs, errorCode); + if(version==1) { + myConverterData->myConverterArray[ISO_IR_165] = + ucnv_loadSharedData("iso-ir-165", &stackPieces, &stackArgs, errorCode); + } + myConverterData->myConverterArray[CNS_11643] = + ucnv_loadSharedData("cns-11643-1992", &stackPieces, &stackArgs, errorCode); + + + /* set the function pointers to appropriate funtions */ + cnv->sharedData=(UConverterSharedData*)&_ISO2022CNData; + uprv_strcpy(myConverterData->locale,"cn"); + + if (version==0){ + myConverterData->version = 0; + (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=zh,version=0"); + }else if (version==1){ + myConverterData->version = 1; + (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=zh,version=1"); + }else { + myConverterData->version = 2; + (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=zh,version=2"); + } + } +#endif // !UCONFIG_ONLY_HTML_CONVERSION + else{ +#ifdef U_ENABLE_GENERIC_ISO_2022 + myConverterData->isFirstBuffer = TRUE; + + /* append the UTF-8 escape sequence */ + cnv->charErrorBufferLength = 3; + cnv->charErrorBuffer[0] = 0x1b; + cnv->charErrorBuffer[1] = 0x25; + cnv->charErrorBuffer[2] = 0x42; + + cnv->sharedData=(UConverterSharedData*)&_ISO2022Data; + /* initialize the state variables */ + uprv_strcpy(myConverterData->name,"ISO_2022"); +#else + *errorCode = U_MISSING_RESOURCE_ERROR; + // Was U_UNSUPPORTED_ERROR but changed in ICU 55 to a more standard + // data loading error code. + return; +#endif + } + + cnv->maxBytesPerUChar=cnv->sharedData->staticData->maxBytesPerChar; + + if(U_FAILURE(*errorCode) || pArgs->onlyTestIsLoadable) { + _ISO2022Close(cnv); + } + } else { + *errorCode = U_MEMORY_ALLOCATION_ERROR; + } +} + + +static void U_CALLCONV +_ISO2022Close(UConverter *converter) { + UConverterDataISO2022* myData =(UConverterDataISO2022 *) (converter->extraInfo); + UConverterSharedData **array = myData->myConverterArray; + int32_t i; + + if (converter->extraInfo != NULL) { + /*close the array of converter pointers and free the memory*/ + for (i=0; i<UCNV_2022_MAX_CONVERTERS; i++) { + if(array[i]!=NULL) { + ucnv_unloadSharedDataIfReady(array[i]); + } + } + + ucnv_close(myData->currentConverter); + + if(!converter->isExtraLocal){ + uprv_free (converter->extraInfo); + converter->extraInfo = NULL; + } + } +} + +static void U_CALLCONV +_ISO2022Reset(UConverter *converter, UConverterResetChoice choice) { + UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) (converter->extraInfo); + if(choice<=UCNV_RESET_TO_UNICODE) { + uprv_memset(&myConverterData->toU2022State, 0, sizeof(ISO2022State)); + myConverterData->key = 0; + myConverterData->isEmptySegment = FALSE; + } + if(choice!=UCNV_RESET_TO_UNICODE) { + uprv_memset(&myConverterData->fromU2022State, 0, sizeof(ISO2022State)); + } +#ifdef U_ENABLE_GENERIC_ISO_2022 + if(myConverterData->locale[0] == 0){ + if(choice<=UCNV_RESET_TO_UNICODE) { + myConverterData->isFirstBuffer = TRUE; + myConverterData->key = 0; + if (converter->mode == UCNV_SO){ + ucnv_close (myConverterData->currentConverter); + myConverterData->currentConverter=NULL; + } + converter->mode = UCNV_SI; + } + if(choice!=UCNV_RESET_TO_UNICODE) { + /* re-append UTF-8 escape sequence */ + converter->charErrorBufferLength = 3; + converter->charErrorBuffer[0] = 0x1b; + converter->charErrorBuffer[1] = 0x28; + converter->charErrorBuffer[2] = 0x42; + } + } + else +#endif + { + /* reset the state variables */ + if(myConverterData->locale[0] == 'k'){ + if(choice<=UCNV_RESET_TO_UNICODE) { + setInitialStateToUnicodeKR(converter, myConverterData); + } + if(choice!=UCNV_RESET_TO_UNICODE) { + setInitialStateFromUnicodeKR(converter, myConverterData); + } + } + } +} + +U_CDECL_BEGIN + +static const char * U_CALLCONV +_ISO2022getName(const UConverter* cnv){ + if(cnv->extraInfo){ + UConverterDataISO2022* myData= (UConverterDataISO2022*)cnv->extraInfo; + return myData->name; + } + return NULL; +} + +U_CDECL_END + + +/*************** to unicode *******************/ +/**************************************************************************** + * Recognized escape sequences are + * <ESC>(B ASCII + * <ESC>.A ISO-8859-1 + * <ESC>.F ISO-8859-7 + * <ESC>(J JISX-201 + * <ESC>(I JISX-201 + * <ESC>$B JISX-208 + * <ESC>$@ JISX-208 + * <ESC>$(D JISX-212 + * <ESC>$A GB2312 + * <ESC>$(C KSC5601 + */ +static const int8_t nextStateToUnicodeJP[MAX_STATES_2022]= { +/* 0 1 2 3 4 5 6 7 8 9 */ + INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,SS2_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,ASCII ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,JISX201 ,HWKANA_7BIT ,JISX201 ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,JISX208 ,GB2312 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,ISO8859_1 ,ISO8859_7 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,KSC5601 ,JISX212 ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE +}; + +#if !UCONFIG_ONLY_HTML_CONVERSION +/*************** to unicode *******************/ +static const int8_t nextStateToUnicodeCN[MAX_STATES_2022]= { +/* 0 1 2 3 4 5 6 7 8 9 */ + INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,SS2_STATE ,SS3_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,GB2312_1 ,INVALID_STATE ,ISO_IR_165 + ,CNS_11643_1 ,CNS_11643_2 ,CNS_11643_3 ,CNS_11643_4 ,CNS_11643_5 ,CNS_11643_6 ,CNS_11643_7 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE + ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE +}; +#endif + + +static UCNV_TableStates_2022 +getKey_2022(char c,int32_t* key,int32_t* offset){ + int32_t togo; + int32_t low = 0; + int32_t hi = MAX_STATES_2022; + int32_t oldmid=0; + + togo = normalize_esq_chars_2022[(uint8_t)c]; + if(togo == 0) { + /* not a valid character anywhere in an escape sequence */ + *key = 0; + *offset = 0; + return INVALID_2022; + } + togo = (*key << 5) + togo; + + while (hi != low) /*binary search*/{ + + int32_t mid = (hi+low) >> 1; /*Finds median*/ + + if (mid == oldmid) + break; + + if (escSeqStateTable_Key_2022[mid] > togo){ + hi = mid; + } + else if (escSeqStateTable_Key_2022[mid] < togo){ + low = mid; + } + else /*we found it*/{ + *key = togo; + *offset = mid; + return (UCNV_TableStates_2022)escSeqStateTable_Value_2022[mid]; + } + oldmid = mid; + + } + + *key = 0; + *offset = 0; + return INVALID_2022; +} + +/*runs through a state machine to determine the escape sequence - codepage correspondance + */ +static void +changeState_2022(UConverter* _this, + const char** source, + const char* sourceLimit, + Variant2022 var, + UErrorCode* err){ + UCNV_TableStates_2022 value; + UConverterDataISO2022* myData2022 = ((UConverterDataISO2022*)_this->extraInfo); + uint32_t key = myData2022->key; + int32_t offset = 0; + int8_t initialToULength = _this->toULength; + char c; + + value = VALID_NON_TERMINAL_2022; + while (*source < sourceLimit) { + c = *(*source)++; + _this->toUBytes[_this->toULength++]=(uint8_t)c; + value = getKey_2022(c,(int32_t *) &key, &offset); + + switch (value){ + + case VALID_NON_TERMINAL_2022 : + /* continue with the loop */ + break; + + case VALID_TERMINAL_2022: + key = 0; + goto DONE; + + case INVALID_2022: + goto DONE; + + case VALID_MAYBE_TERMINAL_2022: +#ifdef U_ENABLE_GENERIC_ISO_2022 + /* ESC ( B is ambiguous only for ISO_2022 itself */ + if(var == ISO_2022) { + /* discard toUBytes[] for ESC ( B because this sequence is correct and complete */ + _this->toULength = 0; + + /* TODO need to indicate that ESC ( B was seen; if failure, then need to replay from source or from MBCS-style replay */ + + /* continue with the loop */ + value = VALID_NON_TERMINAL_2022; + break; + } else +#endif + { + /* not ISO_2022 itself, finish here */ + value = VALID_TERMINAL_2022; + key = 0; + goto DONE; + } + } + } + +DONE: + myData2022->key = key; + + if (value == VALID_NON_TERMINAL_2022) { + /* indicate that the escape sequence is incomplete: key!=0 */ + return; + } else if (value == INVALID_2022 ) { + *err = U_ILLEGAL_ESCAPE_SEQUENCE; + } else /* value == VALID_TERMINAL_2022 */ { + switch(var){ +#ifdef U_ENABLE_GENERIC_ISO_2022 + case ISO_2022: + { + const char *chosenConverterName = escSeqStateTable_Result_2022[offset]; + if(chosenConverterName == NULL) { + /* SS2 or SS3 */ + *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; + _this->toUCallbackReason = UCNV_UNASSIGNED; + return; + } + + _this->mode = UCNV_SI; + ucnv_close(myData2022->currentConverter); + myData2022->currentConverter = myUConverter = ucnv_open(chosenConverterName, err); + if(U_SUCCESS(*err)) { + myUConverter->fromCharErrorBehaviour = UCNV_TO_U_CALLBACK_STOP; + _this->mode = UCNV_SO; + } + break; + } +#endif + case ISO_2022_JP: + { + StateEnum tempState=(StateEnum)nextStateToUnicodeJP[offset]; + switch(tempState) { + case INVALID_STATE: + *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; + break; + case SS2_STATE: + if(myData2022->toU2022State.cs[2]!=0) { + if(myData2022->toU2022State.g<2) { + myData2022->toU2022State.prevG=myData2022->toU2022State.g; + } + myData2022->toU2022State.g=2; + } else { + /* illegal to have SS2 before a matching designator */ + *err = U_ILLEGAL_ESCAPE_SEQUENCE; + } + break; + /* case SS3_STATE: not used in ISO-2022-JP-x */ + case ISO8859_1: + case ISO8859_7: + if((jpCharsetMasks[myData2022->version] & CSM(tempState)) == 0) { + *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; + } else { + /* G2 charset for SS2 */ + myData2022->toU2022State.cs[2]=(int8_t)tempState; + } + break; + default: + if((jpCharsetMasks[myData2022->version] & CSM(tempState)) == 0) { + *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; + } else { + /* G0 charset */ + myData2022->toU2022State.cs[0]=(int8_t)tempState; + } + break; + } + } + break; +#if !UCONFIG_ONLY_HTML_CONVERSION + case ISO_2022_CN: + { + StateEnum tempState=(StateEnum)nextStateToUnicodeCN[offset]; + switch(tempState) { + case INVALID_STATE: + *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; + break; + case SS2_STATE: + if(myData2022->toU2022State.cs[2]!=0) { + if(myData2022->toU2022State.g<2) { + myData2022->toU2022State.prevG=myData2022->toU2022State.g; + } + myData2022->toU2022State.g=2; + } else { + /* illegal to have SS2 before a matching designator */ + *err = U_ILLEGAL_ESCAPE_SEQUENCE; + } + break; + case SS3_STATE: + if(myData2022->toU2022State.cs[3]!=0) { + if(myData2022->toU2022State.g<2) { + myData2022->toU2022State.prevG=myData2022->toU2022State.g; + } + myData2022->toU2022State.g=3; + } else { + /* illegal to have SS3 before a matching designator */ + *err = U_ILLEGAL_ESCAPE_SEQUENCE; + } + break; + case ISO_IR_165: + if(myData2022->version==0) { + *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; + break; + } + U_FALLTHROUGH; + case GB2312_1: + U_FALLTHROUGH; + case CNS_11643_1: + myData2022->toU2022State.cs[1]=(int8_t)tempState; + break; + case CNS_11643_2: + myData2022->toU2022State.cs[2]=(int8_t)tempState; + break; + default: + /* other CNS 11643 planes */ + if(myData2022->version==0) { + *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; + } else { + myData2022->toU2022State.cs[3]=(int8_t)tempState; + } + break; + } + } + break; + case ISO_2022_KR: + if(offset==0x30){ + /* nothing to be done, just accept this one escape sequence */ + } else { + *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; + } + break; +#endif // !UCONFIG_ONLY_HTML_CONVERSION + + default: + *err = U_ILLEGAL_ESCAPE_SEQUENCE; + break; + } + } + if(U_SUCCESS(*err)) { + _this->toULength = 0; + } else if(*err==U_ILLEGAL_ESCAPE_SEQUENCE) { + if(_this->toULength>1) { + /* + * Ticket 5691: consistent illegal sequences: + * - We include at least the first byte (ESC) in the illegal sequence. + * - If any of the non-initial bytes could be the start of a character, + * we stop the illegal sequence before the first one of those. + * In escape sequences, all following bytes are "printable", that is, + * unless they are completely illegal (>7f in SBCS, outside 21..7e in DBCS), + * they are valid single/lead bytes. + * For simplicity, we always only report the initial ESC byte as the + * illegal sequence and back out all other bytes we looked at. + */ + /* Back out some bytes. */ + int8_t backOutDistance=_this->toULength-1; + int8_t bytesFromThisBuffer=_this->toULength-initialToULength; + if(backOutDistance<=bytesFromThisBuffer) { + /* same as initialToULength<=1 */ + *source-=backOutDistance; + } else { + /* Back out bytes from the previous buffer: Need to replay them. */ + _this->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance); + /* same as -(initialToULength-1) */ + /* preToULength is negative! */ + uprv_memcpy(_this->preToU, _this->toUBytes+1, -_this->preToULength); + *source-=bytesFromThisBuffer; + } + _this->toULength=1; + } + } else if(*err==U_UNSUPPORTED_ESCAPE_SEQUENCE) { + _this->toUCallbackReason = UCNV_UNASSIGNED; + } +} + +#if !UCONFIG_ONLY_HTML_CONVERSION +/*Checks the characters of the buffer against valid 2022 escape sequences +*if the match we return a pointer to the initial start of the sequence otherwise +*we return sourceLimit +*/ +/*for 2022 looks ahead in the stream + *to determine the longest possible convertible + *data stream + */ +static inline const char* +getEndOfBuffer_2022(const char** source, + const char* sourceLimit, + UBool /*flush*/){ + + const char* mySource = *source; + +#ifdef U_ENABLE_GENERIC_ISO_2022 + if (*source >= sourceLimit) + return sourceLimit; + + do{ + + if (*mySource == ESC_2022){ + int8_t i; + int32_t key = 0; + int32_t offset; + UCNV_TableStates_2022 value = VALID_NON_TERMINAL_2022; + + /* Kludge: I could not + * figure out the reason for validating an escape sequence + * twice - once here and once in changeState_2022(). + * is it possible to have an ESC character in a ISO2022 + * byte stream which is valid in a code page? Is it legal? + */ + for (i=0; + (mySource+i < sourceLimit)&&(value == VALID_NON_TERMINAL_2022); + i++) { + value = getKey_2022(*(mySource+i), &key, &offset); + } + if (value > 0 || *mySource==ESC_2022) + return mySource; + + if ((value == VALID_NON_TERMINAL_2022)&&(!flush) ) + return sourceLimit; + } + }while (++mySource < sourceLimit); + + return sourceLimit; +#else + while(mySource < sourceLimit && *mySource != ESC_2022) { + ++mySource; + } + return mySource; +#endif +} +#endif + +/* This inline function replicates code in _MBCSFromUChar32() function in ucnvmbcs.c + * any future change in _MBCSFromUChar32() function should be reflected here. + * @return number of bytes in *value; negative number if fallback; 0 if no mapping + */ +static inline int32_t +MBCS_FROM_UCHAR32_ISO2022(UConverterSharedData* sharedData, + UChar32 c, + uint32_t* value, + UBool useFallback, + int outputType) +{ + const int32_t *cx; + const uint16_t *table; + uint32_t stage2Entry; + uint32_t myValue; + int32_t length; + const uint8_t *p; + /* + * TODO(markus): Use and require new, faster MBCS conversion table structures. + * Use internal version of ucnv_open() that verifies that the new structures are available, + * else U_INTERNAL_PROGRAM_ERROR. + */ + /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ + if(c<0x10000 || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { + table=sharedData->mbcs.fromUnicodeTable; + stage2Entry=MBCS_STAGE_2_FROM_U(table, c); + /* get the bytes and the length for the output */ + if(outputType==MBCS_OUTPUT_2){ + myValue=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); + if(myValue<=0xff) { + length=1; + } else { + length=2; + } + } else /* outputType==MBCS_OUTPUT_3 */ { + p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); + myValue=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; + if(myValue<=0xff) { + length=1; + } else if(myValue<=0xffff) { + length=2; + } else { + length=3; + } + } + /* is this code point assigned, or do we use fallbacks? */ + if((stage2Entry&(1<<(16+(c&0xf))))!=0) { + /* assigned */ + *value=myValue; + return length; + } else if(FROM_U_USE_FALLBACK(useFallback, c) && myValue!=0) { + /* + * We allow a 0 byte output if the "assigned" bit is set for this entry. + * There is no way with this data structure for fallback output + * to be a zero byte. + */ + *value=myValue; + return -length; + } + } + + cx=sharedData->mbcs.extIndexes; + if(cx!=NULL) { + return ucnv_extSimpleMatchFromU(cx, c, value, useFallback); + } + + /* unassigned */ + return 0; +} + +/* This inline function replicates code in _MBCSSingleFromUChar32() function in ucnvmbcs.c + * any future change in _MBCSSingleFromUChar32() function should be reflected here. + * @param retval pointer to output byte + * @return 1 roundtrip byte 0 no mapping -1 fallback byte + */ +static inline int32_t +MBCS_SINGLE_FROM_UCHAR32(UConverterSharedData* sharedData, + UChar32 c, + uint32_t* retval, + UBool useFallback) +{ + const uint16_t *table; + int32_t value; + /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ + if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { + return 0; + } + /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ + table=sharedData->mbcs.fromUnicodeTable; + /* get the byte for the output */ + value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); + /* is this code point assigned, or do we use fallbacks? */ + *retval=(uint32_t)(value&0xff); + if(value>=0xf00) { + return 1; /* roundtrip */ + } else if(useFallback ? value>=0x800 : value>=0xc00) { + return -1; /* fallback taken */ + } else { + return 0; /* no mapping */ + } +} + +/* + * Check that the result is a 2-byte value with each byte in the range A1..FE + * (strict EUC DBCS) before accepting it and subtracting 0x80 from each byte + * to move it to the ISO 2022 range 21..7E. + * Return 0 if out of range. + */ +static inline uint32_t +_2022FromGR94DBCS(uint32_t value) { + if( (uint16_t)(value - 0xa1a1) <= (0xfefe - 0xa1a1) && + (uint8_t)(value - 0xa1) <= (0xfe - 0xa1) + ) { + return value - 0x8080; /* shift down to 21..7e byte range */ + } else { + return 0; /* not valid for ISO 2022 */ + } +} + +#if 0 /* 5691: Call sites now check for validity. They can just += 0x8080 after that. */ +/* + * This method does the reverse of _2022FromGR94DBCS(). Given the 2022 code point, it returns the + * 2 byte value that is in the range A1..FE for each byte. Otherwise it returns the 2022 code point + * unchanged. + */ +static inline uint32_t +_2022ToGR94DBCS(uint32_t value) { + uint32_t returnValue = value + 0x8080; + if( (uint16_t)(returnValue - 0xa1a1) <= (0xfefe - 0xa1a1) && + (uint8_t)(returnValue - 0xa1) <= (0xfe - 0xa1)) { + return returnValue; + } else { + return value; + } +} +#endif + +#ifdef U_ENABLE_GENERIC_ISO_2022 + +/********************************************************************************** +* ISO-2022 Converter +* +* +*/ + +static void U_CALLCONV +T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs* args, + UErrorCode* err){ + const char* mySourceLimit, *realSourceLimit; + const char* sourceStart; + const UChar* myTargetStart; + UConverter* saveThis; + UConverterDataISO2022* myData; + int8_t length; + + saveThis = args->converter; + myData=((UConverterDataISO2022*)(saveThis->extraInfo)); + + realSourceLimit = args->sourceLimit; + while (args->source < realSourceLimit) { + if(myData->key == 0) { /* are we in the middle of an escape sequence? */ + /*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/ + mySourceLimit = getEndOfBuffer_2022(&(args->source), realSourceLimit, args->flush); + + if(args->source < mySourceLimit) { + if(myData->currentConverter==NULL) { + myData->currentConverter = ucnv_open("ASCII",err); + if(U_FAILURE(*err)){ + return; + } + + myData->currentConverter->fromCharErrorBehaviour = UCNV_TO_U_CALLBACK_STOP; + saveThis->mode = UCNV_SO; + } + + /* convert to before the ESC or until the end of the buffer */ + myData->isFirstBuffer=FALSE; + sourceStart = args->source; + myTargetStart = args->target; + args->converter = myData->currentConverter; + ucnv_toUnicode(args->converter, + &args->target, + args->targetLimit, + &args->source, + mySourceLimit, + args->offsets, + (UBool)(args->flush && mySourceLimit == realSourceLimit), + err); + args->converter = saveThis; + + if (*err == U_BUFFER_OVERFLOW_ERROR) { + /* move the overflow buffer */ + length = saveThis->UCharErrorBufferLength = myData->currentConverter->UCharErrorBufferLength; + myData->currentConverter->UCharErrorBufferLength = 0; + if(length > 0) { + uprv_memcpy(saveThis->UCharErrorBuffer, + myData->currentConverter->UCharErrorBuffer, + length*U_SIZEOF_UCHAR); + } + return; + } + + /* + * At least one of: + * -Error while converting + * -Done with entire buffer + * -Need to write offsets or update the current offset + * (leave that up to the code in ucnv.c) + * + * or else we just stopped at an ESC byte and continue with changeState_2022() + */ + if (U_FAILURE(*err) || + (args->source == realSourceLimit) || + (args->offsets != NULL && (args->target != myTargetStart || args->source != sourceStart) || + (mySourceLimit < realSourceLimit && myData->currentConverter->toULength > 0)) + ) { + /* copy partial or error input for truncated detection and error handling */ + if(U_FAILURE(*err)) { + length = saveThis->invalidCharLength = myData->currentConverter->invalidCharLength; + if(length > 0) { + uprv_memcpy(saveThis->invalidCharBuffer, myData->currentConverter->invalidCharBuffer, length); + } + } else { + length = saveThis->toULength = myData->currentConverter->toULength; + if(length > 0) { + uprv_memcpy(saveThis->toUBytes, myData->currentConverter->toUBytes, length); + if(args->source < mySourceLimit) { + *err = U_TRUNCATED_CHAR_FOUND; /* truncated input before ESC */ + } + } + } + return; + } + } + } + + sourceStart = args->source; + changeState_2022(args->converter, + &(args->source), + realSourceLimit, + ISO_2022, + err); + if (U_FAILURE(*err) || (args->source != sourceStart && args->offsets != NULL)) { + /* let the ucnv.c code update its current offset */ + return; + } + } +} + +#endif + +/* + * To Unicode Callback helper function + */ +static void +toUnicodeCallback(UConverter *cnv, + const uint32_t sourceChar, const uint32_t targetUniChar, + UErrorCode* err){ + if(sourceChar>0xff){ + cnv->toUBytes[0] = (uint8_t)(sourceChar>>8); + cnv->toUBytes[1] = (uint8_t)sourceChar; + cnv->toULength = 2; + } + else{ + cnv->toUBytes[0] =(char) sourceChar; + cnv->toULength = 1; + } + + if(targetUniChar == (missingCharMarker-1/*0xfffe*/)){ + *err = U_INVALID_CHAR_FOUND; + } + else{ + *err = U_ILLEGAL_CHAR_FOUND; + } +} + +/**************************************ISO-2022-JP*************************************************/ + +/************************************** IMPORTANT ************************************************** +* The UConverter_fromUnicode_ISO2022_JP converter does not use ucnv_fromUnicode() functions for SBCS,DBCS and +* MBCS; instead, the values are obtained directly by calling _MBCSFromUChar32(). +* The converter iterates over each Unicode codepoint +* to obtain the equivalent codepoints from the codepages supported. Since the source buffer is +* processed one char at a time it would make sense to reduce the extra processing a canned converter +* would do as far as possible. +* +* If the implementation of these macros or structure of sharedData struct change in the future, make +* sure that ISO-2022 is also changed. +*************************************************************************************************** +*/ + +/*************************************************************************************************** +* Rules for ISO-2022-jp encoding +* (i) Escape sequences must be fully contained within a line they should not +* span new lines or CRs +* (ii) If the last character on a line is represented by two bytes then an ASCII or +* JIS-Roman character escape sequence should follow before the line terminates +* (iii) If the first character on the line is represented by two bytes then a two +* byte character escape sequence should precede it +* (iv) If no escape sequence is encountered then the characters are ASCII +* (v) Latin(ISO-8859-1) and Greek(ISO-8859-7) characters must be designated to G2, +* and invoked with SS2 (ESC N). +* (vi) If there is any G0 designation in text, there must be a switch to +* ASCII or to JIS X 0201-Roman before a space character (but not +* necessarily before "ESC 4/14 2/0" or "ESC N ' '") or control +* characters such as tab or CRLF. +* (vi) Supported encodings: +* ASCII, JISX201, JISX208, JISX212, GB2312, KSC5601, ISO-8859-1,ISO-8859-7 +* +* source : RFC-1554 +* +* JISX201, JISX208,JISX212 : new .cnv data files created +* KSC5601 : alias to ibm-949 mapping table +* GB2312 : alias to ibm-1386 mapping table +* ISO-8859-1 : Algorithmic implemented as LATIN1 case +* ISO-8859-7 : alisas to ibm-9409 mapping table +*/ + +/* preference order of JP charsets */ +static const StateEnum jpCharsetPref[]={ + ASCII, + JISX201, + ISO8859_1, + JISX208, + ISO8859_7, + JISX212, + GB2312, + KSC5601, + HWKANA_7BIT +}; + +/* + * The escape sequences must be in order of the enum constants like JISX201 = 3, + * not in order of jpCharsetPref[]! + */ +static const char escSeqChars[][6] ={ + "\x1B\x28\x42", /* <ESC>(B ASCII */ + "\x1B\x2E\x41", /* <ESC>.A ISO-8859-1 */ + "\x1B\x2E\x46", /* <ESC>.F ISO-8859-7 */ + "\x1B\x28\x4A", /* <ESC>(J JISX-201 */ + "\x1B\x24\x42", /* <ESC>$B JISX-208 */ + "\x1B\x24\x28\x44", /* <ESC>$(D JISX-212 */ + "\x1B\x24\x41", /* <ESC>$A GB2312 */ + "\x1B\x24\x28\x43", /* <ESC>$(C KSC5601 */ + "\x1B\x28\x49" /* <ESC>(I HWKANA_7BIT */ + +}; +static const int8_t escSeqCharsLen[] ={ + 3, /* length of <ESC>(B ASCII */ + 3, /* length of <ESC>.A ISO-8859-1 */ + 3, /* length of <ESC>.F ISO-8859-7 */ + 3, /* length of <ESC>(J JISX-201 */ + 3, /* length of <ESC>$B JISX-208 */ + 4, /* length of <ESC>$(D JISX-212 */ + 3, /* length of <ESC>$A GB2312 */ + 4, /* length of <ESC>$(C KSC5601 */ + 3 /* length of <ESC>(I HWKANA_7BIT */ +}; + +/* +* The iteration over various code pages works this way: +* i) Get the currentState from myConverterData->currentState +* ii) Check if the character is mapped to a valid character in the currentState +* Yes -> a) set the initIterState to currentState +* b) remain in this state until an invalid character is found +* No -> a) go to the next code page and find the character +* iii) Before changing the state increment the current state check if the current state +* is equal to the intitIteration state +* Yes -> A character that cannot be represented in any of the supported encodings +* break and return a U_INVALID_CHARACTER error +* No -> Continue and find the character in next code page +* +* +* TODO: Implement a priority technique where the users are allowed to set the priority of code pages +*/ + +/* Map 00..7F to Unicode according to JIS X 0201. */ +static inline uint32_t +jisx201ToU(uint32_t value) { + if(value < 0x5c) { + return value; + } else if(value == 0x5c) { + return 0xa5; + } else if(value == 0x7e) { + return 0x203e; + } else /* value <= 0x7f */ { + return value; + } +} + +/* Map Unicode to 00..7F according to JIS X 0201. Return U+FFFE if unmappable. */ +static inline uint32_t +jisx201FromU(uint32_t value) { + if(value<=0x7f) { + if(value!=0x5c && value!=0x7e) { + return value; + } + } else if(value==0xa5) { + return 0x5c; + } else if(value==0x203e) { + return 0x7e; + } + return 0xfffe; +} + +/* + * Take a valid Shift-JIS byte pair, check that it is in the range corresponding + * to JIS X 0208, and convert it to a pair of 21..7E bytes. + * Return 0 if the byte pair is out of range. + */ +static inline uint32_t +_2022FromSJIS(uint32_t value) { + uint8_t trail; + + if(value > 0xEFFC) { + return 0; /* beyond JIS X 0208 */ + } + + trail = (uint8_t)value; + + value &= 0xff00; /* lead byte */ + if(value <= 0x9f00) { + value -= 0x7000; + } else /* 0xe000 <= value <= 0xef00 */ { + value -= 0xb000; + } + value <<= 1; + + if(trail <= 0x9e) { + value -= 0x100; + if(trail <= 0x7e) { + value |= trail - 0x1f; + } else { + value |= trail - 0x20; + } + } else /* trail <= 0xfc */ { + value |= trail - 0x7e; + } + return value; +} + +/* + * Convert a pair of JIS X 0208 21..7E bytes to Shift-JIS. + * If either byte is outside 21..7E make sure that the result is not valid + * for Shift-JIS so that the converter catches it. + * Some invalid byte values already turn into equally invalid Shift-JIS + * byte values and need not be tested explicitly. + */ +static inline void +_2022ToSJIS(uint8_t c1, uint8_t c2, char bytes[2]) { + if(c1&1) { + ++c1; + if(c2 <= 0x5f) { + c2 += 0x1f; + } else if(c2 <= 0x7e) { + c2 += 0x20; + } else { + c2 = 0; /* invalid */ + } + } else { + if((uint8_t)(c2-0x21) <= ((0x7e)-0x21)) { + c2 += 0x7e; + } else { + c2 = 0; /* invalid */ + } + } + c1 >>= 1; + if(c1 <= 0x2f) { + c1 += 0x70; + } else if(c1 <= 0x3f) { + c1 += 0xb0; + } else { + c1 = 0; /* invalid */ + } + bytes[0] = (char)c1; + bytes[1] = (char)c2; +} + +/* + * JIS X 0208 has fallbacks from Unicode half-width Katakana to full-width (DBCS) + * Katakana. + * Now that we use a Shift-JIS table for JIS X 0208 we need to hardcode these fallbacks + * because Shift-JIS roundtrips half-width Katakana to single bytes. + * These were the only fallbacks in ICU's jisx-208.ucm file. + */ +static const uint16_t hwkana_fb[HWKANA_END - HWKANA_START + 1] = { + 0x2123, /* U+FF61 */ + 0x2156, + 0x2157, + 0x2122, + 0x2126, + 0x2572, + 0x2521, + 0x2523, + 0x2525, + 0x2527, + 0x2529, + 0x2563, + 0x2565, + 0x2567, + 0x2543, + 0x213C, /* U+FF70 */ + 0x2522, + 0x2524, + 0x2526, + 0x2528, + 0x252A, + 0x252B, + 0x252D, + 0x252F, + 0x2531, + 0x2533, + 0x2535, + 0x2537, + 0x2539, + 0x253B, + 0x253D, + 0x253F, /* U+FF80 */ + 0x2541, + 0x2544, + 0x2546, + 0x2548, + 0x254A, + 0x254B, + 0x254C, + 0x254D, + 0x254E, + 0x254F, + 0x2552, + 0x2555, + 0x2558, + 0x255B, + 0x255E, + 0x255F, /* U+FF90 */ + 0x2560, + 0x2561, + 0x2562, + 0x2564, + 0x2566, + 0x2568, + 0x2569, + 0x256A, + 0x256B, + 0x256C, + 0x256D, + 0x256F, + 0x2573, + 0x212B, + 0x212C /* U+FF9F */ +}; + +static void U_CALLCONV +UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err) { + UConverter *cnv = args->converter; + UConverterDataISO2022 *converterData; + ISO2022State *pFromU2022State; + uint8_t *target = (uint8_t *) args->target; + const uint8_t *targetLimit = (const uint8_t *) args->targetLimit; + const UChar* source = args->source; + const UChar* sourceLimit = args->sourceLimit; + int32_t* offsets = args->offsets; + UChar32 sourceChar; + char buffer[8]; + int32_t len, outLen; + int8_t choices[10]; + int32_t choiceCount; + uint32_t targetValue = 0; + UBool useFallback; + + int32_t i; + int8_t cs, g; + + /* set up the state */ + converterData = (UConverterDataISO2022*)cnv->extraInfo; + pFromU2022State = &converterData->fromU2022State; + + choiceCount = 0; + + /* check if the last codepoint of previous buffer was a lead surrogate*/ + if((sourceChar = cnv->fromUChar32)!=0 && target< targetLimit) { + goto getTrail; + } + + while(source < sourceLimit) { + if(target < targetLimit) { + + sourceChar = *(source++); + /*check if the char is a First surrogate*/ + if(U16_IS_SURROGATE(sourceChar)) { + if(U16_IS_SURROGATE_LEAD(sourceChar)) { +getTrail: + /*look ahead to find the trail surrogate*/ + if(source < sourceLimit) { + /* test the following code unit */ + UChar trail=(UChar) *source; + if(U16_IS_TRAIL(trail)) { + source++; + sourceChar=U16_GET_SUPPLEMENTARY(sourceChar, trail); + cnv->fromUChar32=0x00; + /* convert this supplementary code point */ + /* exit this condition tree */ + } else { + /* this is an unmatched lead code unit (1st surrogate) */ + /* callback(illegal) */ + *err=U_ILLEGAL_CHAR_FOUND; + cnv->fromUChar32=sourceChar; + break; + } + } else { + /* no more input */ + cnv->fromUChar32=sourceChar; + break; + } + } else { + /* this is an unmatched trail code unit (2nd surrogate) */ + /* callback(illegal) */ + *err=U_ILLEGAL_CHAR_FOUND; + cnv->fromUChar32=sourceChar; + break; + } + } + + /* do not convert SO/SI/ESC */ + if(IS_2022_CONTROL(sourceChar)) { + /* callback(illegal) */ + *err=U_ILLEGAL_CHAR_FOUND; + cnv->fromUChar32=sourceChar; + break; + } + + /* do the conversion */ + + if(choiceCount == 0) { + uint16_t csm; + + /* + * The csm variable keeps track of which charsets are allowed + * and not used yet while building the choices[]. + */ + csm = jpCharsetMasks[converterData->version]; + choiceCount = 0; + + /* JIS7/8: try single-byte half-width Katakana before JISX208 */ + if(converterData->version == 3 || converterData->version == 4) { + choices[choiceCount++] = (int8_t)HWKANA_7BIT; + } + /* Do not try single-byte half-width Katakana for other versions. */ + csm &= ~CSM(HWKANA_7BIT); + + /* try the current G0 charset */ + choices[choiceCount++] = cs = pFromU2022State->cs[0]; + csm &= ~CSM(cs); + + /* try the current G2 charset */ + if((cs = pFromU2022State->cs[2]) != 0) { + choices[choiceCount++] = cs; + csm &= ~CSM(cs); + } + + /* try all the other possible charsets */ + for(i = 0; i < UPRV_LENGTHOF(jpCharsetPref); ++i) { + cs = (int8_t)jpCharsetPref[i]; + if(CSM(cs) & csm) { + choices[choiceCount++] = cs; + csm &= ~CSM(cs); + } + } + } + + cs = g = 0; + /* + * len==0: no mapping found yet + * len<0: found a fallback result: continue looking for a roundtrip but no further fallbacks + * len>0: found a roundtrip result, done + */ + len = 0; + /* + * We will turn off useFallback after finding a fallback, + * but we still get fallbacks from PUA code points as usual. + * Therefore, we will also need to check that we don't overwrite + * an early fallback with a later one. + */ + useFallback = cnv->useFallback; + + for(i = 0; i < choiceCount && len <= 0; ++i) { + uint32_t value; + int32_t len2; + int8_t cs0 = choices[i]; + switch(cs0) { + case ASCII: + if(sourceChar <= 0x7f) { + targetValue = (uint32_t)sourceChar; + len = 1; + cs = cs0; + g = 0; + } + break; + case ISO8859_1: + if(GR96_START <= sourceChar && sourceChar <= GR96_END) { + targetValue = (uint32_t)sourceChar - 0x80; + len = 1; + cs = cs0; + g = 2; + } + break; + case HWKANA_7BIT: + if((uint32_t)(sourceChar - HWKANA_START) <= (HWKANA_END - HWKANA_START)) { + if(converterData->version==3) { + /* JIS7: use G1 (SO) */ + /* Shift U+FF61..U+FF9F to bytes 21..5F. */ + targetValue = (uint32_t)(sourceChar - (HWKANA_START - 0x21)); + len = 1; + pFromU2022State->cs[1] = cs = cs0; /* do not output an escape sequence */ + g = 1; + } else if(converterData->version==4) { + /* JIS8: use 8-bit bytes with any single-byte charset, see escape sequence output below */ + /* Shift U+FF61..U+FF9F to bytes A1..DF. */ + targetValue = (uint32_t)(sourceChar - (HWKANA_START - 0xa1)); + len = 1; + + cs = pFromU2022State->cs[0]; + if(IS_JP_DBCS(cs)) { + /* switch from a DBCS charset to JISX201 */ + cs = (int8_t)JISX201; + } + /* else stay in the current G0 charset */ + g = 0; + } + /* else do not use HWKANA_7BIT with other versions */ + } + break; + case JISX201: + /* G0 SBCS */ + value = jisx201FromU(sourceChar); + if(value <= 0x7f) { + targetValue = value; + len = 1; + cs = cs0; + g = 0; + useFallback = FALSE; + } + break; + case JISX208: + /* G0 DBCS from Shift-JIS table */ + len2 = MBCS_FROM_UCHAR32_ISO2022( + converterData->myConverterArray[cs0], + sourceChar, &value, + useFallback, MBCS_OUTPUT_2); + if(len2 == 2 || (len2 == -2 && len == 0)) { /* only accept DBCS: abs(len)==2 */ + value = _2022FromSJIS(value); + if(value != 0) { + targetValue = value; + len = len2; + cs = cs0; + g = 0; + useFallback = FALSE; + } + } else if(len == 0 && useFallback && + (uint32_t)(sourceChar - HWKANA_START) <= (HWKANA_END - HWKANA_START)) { + targetValue = hwkana_fb[sourceChar - HWKANA_START]; + len = -2; + cs = cs0; + g = 0; + useFallback = FALSE; + } + break; + case ISO8859_7: + /* G0 SBCS forced to 7-bit output */ + len2 = MBCS_SINGLE_FROM_UCHAR32( + converterData->myConverterArray[cs0], + sourceChar, &value, + useFallback); + if(len2 != 0 && !(len2 < 0 && len != 0) && GR96_START <= value && value <= GR96_END) { + targetValue = value - 0x80; + len = len2; + cs = cs0; + g = 2; + useFallback = FALSE; + } + break; + default: + /* G0 DBCS */ + len2 = MBCS_FROM_UCHAR32_ISO2022( + converterData->myConverterArray[cs0], + sourceChar, &value, + useFallback, MBCS_OUTPUT_2); + if(len2 == 2 || (len2 == -2 && len == 0)) { /* only accept DBCS: abs(len)==2 */ + if(cs0 == KSC5601) { + /* + * Check for valid bytes for the encoding scheme. + * This is necessary because the sub-converter (windows-949) + * has a broader encoding scheme than is valid for 2022. + */ + value = _2022FromGR94DBCS(value); + if(value == 0) { + break; + } + } + targetValue = value; + len = len2; + cs = cs0; + g = 0; + useFallback = FALSE; + } + break; + } + } + + if(len != 0) { + if(len < 0) { + len = -len; /* fallback */ + } + outLen = 0; /* count output bytes */ + + /* write SI if necessary (only for JIS7) */ + if(pFromU2022State->g == 1 && g == 0) { + buffer[outLen++] = UCNV_SI; + pFromU2022State->g = 0; + } + + /* write the designation sequence if necessary */ + if(cs != pFromU2022State->cs[g]) { + int32_t escLen = escSeqCharsLen[cs]; + uprv_memcpy(buffer + outLen, escSeqChars[cs], escLen); + outLen += escLen; + pFromU2022State->cs[g] = cs; + + /* invalidate the choices[] */ + choiceCount = 0; + } + + /* write the shift sequence if necessary */ + if(g != pFromU2022State->g) { + switch(g) { + /* case 0 handled before writing escapes */ + case 1: + buffer[outLen++] = UCNV_SO; + pFromU2022State->g = 1; + break; + default: /* case 2 */ + buffer[outLen++] = 0x1b; + buffer[outLen++] = 0x4e; + break; + /* no case 3: no SS3 in ISO-2022-JP-x */ + } + } + + /* write the output bytes */ + if(len == 1) { + buffer[outLen++] = (char)targetValue; + } else /* len == 2 */ { + buffer[outLen++] = (char)(targetValue >> 8); + buffer[outLen++] = (char)targetValue; + } + } else { + /* + * if we cannot find the character after checking all codepages + * then this is an error + */ + *err = U_INVALID_CHAR_FOUND; + cnv->fromUChar32=sourceChar; + break; + } + + if(sourceChar == CR || sourceChar == LF) { + /* reset the G2 state at the end of a line (conversion got us into ASCII or JISX201 already) */ + pFromU2022State->cs[2] = 0; + choiceCount = 0; + } + + /* output outLen>0 bytes in buffer[] */ + if(outLen == 1) { + *target++ = buffer[0]; + if(offsets) { + *offsets++ = (int32_t)(source - args->source - 1); /* -1: known to be ASCII */ + } + } else if(outLen == 2 && (target + 2) <= targetLimit) { + *target++ = buffer[0]; + *target++ = buffer[1]; + if(offsets) { + int32_t sourceIndex = (int32_t)(source - args->source - U16_LENGTH(sourceChar)); + *offsets++ = sourceIndex; + *offsets++ = sourceIndex; + } + } else { + fromUWriteUInt8( + cnv, + buffer, outLen, + &target, (const char *)targetLimit, + &offsets, (int32_t)(source - args->source - U16_LENGTH(sourceChar)), + err); + if(U_FAILURE(*err)) { + break; + } + } + } /* end if(myTargetIndex<myTargetLength) */ + else{ + *err =U_BUFFER_OVERFLOW_ERROR; + break; + } + + }/* end while(mySourceIndex<mySourceLength) */ + + /* + * the end of the input stream and detection of truncated input + * are handled by the framework, but for ISO-2022-JP conversion + * we need to be in ASCII mode at the very end + * + * conditions: + * successful + * in SO mode or not in ASCII mode + * end of input and no truncated input + */ + if( U_SUCCESS(*err) && + (pFromU2022State->g!=0 || pFromU2022State->cs[0]!=ASCII) && + args->flush && source>=sourceLimit && cnv->fromUChar32==0 + ) { + int32_t sourceIndex; + + outLen = 0; + + if(pFromU2022State->g != 0) { + buffer[outLen++] = UCNV_SI; + pFromU2022State->g = 0; + } + + if(pFromU2022State->cs[0] != ASCII) { + int32_t escLen = escSeqCharsLen[ASCII]; + uprv_memcpy(buffer + outLen, escSeqChars[ASCII], escLen); + outLen += escLen; + pFromU2022State->cs[0] = (int8_t)ASCII; + } + + /* get the source index of the last input character */ + /* + * TODO this would be simpler and more reliable if we used a pair + * of sourceIndex/prevSourceIndex like in ucnvmbcs.c + * so that we could simply use the prevSourceIndex here; + * this code gives an incorrect result for the rare case of an unmatched + * trail surrogate that is alone in the last buffer of the text stream + */ + sourceIndex=(int32_t)(source-args->source); + if(sourceIndex>0) { + --sourceIndex; + if( U16_IS_TRAIL(args->source[sourceIndex]) && + (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1])) + ) { + --sourceIndex; + } + } else { + sourceIndex=-1; + } + + fromUWriteUInt8( + cnv, + buffer, outLen, + &target, (const char *)targetLimit, + &offsets, sourceIndex, + err); + } + + /*save the state and return */ + args->source = source; + args->target = (char*)target; +} + +/*************** to unicode *******************/ + +static void U_CALLCONV +UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterToUnicodeArgs *args, + UErrorCode* err){ + char tempBuf[2]; + const char *mySource = (char *) args->source; + UChar *myTarget = args->target; + const char *mySourceLimit = args->sourceLimit; + uint32_t targetUniChar = 0x0000; + uint32_t mySourceChar = 0x0000; + uint32_t tmpSourceChar = 0x0000; + UConverterDataISO2022* myData; + ISO2022State *pToU2022State; + StateEnum cs; + + myData=(UConverterDataISO2022*)(args->converter->extraInfo); + pToU2022State = &myData->toU2022State; + + if(myData->key != 0) { + /* continue with a partial escape sequence */ + goto escape; + } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) { + /* continue with a partial double-byte character */ + mySourceChar = args->converter->toUBytes[0]; + args->converter->toULength = 0; + cs = (StateEnum)pToU2022State->cs[pToU2022State->g]; + targetUniChar = missingCharMarker; + goto getTrailByte; + } + + while(mySource < mySourceLimit){ + + targetUniChar =missingCharMarker; + + if(myTarget < args->targetLimit){ + + mySourceChar= (unsigned char) *mySource++; + + switch(mySourceChar) { + case UCNV_SI: + if(myData->version==3) { + pToU2022State->g=0; + continue; + } else { + /* only JIS7 uses SI/SO, not ISO-2022-JP-x */ + myData->isEmptySegment = FALSE; /* reset this, we have a different error */ + break; + } + + case UCNV_SO: + if(myData->version==3) { + /* JIS7: switch to G1 half-width Katakana */ + pToU2022State->cs[1] = (int8_t)HWKANA_7BIT; + pToU2022State->g=1; + continue; + } else { + /* only JIS7 uses SI/SO, not ISO-2022-JP-x */ + myData->isEmptySegment = FALSE; /* reset this, we have a different error */ + break; + } + + case ESC_2022: + mySource--; +escape: + { + const char * mySourceBefore = mySource; + int8_t toULengthBefore = args->converter->toULength; + + changeState_2022(args->converter,&(mySource), + mySourceLimit, ISO_2022_JP,err); + + /* If in ISO-2022-JP only and we successully completed an escape sequence, but previous segment was empty, create an error */ + if(myData->version==0 && myData->key==0 && U_SUCCESS(*err) && myData->isEmptySegment) { + *err = U_ILLEGAL_ESCAPE_SEQUENCE; + args->converter->toUCallbackReason = UCNV_IRREGULAR; + args->converter->toULength = (int8_t)(toULengthBefore + (mySource - mySourceBefore)); + } + } + + /* invalid or illegal escape sequence */ + if(U_FAILURE(*err)){ + args->target = myTarget; + args->source = mySource; + myData->isEmptySegment = FALSE; /* Reset to avoid future spurious errors */ + return; + } + /* If we successfully completed an escape sequence, we begin a new segment, empty so far */ + if(myData->key==0) { + myData->isEmptySegment = TRUE; + } + continue; + + /* ISO-2022-JP does not use single-byte (C1) SS2 and SS3 */ + + case CR: + case LF: + /* automatically reset to single-byte mode */ + if((StateEnum)pToU2022State->cs[0] != ASCII && (StateEnum)pToU2022State->cs[0] != JISX201) { + pToU2022State->cs[0] = (int8_t)ASCII; + } + pToU2022State->cs[2] = 0; + pToU2022State->g = 0; + U_FALLTHROUGH; + default: + /* convert one or two bytes */ + myData->isEmptySegment = FALSE; + cs = (StateEnum)pToU2022State->cs[pToU2022State->g]; + if( (uint8_t)(mySourceChar - 0xa1) <= (0xdf - 0xa1) && myData->version==4 && + !IS_JP_DBCS(cs) + ) { + /* 8-bit halfwidth katakana in any single-byte mode for JIS8 */ + targetUniChar = mySourceChar + (HWKANA_START - 0xa1); + + /* return from a single-shift state to the previous one */ + if(pToU2022State->g >= 2) { + pToU2022State->g=pToU2022State->prevG; + } + } else switch(cs) { + case ASCII: + if(mySourceChar <= 0x7f) { + targetUniChar = mySourceChar; + } + break; + case ISO8859_1: + if(mySourceChar <= 0x7f) { + targetUniChar = mySourceChar + 0x80; + } + /* return from a single-shift state to the previous one */ + pToU2022State->g=pToU2022State->prevG; + break; + case ISO8859_7: + if(mySourceChar <= 0x7f) { + /* convert mySourceChar+0x80 to use a normal 8-bit table */ + targetUniChar = + _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP( + myData->myConverterArray[cs], + mySourceChar + 0x80); + } + /* return from a single-shift state to the previous one */ + pToU2022State->g=pToU2022State->prevG; + break; + case JISX201: + if(mySourceChar <= 0x7f) { + targetUniChar = jisx201ToU(mySourceChar); + } + break; + case HWKANA_7BIT: + if((uint8_t)(mySourceChar - 0x21) <= (0x5f - 0x21)) { + /* 7-bit halfwidth Katakana */ + targetUniChar = mySourceChar + (HWKANA_START - 0x21); + } + break; + default: + /* G0 DBCS */ + if(mySource < mySourceLimit) { + int leadIsOk, trailIsOk; + uint8_t trailByte; +getTrailByte: + trailByte = (uint8_t)*mySource; + /* + * Ticket 5691: consistent illegal sequences: + * - We include at least the first byte in the illegal sequence. + * - If any of the non-initial bytes could be the start of a character, + * we stop the illegal sequence before the first one of those. + * + * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is + * an ESC/SO/SI, we report only the first byte as the illegal sequence. + * Otherwise we convert or report the pair of bytes. + */ + leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21); + trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21); + if (leadIsOk && trailIsOk) { + ++mySource; + tmpSourceChar = (mySourceChar << 8) | trailByte; + if(cs == JISX208) { + _2022ToSJIS((uint8_t)mySourceChar, trailByte, tempBuf); + mySourceChar = tmpSourceChar; + } else { + /* Copy before we modify tmpSourceChar so toUnicodeCallback() sees the correct bytes. */ + mySourceChar = tmpSourceChar; + if (cs == KSC5601) { + tmpSourceChar += 0x8080; /* = _2022ToGR94DBCS(tmpSourceChar) */ + } + tempBuf[0] = (char)(tmpSourceChar >> 8); + tempBuf[1] = (char)(tmpSourceChar); + } + targetUniChar = ucnv_MBCSSimpleGetNextUChar(myData->myConverterArray[cs], tempBuf, 2, FALSE); + } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) { + /* report a pair of illegal bytes if the second byte is not a DBCS starter */ + ++mySource; + /* add another bit so that the code below writes 2 bytes in case of error */ + mySourceChar = 0x10000 | (mySourceChar << 8) | trailByte; + } + } else { + args->converter->toUBytes[0] = (uint8_t)mySourceChar; + args->converter->toULength = 1; + goto endloop; + } + } /* End of inner switch */ + break; + } /* End of outer switch */ + if(targetUniChar < (missingCharMarker-1/*0xfffe*/)){ + if(args->offsets){ + args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); + } + *(myTarget++)=(UChar)targetUniChar; + } + else if(targetUniChar > missingCharMarker){ + /* disassemble the surrogate pair and write to output*/ + targetUniChar-=0x0010000; + *myTarget = (UChar)(0xd800+(UChar)(targetUniChar>>10)); + if(args->offsets){ + args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); + } + ++myTarget; + if(myTarget< args->targetLimit){ + *myTarget = (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff)); + if(args->offsets){ + args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); + } + ++myTarget; + }else{ + args->converter->UCharErrorBuffer[args->converter->UCharErrorBufferLength++]= + (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff)); + } + + } + else{ + /* Call the callback function*/ + toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err); + break; + } + } + else{ /* goes with "if(myTarget < args->targetLimit)" way up near top of function */ + *err =U_BUFFER_OVERFLOW_ERROR; + break; + } + } +endloop: + args->target = myTarget; + args->source = mySource; +} + + +#if !UCONFIG_ONLY_HTML_CONVERSION +/*************************************************************** +* Rules for ISO-2022-KR encoding +* i) The KSC5601 designator sequence should appear only once in a file, +* at the begining of a line before any KSC5601 characters. This usually +* means that it appears by itself on the first line of the file +* ii) There are only 2 shifting sequences SO to shift into double byte mode +* and SI to shift into single byte mode +*/ +static void U_CALLCONV +UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterFromUnicodeArgs* args, UErrorCode* err){ + + UConverter* saveConv = args->converter; + UConverterDataISO2022 *myConverterData=(UConverterDataISO2022*)saveConv->extraInfo; + args->converter=myConverterData->currentConverter; + + myConverterData->currentConverter->fromUChar32 = saveConv->fromUChar32; + ucnv_MBCSFromUnicodeWithOffsets(args,err); + saveConv->fromUChar32 = myConverterData->currentConverter->fromUChar32; + + if(*err == U_BUFFER_OVERFLOW_ERROR) { + if(myConverterData->currentConverter->charErrorBufferLength > 0) { + uprv_memcpy( + saveConv->charErrorBuffer, + myConverterData->currentConverter->charErrorBuffer, + myConverterData->currentConverter->charErrorBufferLength); + } + saveConv->charErrorBufferLength = myConverterData->currentConverter->charErrorBufferLength; + myConverterData->currentConverter->charErrorBufferLength = 0; + } + args->converter=saveConv; +} + +static void U_CALLCONV +UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){ + + const UChar *source = args->source; + const UChar *sourceLimit = args->sourceLimit; + unsigned char *target = (unsigned char *) args->target; + unsigned char *targetLimit = (unsigned char *) args->targetLimit; + int32_t* offsets = args->offsets; + uint32_t targetByteUnit = 0x0000; + UChar32 sourceChar = 0x0000; + UBool isTargetByteDBCS; + UBool oldIsTargetByteDBCS; + UConverterDataISO2022 *converterData; + UConverterSharedData* sharedData; + UBool useFallback; + int32_t length =0; + + converterData=(UConverterDataISO2022*)args->converter->extraInfo; + /* if the version is 1 then the user is requesting + * conversion with ibm-25546 pass the arguments to + * MBCS converter and return + */ + if(converterData->version==1){ + UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args,err); + return; + } + + /* initialize data */ + sharedData = converterData->currentConverter->sharedData; + useFallback = args->converter->useFallback; + isTargetByteDBCS=(UBool)args->converter->fromUnicodeStatus; + oldIsTargetByteDBCS = isTargetByteDBCS; + + isTargetByteDBCS = (UBool) args->converter->fromUnicodeStatus; + if((sourceChar = args->converter->fromUChar32)!=0 && target <targetLimit) { + goto getTrail; + } + while(source < sourceLimit){ + + targetByteUnit = missingCharMarker; + + if(target < (unsigned char*) args->targetLimit){ + sourceChar = *source++; + + /* do not convert SO/SI/ESC */ + if(IS_2022_CONTROL(sourceChar)) { + /* callback(illegal) */ + *err=U_ILLEGAL_CHAR_FOUND; + args->converter->fromUChar32=sourceChar; + break; + } + + length = MBCS_FROM_UCHAR32_ISO2022(sharedData,sourceChar,&targetByteUnit,useFallback,MBCS_OUTPUT_2); + if(length < 0) { + length = -length; /* fallback */ + } + /* only DBCS or SBCS characters are expected*/ + /* DB characters with high bit set to 1 are expected */ + if( length > 2 || length==0 || + (length == 1 && targetByteUnit > 0x7f) || + (length == 2 && + ((uint16_t)(targetByteUnit - 0xa1a1) > (0xfefe - 0xa1a1) || + (uint8_t)(targetByteUnit - 0xa1) > (0xfe - 0xa1))) + ) { + targetByteUnit=missingCharMarker; + } + if (targetByteUnit != missingCharMarker){ + + oldIsTargetByteDBCS = isTargetByteDBCS; + isTargetByteDBCS = (UBool)(targetByteUnit>0x00FF); + /* append the shift sequence */ + if (oldIsTargetByteDBCS != isTargetByteDBCS ){ + + if (isTargetByteDBCS) + *target++ = UCNV_SO; + else + *target++ = UCNV_SI; + if(offsets) + *(offsets++) = (int32_t)(source - args->source-1); + } + /* write the targetUniChar to target */ + if(targetByteUnit <= 0x00FF){ + if( target < targetLimit){ + *(target++) = (unsigned char) targetByteUnit; + if(offsets){ + *(offsets++) = (int32_t)(source - args->source-1); + } + + }else{ + args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit); + *err = U_BUFFER_OVERFLOW_ERROR; + } + }else{ + if(target < targetLimit){ + *(target++) =(unsigned char) ((targetByteUnit>>8) -0x80); + if(offsets){ + *(offsets++) = (int32_t)(source - args->source-1); + } + if(target < targetLimit){ + *(target++) =(unsigned char) (targetByteUnit -0x80); + if(offsets){ + *(offsets++) = (int32_t)(source - args->source-1); + } + }else{ + args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit -0x80); + *err = U_BUFFER_OVERFLOW_ERROR; + } + }else{ + args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) ((targetByteUnit>>8) -0x80); + args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit-0x80); + *err = U_BUFFER_OVERFLOW_ERROR; + } + } + + } + else{ + /* oops.. the code point is unassingned + * set the error and reason + */ + + /*check if the char is a First surrogate*/ + if(U16_IS_SURROGATE(sourceChar)) { + if(U16_IS_SURROGATE_LEAD(sourceChar)) { +getTrail: + /*look ahead to find the trail surrogate*/ + if(source < sourceLimit) { + /* test the following code unit */ + UChar trail=(UChar) *source; + if(U16_IS_TRAIL(trail)) { + source++; + sourceChar=U16_GET_SUPPLEMENTARY(sourceChar, trail); + *err = U_INVALID_CHAR_FOUND; + /* convert this surrogate code point */ + /* exit this condition tree */ + } else { + /* this is an unmatched lead code unit (1st surrogate) */ + /* callback(illegal) */ + *err=U_ILLEGAL_CHAR_FOUND; + } + } else { + /* no more input */ + *err = U_ZERO_ERROR; + } + } else { + /* this is an unmatched trail code unit (2nd surrogate) */ + /* callback(illegal) */ + *err=U_ILLEGAL_CHAR_FOUND; + } + } else { + /* callback(unassigned) for a BMP code point */ + *err = U_INVALID_CHAR_FOUND; + } + + args->converter->fromUChar32=sourceChar; + break; + } + } /* end if(myTargetIndex<myTargetLength) */ + else{ + *err =U_BUFFER_OVERFLOW_ERROR; + break; + } + + }/* end while(mySourceIndex<mySourceLength) */ + + /* + * the end of the input stream and detection of truncated input + * are handled by the framework, but for ISO-2022-KR conversion + * we need to be in ASCII mode at the very end + * + * conditions: + * successful + * not in ASCII mode + * end of input and no truncated input + */ + if( U_SUCCESS(*err) && + isTargetByteDBCS && + args->flush && source>=sourceLimit && args->converter->fromUChar32==0 + ) { + int32_t sourceIndex; + + /* we are switching to ASCII */ + isTargetByteDBCS=FALSE; + + /* get the source index of the last input character */ + /* + * TODO this would be simpler and more reliable if we used a pair + * of sourceIndex/prevSourceIndex like in ucnvmbcs.c + * so that we could simply use the prevSourceIndex here; + * this code gives an incorrect result for the rare case of an unmatched + * trail surrogate that is alone in the last buffer of the text stream + */ + sourceIndex=(int32_t)(source-args->source); + if(sourceIndex>0) { + --sourceIndex; + if( U16_IS_TRAIL(args->source[sourceIndex]) && + (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1])) + ) { + --sourceIndex; + } + } else { + sourceIndex=-1; + } + + fromUWriteUInt8( + args->converter, + SHIFT_IN_STR, 1, + &target, (const char *)targetLimit, + &offsets, sourceIndex, + err); + } + + /*save the state and return */ + args->source = source; + args->target = (char*)target; + args->converter->fromUnicodeStatus = (uint32_t)isTargetByteDBCS; +} + +/************************ To Unicode ***************************************/ + +static void U_CALLCONV +UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterToUnicodeArgs *args, + UErrorCode* err){ + char const* sourceStart; + UConverterDataISO2022* myData=(UConverterDataISO2022*)(args->converter->extraInfo); + + UConverterToUnicodeArgs subArgs; + int32_t minArgsSize; + + /* set up the subconverter arguments */ + if(args->size<sizeof(UConverterToUnicodeArgs)) { + minArgsSize = args->size; + } else { + minArgsSize = (int32_t)sizeof(UConverterToUnicodeArgs); + } + + uprv_memcpy(&subArgs, args, minArgsSize); + subArgs.size = (uint16_t)minArgsSize; + subArgs.converter = myData->currentConverter; + + /* remember the original start of the input for offsets */ + sourceStart = args->source; + + if(myData->key != 0) { + /* continue with a partial escape sequence */ + goto escape; + } + + while(U_SUCCESS(*err) && args->source < args->sourceLimit) { + /*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/ + subArgs.source = args->source; + subArgs.sourceLimit = getEndOfBuffer_2022(&(args->source), args->sourceLimit, args->flush); + if(subArgs.source != subArgs.sourceLimit) { + /* + * get the current partial byte sequence + * + * it needs to be moved between the public and the subconverter + * so that the conversion framework, which only sees the public + * converter, can handle truncated and illegal input etc. + */ + if(args->converter->toULength > 0) { + uprv_memcpy(subArgs.converter->toUBytes, args->converter->toUBytes, args->converter->toULength); + } + subArgs.converter->toULength = args->converter->toULength; + + /* + * Convert up to the end of the input, or to before the next escape character. + * Does not handle conversion extensions because the preToU[] state etc. + * is not copied. + */ + ucnv_MBCSToUnicodeWithOffsets(&subArgs, err); + + if(args->offsets != NULL && sourceStart != args->source) { + /* update offsets to base them on the actual start of the input */ + int32_t *offsets = args->offsets; + UChar *target = args->target; + int32_t delta = (int32_t)(args->source - sourceStart); + while(target < subArgs.target) { + if(*offsets >= 0) { + *offsets += delta; + } + ++offsets; + ++target; + } + } + args->source = subArgs.source; + args->target = subArgs.target; + args->offsets = subArgs.offsets; + + /* copy input/error/overflow buffers */ + if(subArgs.converter->toULength > 0) { + uprv_memcpy(args->converter->toUBytes, subArgs.converter->toUBytes, subArgs.converter->toULength); + } + args->converter->toULength = subArgs.converter->toULength; + + if(*err == U_BUFFER_OVERFLOW_ERROR) { + if(subArgs.converter->UCharErrorBufferLength > 0) { + uprv_memcpy(args->converter->UCharErrorBuffer, subArgs.converter->UCharErrorBuffer, + subArgs.converter->UCharErrorBufferLength); + } + args->converter->UCharErrorBufferLength=subArgs.converter->UCharErrorBufferLength; + subArgs.converter->UCharErrorBufferLength = 0; + } + } + + if (U_FAILURE(*err) || (args->source == args->sourceLimit)) { + return; + } + +escape: + changeState_2022(args->converter, + &(args->source), + args->sourceLimit, + ISO_2022_KR, + err); + } +} + +static void U_CALLCONV +UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterToUnicodeArgs *args, + UErrorCode* err){ + char tempBuf[2]; + const char *mySource = ( char *) args->source; + UChar *myTarget = args->target; + const char *mySourceLimit = args->sourceLimit; + UChar32 targetUniChar = 0x0000; + UChar mySourceChar = 0x0000; + UConverterDataISO2022* myData; + UConverterSharedData* sharedData ; + UBool useFallback; + + myData=(UConverterDataISO2022*)(args->converter->extraInfo); + if(myData->version==1){ + UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args,err); + return; + } + + /* initialize state */ + sharedData = myData->currentConverter->sharedData; + useFallback = args->converter->useFallback; + + if(myData->key != 0) { + /* continue with a partial escape sequence */ + goto escape; + } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) { + /* continue with a partial double-byte character */ + mySourceChar = args->converter->toUBytes[0]; + args->converter->toULength = 0; + goto getTrailByte; + } + + while(mySource< mySourceLimit){ + + if(myTarget < args->targetLimit){ + + mySourceChar= (unsigned char) *mySource++; + + if(mySourceChar==UCNV_SI){ + myData->toU2022State.g = 0; + if (myData->isEmptySegment) { + myData->isEmptySegment = FALSE; /* we are handling it, reset to avoid future spurious errors */ + *err = U_ILLEGAL_ESCAPE_SEQUENCE; + args->converter->toUCallbackReason = UCNV_IRREGULAR; + args->converter->toUBytes[0] = (uint8_t)mySourceChar; + args->converter->toULength = 1; + args->target = myTarget; + args->source = mySource; + return; + } + /*consume the source */ + continue; + }else if(mySourceChar==UCNV_SO){ + myData->toU2022State.g = 1; + myData->isEmptySegment = TRUE; /* Begin a new segment, empty so far */ + /*consume the source */ + continue; + }else if(mySourceChar==ESC_2022){ + mySource--; +escape: + myData->isEmptySegment = FALSE; /* Any invalid ESC sequences will be detected separately, so just reset this */ + changeState_2022(args->converter,&(mySource), + mySourceLimit, ISO_2022_KR, err); + if(U_FAILURE(*err)){ + args->target = myTarget; + args->source = mySource; + return; + } + continue; + } + + myData->isEmptySegment = FALSE; /* Any invalid char errors will be detected separately, so just reset this */ + if(myData->toU2022State.g == 1) { + if(mySource < mySourceLimit) { + int leadIsOk, trailIsOk; + uint8_t trailByte; +getTrailByte: + targetUniChar = missingCharMarker; + trailByte = (uint8_t)*mySource; + /* + * Ticket 5691: consistent illegal sequences: + * - We include at least the first byte in the illegal sequence. + * - If any of the non-initial bytes could be the start of a character, + * we stop the illegal sequence before the first one of those. + * + * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is + * an ESC/SO/SI, we report only the first byte as the illegal sequence. + * Otherwise we convert or report the pair of bytes. + */ + leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21); + trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21); + if (leadIsOk && trailIsOk) { + ++mySource; + tempBuf[0] = (char)(mySourceChar + 0x80); + tempBuf[1] = (char)(trailByte + 0x80); + targetUniChar = ucnv_MBCSSimpleGetNextUChar(sharedData, tempBuf, 2, useFallback); + mySourceChar = (mySourceChar << 8) | trailByte; + } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) { + /* report a pair of illegal bytes if the second byte is not a DBCS starter */ + ++mySource; + /* add another bit so that the code below writes 2 bytes in case of error */ + mySourceChar = static_cast<UChar>(0x10000 | (mySourceChar << 8) | trailByte); + } + } else { + args->converter->toUBytes[0] = (uint8_t)mySourceChar; + args->converter->toULength = 1; + break; + } + } + else if(mySourceChar <= 0x7f) { + targetUniChar = ucnv_MBCSSimpleGetNextUChar(sharedData, mySource - 1, 1, useFallback); + } else { + targetUniChar = 0xffff; + } + if(targetUniChar < 0xfffe){ + if(args->offsets) { + args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); + } + *(myTarget++)=(UChar)targetUniChar; + } + else { + /* Call the callback function*/ + toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err); + break; + } + } + else{ + *err =U_BUFFER_OVERFLOW_ERROR; + break; + } + } + args->target = myTarget; + args->source = mySource; +} + +/*************************** END ISO2022-KR *********************************/ + +/*************************** ISO-2022-CN ********************************* +* +* Rules for ISO-2022-CN Encoding: +* i) The designator sequence must appear once on a line before any instance +* of character set it designates. +* ii) If two lines contain characters from the same character set, both lines +* must include the designator sequence. +* iii) Once the designator sequence is known, a shifting sequence has to be found +* to invoke the shifting +* iv) All lines start in ASCII and end in ASCII. +* v) Four shifting sequences are employed for this purpose: +* +* Sequcence ASCII Eq Charsets +* ---------- ------- --------- +* SI <SI> US-ASCII +* SO <SO> CNS-11643-1992 Plane 1, GB2312, ISO-IR-165 +* SS2 <ESC>N CNS-11643-1992 Plane 2 +* SS3 <ESC>O CNS-11643-1992 Planes 3-7 +* +* vi) +* SOdesignator : ESC "$" ")" finalchar_for_SO +* SS2designator : ESC "$" "*" finalchar_for_SS2 +* SS3designator : ESC "$" "+" finalchar_for_SS3 +* +* ESC $ ) A Indicates the bytes following SO are Chinese +* characters as defined in GB 2312-80, until +* another SOdesignation appears +* +* +* ESC $ ) E Indicates the bytes following SO are as defined +* in ISO-IR-165 (for details, see section 2.1), +* until another SOdesignation appears +* +* ESC $ ) G Indicates the bytes following SO are as defined +* in CNS 11643-plane-1, until another +* SOdesignation appears +* +* ESC $ * H Indicates the two bytes immediately following +* SS2 is a Chinese character as defined in CNS +* 11643-plane-2, until another SS2designation +* appears +* (Meaning <ESC>N must preceed every 2 byte +* sequence.) +* +* ESC $ + I Indicates the immediate two bytes following SS3 +* is a Chinese character as defined in CNS +* 11643-plane-3, until another SS3designation +* appears +* (Meaning <ESC>O must preceed every 2 byte +* sequence.) +* +* ESC $ + J Indicates the immediate two bytes following SS3 +* is a Chinese character as defined in CNS +* 11643-plane-4, until another SS3designation +* appears +* (In English: <ESC>O must preceed every 2 byte +* sequence.) +* +* ESC $ + K Indicates the immediate two bytes following SS3 +* is a Chinese character as defined in CNS +* 11643-plane-5, until another SS3designation +* appears +* +* ESC $ + L Indicates the immediate two bytes following SS3 +* is a Chinese character as defined in CNS +* 11643-plane-6, until another SS3designation +* appears +* +* ESC $ + M Indicates the immediate two bytes following SS3 +* is a Chinese character as defined in CNS +* 11643-plane-7, until another SS3designation +* appears +* +* As in ISO-2022-CN, each line starts in ASCII, and ends in ASCII, and +* has its own designation information before any Chinese characters +* appear +* +*/ + +/* The following are defined this way to make the strings truly readonly */ +static const char GB_2312_80_STR[] = "\x1B\x24\x29\x41"; +static const char ISO_IR_165_STR[] = "\x1B\x24\x29\x45"; +static const char CNS_11643_1992_Plane_1_STR[] = "\x1B\x24\x29\x47"; +static const char CNS_11643_1992_Plane_2_STR[] = "\x1B\x24\x2A\x48"; +static const char CNS_11643_1992_Plane_3_STR[] = "\x1B\x24\x2B\x49"; +static const char CNS_11643_1992_Plane_4_STR[] = "\x1B\x24\x2B\x4A"; +static const char CNS_11643_1992_Plane_5_STR[] = "\x1B\x24\x2B\x4B"; +static const char CNS_11643_1992_Plane_6_STR[] = "\x1B\x24\x2B\x4C"; +static const char CNS_11643_1992_Plane_7_STR[] = "\x1B\x24\x2B\x4D"; + +/********************** ISO2022-CN Data **************************/ +static const char* const escSeqCharsCN[10] ={ + SHIFT_IN_STR, /* 0 ASCII */ + GB_2312_80_STR, /* 1 GB2312_1 */ + ISO_IR_165_STR, /* 2 ISO_IR_165 */ + CNS_11643_1992_Plane_1_STR, + CNS_11643_1992_Plane_2_STR, + CNS_11643_1992_Plane_3_STR, + CNS_11643_1992_Plane_4_STR, + CNS_11643_1992_Plane_5_STR, + CNS_11643_1992_Plane_6_STR, + CNS_11643_1992_Plane_7_STR +}; + +static void U_CALLCONV +UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){ + UConverter *cnv = args->converter; + UConverterDataISO2022 *converterData; + ISO2022State *pFromU2022State; + uint8_t *target = (uint8_t *) args->target; + const uint8_t *targetLimit = (const uint8_t *) args->targetLimit; + const UChar* source = args->source; + const UChar* sourceLimit = args->sourceLimit; + int32_t* offsets = args->offsets; + UChar32 sourceChar; + char buffer[8]; + int32_t len; + int8_t choices[3]; + int32_t choiceCount; + uint32_t targetValue = 0; + UBool useFallback; + + /* set up the state */ + converterData = (UConverterDataISO2022*)cnv->extraInfo; + pFromU2022State = &converterData->fromU2022State; + + choiceCount = 0; + + /* check if the last codepoint of previous buffer was a lead surrogate*/ + if((sourceChar = cnv->fromUChar32)!=0 && target< targetLimit) { + goto getTrail; + } + + while( source < sourceLimit){ + if(target < targetLimit){ + + sourceChar = *(source++); + /*check if the char is a First surrogate*/ + if(U16_IS_SURROGATE(sourceChar)) { + if(U16_IS_SURROGATE_LEAD(sourceChar)) { +getTrail: + /*look ahead to find the trail surrogate*/ + if(source < sourceLimit) { + /* test the following code unit */ + UChar trail=(UChar) *source; + if(U16_IS_TRAIL(trail)) { + source++; + sourceChar=U16_GET_SUPPLEMENTARY(sourceChar, trail); + cnv->fromUChar32=0x00; + /* convert this supplementary code point */ + /* exit this condition tree */ + } else { + /* this is an unmatched lead code unit (1st surrogate) */ + /* callback(illegal) */ + *err=U_ILLEGAL_CHAR_FOUND; + cnv->fromUChar32=sourceChar; + break; + } + } else { + /* no more input */ + cnv->fromUChar32=sourceChar; + break; + } + } else { + /* this is an unmatched trail code unit (2nd surrogate) */ + /* callback(illegal) */ + *err=U_ILLEGAL_CHAR_FOUND; + cnv->fromUChar32=sourceChar; + break; + } + } + + /* do the conversion */ + if(sourceChar <= 0x007f ){ + /* do not convert SO/SI/ESC */ + if(IS_2022_CONTROL(sourceChar)) { + /* callback(illegal) */ + *err=U_ILLEGAL_CHAR_FOUND; + cnv->fromUChar32=sourceChar; + break; + } + + /* US-ASCII */ + if(pFromU2022State->g == 0) { + buffer[0] = (char)sourceChar; + len = 1; + } else { + buffer[0] = UCNV_SI; + buffer[1] = (char)sourceChar; + len = 2; + pFromU2022State->g = 0; + choiceCount = 0; + } + if(sourceChar == CR || sourceChar == LF) { + /* reset the state at the end of a line */ + uprv_memset(pFromU2022State, 0, sizeof(ISO2022State)); + choiceCount = 0; + } + } + else{ + /* convert U+0080..U+10ffff */ + int32_t i; + int8_t cs, g; + + if(choiceCount == 0) { + /* try the current SO/G1 converter first */ + choices[0] = pFromU2022State->cs[1]; + + /* default to GB2312_1 if none is designated yet */ + if(choices[0] == 0) { + choices[0] = GB2312_1; + } + + if(converterData->version == 0) { + /* ISO-2022-CN */ + + /* try the other SO/G1 converter; a CNS_11643_1 lookup may result in any plane */ + if(choices[0] == GB2312_1) { + choices[1] = (int8_t)CNS_11643_1; + } else { + choices[1] = (int8_t)GB2312_1; + } + + choiceCount = 2; + } else if (converterData->version == 1) { + /* ISO-2022-CN-EXT */ + + /* try one of the other converters */ + switch(choices[0]) { + case GB2312_1: + choices[1] = (int8_t)CNS_11643_1; + choices[2] = (int8_t)ISO_IR_165; + break; + case ISO_IR_165: + choices[1] = (int8_t)GB2312_1; + choices[2] = (int8_t)CNS_11643_1; + break; + default: /* CNS_11643_x */ + choices[1] = (int8_t)GB2312_1; + choices[2] = (int8_t)ISO_IR_165; + break; + } + + choiceCount = 3; + } else { + choices[0] = (int8_t)CNS_11643_1; + choices[1] = (int8_t)GB2312_1; + } + } + + cs = g = 0; + /* + * len==0: no mapping found yet + * len<0: found a fallback result: continue looking for a roundtrip but no further fallbacks + * len>0: found a roundtrip result, done + */ + len = 0; + /* + * We will turn off useFallback after finding a fallback, + * but we still get fallbacks from PUA code points as usual. + * Therefore, we will also need to check that we don't overwrite + * an early fallback with a later one. + */ + useFallback = cnv->useFallback; + + for(i = 0; i < choiceCount && len <= 0; ++i) { + int8_t cs0 = choices[i]; + if(cs0 > 0) { + uint32_t value; + int32_t len2; + if(cs0 >= CNS_11643_0) { + len2 = MBCS_FROM_UCHAR32_ISO2022( + converterData->myConverterArray[CNS_11643], + sourceChar, + &value, + useFallback, + MBCS_OUTPUT_3); + if(len2 == 3 || (len2 == -3 && len == 0)) { + targetValue = value; + cs = (int8_t)(CNS_11643_0 + (value >> 16) - 0x80); + if(len2 >= 0) { + len = 2; + } else { + len = -2; + useFallback = FALSE; + } + if(cs == CNS_11643_1) { + g = 1; + } else if(cs == CNS_11643_2) { + g = 2; + } else /* plane 3..7 */ if(converterData->version == 1) { + g = 3; + } else { + /* ISO-2022-CN (without -EXT) does not support plane 3..7 */ + len = 0; + } + } + } else { + /* GB2312_1 or ISO-IR-165 */ + U_ASSERT(cs0<UCNV_2022_MAX_CONVERTERS); + len2 = MBCS_FROM_UCHAR32_ISO2022( + converterData->myConverterArray[cs0], + sourceChar, + &value, + useFallback, + MBCS_OUTPUT_2); + if(len2 == 2 || (len2 == -2 && len == 0)) { + targetValue = value; + len = len2; + cs = cs0; + g = 1; + useFallback = FALSE; + } + } + } + } + + if(len != 0) { + len = 0; /* count output bytes; it must have been abs(len) == 2 */ + + /* write the designation sequence if necessary */ + if(cs != pFromU2022State->cs[g]) { + if(cs < CNS_11643) { + uprv_memcpy(buffer, escSeqCharsCN[cs], 4); + } else { + U_ASSERT(cs >= CNS_11643_1); + uprv_memcpy(buffer, escSeqCharsCN[CNS_11643 + (cs - CNS_11643_1)], 4); + } + len = 4; + pFromU2022State->cs[g] = cs; + if(g == 1) { + /* changing the SO/G1 charset invalidates the choices[] */ + choiceCount = 0; + } + } + + /* write the shift sequence if necessary */ + if(g != pFromU2022State->g) { + switch(g) { + case 1: + buffer[len++] = UCNV_SO; + + /* set the new state only if it is the locking shift SO/G1, not for SS2 or SS3 */ + pFromU2022State->g = 1; + break; + case 2: + buffer[len++] = 0x1b; + buffer[len++] = 0x4e; + break; + default: /* case 3 */ + buffer[len++] = 0x1b; + buffer[len++] = 0x4f; + break; + } + } + + /* write the two output bytes */ + buffer[len++] = (char)(targetValue >> 8); + buffer[len++] = (char)targetValue; + } else { + /* if we cannot find the character after checking all codepages + * then this is an error + */ + *err = U_INVALID_CHAR_FOUND; + cnv->fromUChar32=sourceChar; + break; + } + } + + /* output len>0 bytes in buffer[] */ + if(len == 1) { + *target++ = buffer[0]; + if(offsets) { + *offsets++ = (int32_t)(source - args->source - 1); /* -1: known to be ASCII */ + } + } else if(len == 2 && (target + 2) <= targetLimit) { + *target++ = buffer[0]; + *target++ = buffer[1]; + if(offsets) { + int32_t sourceIndex = (int32_t)(source - args->source - U16_LENGTH(sourceChar)); + *offsets++ = sourceIndex; + *offsets++ = sourceIndex; + } + } else { + fromUWriteUInt8( + cnv, + buffer, len, + &target, (const char *)targetLimit, + &offsets, (int32_t)(source - args->source - U16_LENGTH(sourceChar)), + err); + if(U_FAILURE(*err)) { + break; + } + } + } /* end if(myTargetIndex<myTargetLength) */ + else{ + *err =U_BUFFER_OVERFLOW_ERROR; + break; + } + + }/* end while(mySourceIndex<mySourceLength) */ + + /* + * the end of the input stream and detection of truncated input + * are handled by the framework, but for ISO-2022-CN conversion + * we need to be in ASCII mode at the very end + * + * conditions: + * successful + * not in ASCII mode + * end of input and no truncated input + */ + if( U_SUCCESS(*err) && + pFromU2022State->g!=0 && + args->flush && source>=sourceLimit && cnv->fromUChar32==0 + ) { + int32_t sourceIndex; + + /* we are switching to ASCII */ + pFromU2022State->g=0; + + /* get the source index of the last input character */ + /* + * TODO this would be simpler and more reliable if we used a pair + * of sourceIndex/prevSourceIndex like in ucnvmbcs.c + * so that we could simply use the prevSourceIndex here; + * this code gives an incorrect result for the rare case of an unmatched + * trail surrogate that is alone in the last buffer of the text stream + */ + sourceIndex=(int32_t)(source-args->source); + if(sourceIndex>0) { + --sourceIndex; + if( U16_IS_TRAIL(args->source[sourceIndex]) && + (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1])) + ) { + --sourceIndex; + } + } else { + sourceIndex=-1; + } + + fromUWriteUInt8( + cnv, + SHIFT_IN_STR, 1, + &target, (const char *)targetLimit, + &offsets, sourceIndex, + err); + } + + /*save the state and return */ + args->source = source; + args->target = (char*)target; +} + + +static void U_CALLCONV +UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterToUnicodeArgs *args, + UErrorCode* err){ + char tempBuf[3]; + const char *mySource = (char *) args->source; + UChar *myTarget = args->target; + const char *mySourceLimit = args->sourceLimit; + uint32_t targetUniChar = 0x0000; + uint32_t mySourceChar = 0x0000; + UConverterDataISO2022* myData; + ISO2022State *pToU2022State; + + myData=(UConverterDataISO2022*)(args->converter->extraInfo); + pToU2022State = &myData->toU2022State; + + if(myData->key != 0) { + /* continue with a partial escape sequence */ + goto escape; + } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) { + /* continue with a partial double-byte character */ + mySourceChar = args->converter->toUBytes[0]; + args->converter->toULength = 0; + targetUniChar = missingCharMarker; + goto getTrailByte; + } + + while(mySource < mySourceLimit){ + + targetUniChar =missingCharMarker; + + if(myTarget < args->targetLimit){ + + mySourceChar= (unsigned char) *mySource++; + + switch(mySourceChar){ + case UCNV_SI: + pToU2022State->g=0; + if (myData->isEmptySegment) { + myData->isEmptySegment = FALSE; /* we are handling it, reset to avoid future spurious errors */ + *err = U_ILLEGAL_ESCAPE_SEQUENCE; + args->converter->toUCallbackReason = UCNV_IRREGULAR; + args->converter->toUBytes[0] = static_cast<uint8_t>(mySourceChar); + args->converter->toULength = 1; + args->target = myTarget; + args->source = mySource; + return; + } + continue; + + case UCNV_SO: + if(pToU2022State->cs[1] != 0) { + pToU2022State->g=1; + myData->isEmptySegment = TRUE; /* Begin a new segment, empty so far */ + continue; + } else { + /* illegal to have SO before a matching designator */ + myData->isEmptySegment = FALSE; /* Handling a different error, reset this to avoid future spurious errs */ + break; + } + + case ESC_2022: + mySource--; +escape: + { + const char * mySourceBefore = mySource; + int8_t toULengthBefore = args->converter->toULength; + + changeState_2022(args->converter,&(mySource), + mySourceLimit, ISO_2022_CN,err); + + /* After SO there must be at least one character before a designator (designator error handled separately) */ + if(myData->key==0 && U_SUCCESS(*err) && myData->isEmptySegment) { + *err = U_ILLEGAL_ESCAPE_SEQUENCE; + args->converter->toUCallbackReason = UCNV_IRREGULAR; + args->converter->toULength = (int8_t)(toULengthBefore + (mySource - mySourceBefore)); + } + } + + /* invalid or illegal escape sequence */ + if(U_FAILURE(*err)){ + args->target = myTarget; + args->source = mySource; + myData->isEmptySegment = FALSE; /* Reset to avoid future spurious errors */ + return; + } + continue; + + /* ISO-2022-CN does not use single-byte (C1) SS2 and SS3 */ + + case CR: + case LF: + uprv_memset(pToU2022State, 0, sizeof(ISO2022State)); + U_FALLTHROUGH; + default: + /* convert one or two bytes */ + myData->isEmptySegment = FALSE; + if(pToU2022State->g != 0) { + if(mySource < mySourceLimit) { + UConverterSharedData *cnv; + StateEnum tempState; + int32_t tempBufLen; + int leadIsOk, trailIsOk; + uint8_t trailByte; +getTrailByte: + trailByte = (uint8_t)*mySource; + /* + * Ticket 5691: consistent illegal sequences: + * - We include at least the first byte in the illegal sequence. + * - If any of the non-initial bytes could be the start of a character, + * we stop the illegal sequence before the first one of those. + * + * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is + * an ESC/SO/SI, we report only the first byte as the illegal sequence. + * Otherwise we convert or report the pair of bytes. + */ + leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21); + trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21); + if (leadIsOk && trailIsOk) { + ++mySource; + tempState = (StateEnum)pToU2022State->cs[pToU2022State->g]; + if(tempState >= CNS_11643_0) { + cnv = myData->myConverterArray[CNS_11643]; + tempBuf[0] = (char) (0x80+(tempState-CNS_11643_0)); + tempBuf[1] = (char) (mySourceChar); + tempBuf[2] = (char) trailByte; + tempBufLen = 3; + + }else{ + U_ASSERT(tempState<UCNV_2022_MAX_CONVERTERS); + cnv = myData->myConverterArray[tempState]; + tempBuf[0] = (char) (mySourceChar); + tempBuf[1] = (char) trailByte; + tempBufLen = 2; + } + targetUniChar = ucnv_MBCSSimpleGetNextUChar(cnv, tempBuf, tempBufLen, FALSE); + mySourceChar = (mySourceChar << 8) | trailByte; + } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) { + /* report a pair of illegal bytes if the second byte is not a DBCS starter */ + ++mySource; + /* add another bit so that the code below writes 2 bytes in case of error */ + mySourceChar = 0x10000 | (mySourceChar << 8) | trailByte; + } + if(pToU2022State->g>=2) { + /* return from a single-shift state to the previous one */ + pToU2022State->g=pToU2022State->prevG; + } + } else { + args->converter->toUBytes[0] = (uint8_t)mySourceChar; + args->converter->toULength = 1; + goto endloop; + } + } + else{ + if(mySourceChar <= 0x7f) { + targetUniChar = (UChar) mySourceChar; + } + } + break; + } + if(targetUniChar < (missingCharMarker-1/*0xfffe*/)){ + if(args->offsets){ + args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); + } + *(myTarget++)=(UChar)targetUniChar; + } + else if(targetUniChar > missingCharMarker){ + /* disassemble the surrogate pair and write to output*/ + targetUniChar-=0x0010000; + *myTarget = (UChar)(0xd800+(UChar)(targetUniChar>>10)); + if(args->offsets){ + args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); + } + ++myTarget; + if(myTarget< args->targetLimit){ + *myTarget = (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff)); + if(args->offsets){ + args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); + } + ++myTarget; + }else{ + args->converter->UCharErrorBuffer[args->converter->UCharErrorBufferLength++]= + (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff)); + } + + } + else{ + /* Call the callback function*/ + toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err); + break; + } + } + else{ + *err =U_BUFFER_OVERFLOW_ERROR; + break; + } + } +endloop: + args->target = myTarget; + args->source = mySource; +} +#endif /* #if !UCONFIG_ONLY_HTML_CONVERSION */ + +static void U_CALLCONV +_ISO_2022_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err) { + UConverter *cnv = args->converter; + UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) cnv->extraInfo; + ISO2022State *pFromU2022State=&myConverterData->fromU2022State; + char *p, *subchar; + char buffer[8]; + int32_t length; + + subchar=(char *)cnv->subChars; + length=cnv->subCharLen; /* assume length==1 for most variants */ + + p = buffer; + switch(myConverterData->locale[0]){ + case 'j': + { + int8_t cs; + + if(pFromU2022State->g == 1) { + /* JIS7: switch from G1 to G0 */ + pFromU2022State->g = 0; + *p++ = UCNV_SI; + } + + cs = pFromU2022State->cs[0]; + if(cs != ASCII && cs != JISX201) { + /* not in ASCII or JIS X 0201: switch to ASCII */ + pFromU2022State->cs[0] = (int8_t)ASCII; + *p++ = '\x1b'; + *p++ = '\x28'; + *p++ = '\x42'; + } + + *p++ = subchar[0]; + break; + } + case 'c': + if(pFromU2022State->g != 0) { + /* not in ASCII mode: switch to ASCII */ + pFromU2022State->g = 0; + *p++ = UCNV_SI; + } + *p++ = subchar[0]; + break; + case 'k': + if(myConverterData->version == 0) { + if(length == 1) { + if(args->converter->fromUnicodeStatus) { + /* in DBCS mode: switch to SBCS */ + args->converter->fromUnicodeStatus = 0; + *p++ = UCNV_SI; + } + *p++ = subchar[0]; + } else /* length == 2*/ { + if(!args->converter->fromUnicodeStatus) { + /* in SBCS mode: switch to DBCS */ + args->converter->fromUnicodeStatus = 1; + *p++ = UCNV_SO; + } + *p++ = subchar[0]; + *p++ = subchar[1]; + } + break; + } else { + /* save the subconverter's substitution string */ + uint8_t *currentSubChars = myConverterData->currentConverter->subChars; + int8_t currentSubCharLen = myConverterData->currentConverter->subCharLen; + + /* set our substitution string into the subconverter */ + myConverterData->currentConverter->subChars = (uint8_t *)subchar; + myConverterData->currentConverter->subCharLen = (int8_t)length; + + /* let the subconverter write the subchar, set/retrieve fromUChar32 state */ + args->converter = myConverterData->currentConverter; + myConverterData->currentConverter->fromUChar32 = cnv->fromUChar32; + ucnv_cbFromUWriteSub(args, 0, err); + cnv->fromUChar32 = myConverterData->currentConverter->fromUChar32; + args->converter = cnv; + + /* restore the subconverter's substitution string */ + myConverterData->currentConverter->subChars = currentSubChars; + myConverterData->currentConverter->subCharLen = currentSubCharLen; + + if(*err == U_BUFFER_OVERFLOW_ERROR) { + if(myConverterData->currentConverter->charErrorBufferLength > 0) { + uprv_memcpy( + cnv->charErrorBuffer, + myConverterData->currentConverter->charErrorBuffer, + myConverterData->currentConverter->charErrorBufferLength); + } + cnv->charErrorBufferLength = myConverterData->currentConverter->charErrorBufferLength; + myConverterData->currentConverter->charErrorBufferLength = 0; + } + return; + } + default: + /* not expected */ + break; + } + ucnv_cbFromUWriteBytes(args, + buffer, (int32_t)(p - buffer), + offsetIndex, err); +} + +/* + * Structure for cloning an ISO 2022 converter into a single memory block. + */ +struct cloneStruct +{ + UConverter cnv; + UConverter currentConverter; + UConverterDataISO2022 mydata; +}; + + +U_CDECL_BEGIN + +static UConverter * U_CALLCONV +_ISO_2022_SafeClone( + const UConverter *cnv, + void *stackBuffer, + int32_t *pBufferSize, + UErrorCode *status) +{ + struct cloneStruct * localClone; + UConverterDataISO2022 *cnvData; + int32_t i, size; + + if (U_FAILURE(*status)){ + return nullptr; + } + + if (*pBufferSize == 0) { /* 'preflighting' request - set needed size into *pBufferSize */ + *pBufferSize = (int32_t)sizeof(struct cloneStruct); + return NULL; + } + + cnvData = (UConverterDataISO2022 *)cnv->extraInfo; + localClone = (struct cloneStruct *)stackBuffer; + + /* ucnv.c/ucnv_safeClone() copied the main UConverter already */ + + uprv_memcpy(&localClone->mydata, cnvData, sizeof(UConverterDataISO2022)); + localClone->cnv.extraInfo = &localClone->mydata; /* set pointer to extra data */ + localClone->cnv.isExtraLocal = TRUE; + + /* share the subconverters */ + + if(cnvData->currentConverter != NULL) { + size = (int32_t)sizeof(UConverter); + localClone->mydata.currentConverter = + ucnv_safeClone(cnvData->currentConverter, + &localClone->currentConverter, + &size, status); + if(U_FAILURE(*status)) { + return NULL; + } + } + + for(i=0; i<UCNV_2022_MAX_CONVERTERS; ++i) { + if(cnvData->myConverterArray[i] != NULL) { + ucnv_incrementRefCount(cnvData->myConverterArray[i]); + } + } + + return &localClone->cnv; +} + +U_CDECL_END + +static void U_CALLCONV +_ISO_2022_GetUnicodeSet(const UConverter *cnv, + const USetAdder *sa, + UConverterUnicodeSet which, + UErrorCode *pErrorCode) +{ + int32_t i; + UConverterDataISO2022* cnvData; + + if (U_FAILURE(*pErrorCode)) { + return; + } +#ifdef U_ENABLE_GENERIC_ISO_2022 + if (cnv->sharedData == &_ISO2022Data) { + /* We use UTF-8 in this case */ + sa->addRange(sa->set, 0, 0xd7FF); + sa->addRange(sa->set, 0xE000, 0x10FFFF); + return; + } +#endif + + cnvData = (UConverterDataISO2022*)cnv->extraInfo; + + /* open a set and initialize it with code points that are algorithmically round-tripped */ + switch(cnvData->locale[0]){ + case 'j': + /* include JIS X 0201 which is hardcoded */ + sa->add(sa->set, 0xa5); + sa->add(sa->set, 0x203e); + if(jpCharsetMasks[cnvData->version]&CSM(ISO8859_1)) { + /* include Latin-1 for some variants of JP */ + sa->addRange(sa->set, 0, 0xff); + } else { + /* include ASCII for JP */ + sa->addRange(sa->set, 0, 0x7f); + } + if(cnvData->version==3 || cnvData->version==4 || which==UCNV_ROUNDTRIP_AND_FALLBACK_SET) { + /* + * Do not test (jpCharsetMasks[cnvData->version]&CSM(HWKANA_7BIT))!=0 + * because the bit is on for all JP versions although only versions 3 & 4 (JIS7 & JIS8) + * use half-width Katakana. + * This is because all ISO-2022-JP variants are lenient in that they accept (in toUnicode) + * half-width Katakana via the ESC ( I sequence. + * However, we only emit (fromUnicode) half-width Katakana according to the + * definition of each variant. + * + * When including fallbacks, + * we need to include half-width Katakana Unicode code points for all JP variants because + * JIS X 0208 has hardcoded fallbacks for them (which map to full-width Katakana). + */ + /* include half-width Katakana for JP */ + sa->addRange(sa->set, HWKANA_START, HWKANA_END); + } + break; +#if !UCONFIG_ONLY_HTML_CONVERSION + case 'c': + case 'z': + /* include ASCII for CN */ + sa->addRange(sa->set, 0, 0x7f); + break; + case 'k': + /* there is only one converter for KR, and it is not in the myConverterArray[] */ + cnvData->currentConverter->sharedData->impl->getUnicodeSet( + cnvData->currentConverter, sa, which, pErrorCode); + /* the loop over myConverterArray[] will simply not find another converter */ + break; +#endif + default: + break; + } + +#if 0 /* Replaced by ucnv_MBCSGetFilteredUnicodeSetForUnicode() until we implement ucnv_getUnicodeSet() with reverse fallbacks. */ + if( (cnvData->locale[0]=='c' || cnvData->locale[0]=='z') && + cnvData->version==0 && i==CNS_11643 + ) { + /* special handling for non-EXT ISO-2022-CN: add only code points for CNS planes 1 and 2 */ + ucnv_MBCSGetUnicodeSetForBytes( + cnvData->myConverterArray[i], + sa, UCNV_ROUNDTRIP_SET, + 0, 0x81, 0x82, + pErrorCode); + } +#endif + + for (i=0; i<UCNV_2022_MAX_CONVERTERS; i++) { + UConverterSetFilter filter; + if(cnvData->myConverterArray[i]!=NULL) { + if(cnvData->locale[0]=='j' && i==JISX208) { + /* + * Only add code points that map to Shift-JIS codes + * corresponding to JIS X 0208. + */ + filter=UCNV_SET_FILTER_SJIS; +#if !UCONFIG_ONLY_HTML_CONVERSION + } else if( (cnvData->locale[0]=='c' || cnvData->locale[0]=='z') && + cnvData->version==0 && i==CNS_11643) { + /* + * Version-specific for CN: + * CN version 0 does not map CNS planes 3..7 although + * they are all available in the CNS conversion table; + * CN version 1 (-EXT) does map them all. + * The two versions create different Unicode sets. + */ + filter=UCNV_SET_FILTER_2022_CN; + } else if(i==KSC5601) { + /* + * Some of the KSC 5601 tables (convrtrs.txt has this aliases on multiple tables) + * are broader than GR94. + */ + filter=UCNV_SET_FILTER_GR94DBCS; +#endif + } else { + filter=UCNV_SET_FILTER_NONE; + } + ucnv_MBCSGetFilteredUnicodeSetForUnicode(cnvData->myConverterArray[i], sa, which, filter, pErrorCode); + } + } + + /* + * ISO 2022 converters must not convert SO/SI/ESC despite what + * sub-converters do by themselves. + * Remove these characters from the set. + */ + sa->remove(sa->set, 0x0e); + sa->remove(sa->set, 0x0f); + sa->remove(sa->set, 0x1b); + + /* ISO 2022 converters do not convert C1 controls either */ + sa->removeRange(sa->set, 0x80, 0x9f); +} + +static const UConverterImpl _ISO2022Impl={ + UCNV_ISO_2022, + + NULL, + NULL, + + _ISO2022Open, + _ISO2022Close, + _ISO2022Reset, + +#ifdef U_ENABLE_GENERIC_ISO_2022 + T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC, + T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC, + ucnv_fromUnicode_UTF8, + ucnv_fromUnicode_UTF8_OFFSETS_LOGIC, +#else + NULL, + NULL, + NULL, + NULL, +#endif + NULL, + + NULL, + _ISO2022getName, + _ISO_2022_WriteSub, + _ISO_2022_SafeClone, + _ISO_2022_GetUnicodeSet, + + NULL, + NULL +}; +static const UConverterStaticData _ISO2022StaticData={ + sizeof(UConverterStaticData), + "ISO_2022", + 2022, + UCNV_IBM, + UCNV_ISO_2022, + 1, + 3, /* max 3 bytes per UChar from UTF-8 (4 bytes from surrogate _pair_) */ + { 0x1a, 0, 0, 0 }, + 1, + FALSE, + FALSE, + 0, + 0, + { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ +}; +const UConverterSharedData _ISO2022Data= + UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_ISO2022StaticData, &_ISO2022Impl); + +/*************JP****************/ +static const UConverterImpl _ISO2022JPImpl={ + UCNV_ISO_2022, + + NULL, + NULL, + + _ISO2022Open, + _ISO2022Close, + _ISO2022Reset, + + UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC, + UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC, + UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC, + UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC, + NULL, + + NULL, + _ISO2022getName, + _ISO_2022_WriteSub, + _ISO_2022_SafeClone, + _ISO_2022_GetUnicodeSet, + + NULL, + NULL +}; +static const UConverterStaticData _ISO2022JPStaticData={ + sizeof(UConverterStaticData), + "ISO_2022_JP", + 0, + UCNV_IBM, + UCNV_ISO_2022, + 1, + 6, /* max 6 bytes per UChar: 4-byte escape sequence + DBCS */ + { 0x1a, 0, 0, 0 }, + 1, + FALSE, + FALSE, + 0, + 0, + { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ +}; + +namespace { + +const UConverterSharedData _ISO2022JPData= + UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_ISO2022JPStaticData, &_ISO2022JPImpl); + +} // namespace + +#if !UCONFIG_ONLY_HTML_CONVERSION +/************* KR ***************/ +static const UConverterImpl _ISO2022KRImpl={ + UCNV_ISO_2022, + + NULL, + NULL, + + _ISO2022Open, + _ISO2022Close, + _ISO2022Reset, + + UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC, + UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC, + UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC, + UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC, + NULL, + + NULL, + _ISO2022getName, + _ISO_2022_WriteSub, + _ISO_2022_SafeClone, + _ISO_2022_GetUnicodeSet, + + NULL, + NULL +}; +static const UConverterStaticData _ISO2022KRStaticData={ + sizeof(UConverterStaticData), + "ISO_2022_KR", + 0, + UCNV_IBM, + UCNV_ISO_2022, + 1, + 8, /* max 8 bytes per UChar */ + { 0x1a, 0, 0, 0 }, + 1, + FALSE, + FALSE, + 0, + 0, + { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ +}; + +namespace { + +const UConverterSharedData _ISO2022KRData= + UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_ISO2022KRStaticData, &_ISO2022KRImpl); + +} // namespace + +/*************** CN ***************/ +static const UConverterImpl _ISO2022CNImpl={ + + UCNV_ISO_2022, + + NULL, + NULL, + + _ISO2022Open, + _ISO2022Close, + _ISO2022Reset, + + UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC, + UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC, + UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC, + UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC, + NULL, + + NULL, + _ISO2022getName, + _ISO_2022_WriteSub, + _ISO_2022_SafeClone, + _ISO_2022_GetUnicodeSet, + + NULL, + NULL +}; +static const UConverterStaticData _ISO2022CNStaticData={ + sizeof(UConverterStaticData), + "ISO_2022_CN", + 0, + UCNV_IBM, + UCNV_ISO_2022, + 1, + 8, /* max 8 bytes per UChar: 4-byte CNS designator + 2 bytes for SS2/SS3 + DBCS */ + { 0x1a, 0, 0, 0 }, + 1, + FALSE, + FALSE, + 0, + 0, + { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ +}; + +namespace { + +const UConverterSharedData _ISO2022CNData= + UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_ISO2022CNStaticData, &_ISO2022CNImpl); + +} // namespace +#endif /* #if !UCONFIG_ONLY_HTML_CONVERSION */ + +#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ |