diff options
Diffstat (limited to 'thirdparty/icu4c/common/lstmbe.cpp')
-rw-r--r-- | thirdparty/icu4c/common/lstmbe.cpp | 855 |
1 files changed, 855 insertions, 0 deletions
diff --git a/thirdparty/icu4c/common/lstmbe.cpp b/thirdparty/icu4c/common/lstmbe.cpp new file mode 100644 index 0000000000..3793abceb3 --- /dev/null +++ b/thirdparty/icu4c/common/lstmbe.cpp @@ -0,0 +1,855 @@ +// © 2021 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html + +#include <utility> +#include <ctgmath> + +#include "unicode/utypes.h" + +#if !UCONFIG_NO_BREAK_ITERATION + +#include "brkeng.h" +#include "charstr.h" +#include "cmemory.h" +#include "lstmbe.h" +#include "putilimp.h" +#include "uassert.h" +#include "ubrkimpl.h" +#include "uresimp.h" +#include "uvectr32.h" +#include "uvector.h" + +#include "unicode/brkiter.h" +#include "unicode/resbund.h" +#include "unicode/ubrk.h" +#include "unicode/uniset.h" +#include "unicode/ustring.h" +#include "unicode/utf.h" + +U_NAMESPACE_BEGIN + +// Uncomment the following #define to debug. +// #define LSTM_DEBUG 1 +// #define LSTM_VECTORIZER_DEBUG 1 + +/** + * Interface for reading 1D array. + */ +class ReadArray1D { +public: + virtual ~ReadArray1D(); + virtual int32_t d1() const = 0; + virtual float get(int32_t i) const = 0; + +#ifdef LSTM_DEBUG + void print() const { + printf("\n["); + for (int32_t i = 0; i < d1(); i++) { + printf("%0.8e ", get(i)); + if (i % 4 == 3) printf("\n"); + } + printf("]\n"); + } +#endif +}; + +ReadArray1D::~ReadArray1D() +{ +} + +/** + * Interface for reading 2D array. + */ +class ReadArray2D { +public: + virtual ~ReadArray2D(); + virtual int32_t d1() const = 0; + virtual int32_t d2() const = 0; + virtual float get(int32_t i, int32_t j) const = 0; +}; + +ReadArray2D::~ReadArray2D() +{ +} + +/** + * A class to index a float array as a 1D Array without owning the pointer or + * copy the data. + */ +class ConstArray1D : public ReadArray1D { +public: + ConstArray1D() : data_(nullptr), d1_(0) {} + + ConstArray1D(const float* data, int32_t d1) : data_(data), d1_(d1) {} + + virtual ~ConstArray1D(); + + // Init the object, the object does not own the data nor copy. + // It is designed to directly use data from memory mapped resources. + void init(const int32_t* data, int32_t d1) { + U_ASSERT(IEEE_754 == 1); + data_ = reinterpret_cast<const float*>(data); + d1_ = d1; + } + + // ReadArray1D methods. + virtual int32_t d1() const override { return d1_; } + virtual float get(int32_t i) const override { + U_ASSERT(i < d1_); + return data_[i]; + } + +private: + const float* data_; + int32_t d1_; +}; + +ConstArray1D::~ConstArray1D() +{ +} + +/** + * A class to index a float array as a 2D Array without owning the pointer or + * copy the data. + */ +class ConstArray2D : public ReadArray2D { +public: + ConstArray2D() : data_(nullptr), d1_(0), d2_(0) {} + + ConstArray2D(const float* data, int32_t d1, int32_t d2) + : data_(data), d1_(d1), d2_(d2) {} + + virtual ~ConstArray2D(); + + // Init the object, the object does not own the data nor copy. + // It is designed to directly use data from memory mapped resources. + void init(const int32_t* data, int32_t d1, int32_t d2) { + U_ASSERT(IEEE_754 == 1); + data_ = reinterpret_cast<const float*>(data); + d1_ = d1; + d2_ = d2; + } + + // ReadArray2D methods. + inline int32_t d1() const override { return d1_; } + inline int32_t d2() const override { return d2_; } + float get(int32_t i, int32_t j) const override { + U_ASSERT(i < d1_); + U_ASSERT(j < d2_); + return data_[i * d2_ + j]; + } + + // Expose the ith row as a ConstArray1D + inline ConstArray1D row(int32_t i) const { + U_ASSERT(i < d1_); + return ConstArray1D(data_ + i * d2_, d2_); + } + +private: + const float* data_; + int32_t d1_; + int32_t d2_; +}; + +ConstArray2D::~ConstArray2D() +{ +} + +/** + * A class to allocate data as a writable 1D array. + * This is the main class implement matrix operation. + */ +class Array1D : public ReadArray1D { +public: + Array1D() : memory_(nullptr), data_(nullptr), d1_(0) {} + Array1D(int32_t d1, UErrorCode &status) + : memory_(uprv_malloc(d1 * sizeof(float))), + data_((float*)memory_), d1_(d1) { + if (U_SUCCESS(status)) { + if (memory_ == nullptr) { + status = U_MEMORY_ALLOCATION_ERROR; + return; + } + clear(); + } + } + + virtual ~Array1D(); + + // A special constructor which does not own the memory but writeable + // as a slice of an array. + Array1D(float* data, int32_t d1) + : memory_(nullptr), data_(data), d1_(d1) {} + + // ReadArray1D methods. + virtual int32_t d1() const override { return d1_; } + virtual float get(int32_t i) const override { + U_ASSERT(i < d1_); + return data_[i]; + } + + // Return the index which point to the max data in the array. + inline int32_t maxIndex() const { + int32_t index = 0; + float max = data_[0]; + for (int32_t i = 1; i < d1_; i++) { + if (data_[i] > max) { + max = data_[i]; + index = i; + } + } + return index; + } + + // Slice part of the array to a new one. + inline Array1D slice(int32_t from, int32_t size) const { + U_ASSERT(from >= 0); + U_ASSERT(from < d1_); + U_ASSERT(from + size <= d1_); + return Array1D(data_ + from, size); + } + + // Add dot product of a 1D array and a 2D array into this one. + inline Array1D& addDotProduct(const ReadArray1D& a, const ReadArray2D& b) { + U_ASSERT(a.d1() == b.d1()); + U_ASSERT(b.d2() == d1()); + for (int32_t i = 0; i < d1(); i++) { + for (int32_t j = 0; j < a.d1(); j++) { + data_[i] += a.get(j) * b.get(j, i); + } + } + return *this; + } + + // Hadamard Product the values of another array of the same size into this one. + inline Array1D& hadamardProduct(const ReadArray1D& a) { + U_ASSERT(a.d1() == d1()); + for (int32_t i = 0; i < d1(); i++) { + data_[i] *= a.get(i); + } + return *this; + } + + // Add the Hadamard Product of two arrays of the same size into this one. + inline Array1D& addHadamardProduct(const ReadArray1D& a, const ReadArray1D& b) { + U_ASSERT(a.d1() == d1()); + U_ASSERT(b.d1() == d1()); + for (int32_t i = 0; i < d1(); i++) { + data_[i] += a.get(i) * b.get(i); + } + return *this; + } + + // Add the values of another array of the same size into this one. + inline Array1D& add(const ReadArray1D& a) { + U_ASSERT(a.d1() == d1()); + for (int32_t i = 0; i < d1(); i++) { + data_[i] += a.get(i); + } + return *this; + } + + // Assign the values of another array of the same size into this one. + inline Array1D& assign(const ReadArray1D& a) { + U_ASSERT(a.d1() == d1()); + for (int32_t i = 0; i < d1(); i++) { + data_[i] = a.get(i); + } + return *this; + } + + // Apply tanh to all the elements in the array. + inline Array1D& tanh() { + return tanh(*this); + } + + // Apply tanh of a and store into this array. + inline Array1D& tanh(const Array1D& a) { + U_ASSERT(a.d1() == d1()); + for (int32_t i = 0; i < d1_; i++) { + data_[i] = std::tanh(a.get(i)); + } + return *this; + } + + // Apply sigmoid to all the elements in the array. + inline Array1D& sigmoid() { + for (int32_t i = 0; i < d1_; i++) { + data_[i] = 1.0f/(1.0f + expf(-data_[i])); + } + return *this; + } + + inline Array1D& clear() { + uprv_memset(data_, 0, d1_ * sizeof(float)); + return *this; + } + +private: + void* memory_; + float* data_; + int32_t d1_; +}; + +Array1D::~Array1D() +{ + uprv_free(memory_); +} + +class Array2D : public ReadArray2D { +public: + Array2D() : memory_(nullptr), data_(nullptr), d1_(0), d2_(0) {} + Array2D(int32_t d1, int32_t d2, UErrorCode &status) + : memory_(uprv_malloc(d1 * d2 * sizeof(float))), + data_((float*)memory_), d1_(d1), d2_(d2) { + if (U_SUCCESS(status)) { + if (memory_ == nullptr) { + status = U_MEMORY_ALLOCATION_ERROR; + return; + } + clear(); + } + } + virtual ~Array2D(); + + // ReadArray2D methods. + virtual int32_t d1() const override { return d1_; } + virtual int32_t d2() const override { return d2_; } + virtual float get(int32_t i, int32_t j) const override { + U_ASSERT(i < d1_); + U_ASSERT(j < d2_); + return data_[i * d2_ + j]; + } + + inline Array1D row(int32_t i) const { + U_ASSERT(i < d1_); + return Array1D(data_ + i * d2_, d2_); + } + + inline Array2D& clear() { + uprv_memset(data_, 0, d1_ * d2_ * sizeof(float)); + return *this; + } + +private: + void* memory_; + float* data_; + int32_t d1_; + int32_t d2_; +}; + +Array2D::~Array2D() +{ + uprv_free(memory_); +} + +typedef enum { + BEGIN, + INSIDE, + END, + SINGLE +} LSTMClass; + +typedef enum { + UNKNOWN, + CODE_POINTS, + GRAPHEME_CLUSTER, +} EmbeddingType; + +struct LSTMData : public UMemory { + LSTMData(UResourceBundle* rb, UErrorCode &status); + ~LSTMData(); + UHashtable* fDict; + EmbeddingType fType; + const UChar* fName; + ConstArray2D fEmbedding; + ConstArray2D fForwardW; + ConstArray2D fForwardU; + ConstArray1D fForwardB; + ConstArray2D fBackwardW; + ConstArray2D fBackwardU; + ConstArray1D fBackwardB; + ConstArray2D fOutputW; + ConstArray1D fOutputB; + +private: + UResourceBundle* fBundle; +}; + +LSTMData::LSTMData(UResourceBundle* rb, UErrorCode &status) + : fDict(nullptr), fType(UNKNOWN), fName(nullptr), + fBundle(rb) +{ + if (U_FAILURE(status)) { + return; + } + if (IEEE_754 != 1) { + status = U_UNSUPPORTED_ERROR; + return; + } + LocalUResourceBundlePointer embeddings_res( + ures_getByKey(rb, "embeddings", nullptr, &status)); + int32_t embedding_size = ures_getInt(embeddings_res.getAlias(), &status); + LocalUResourceBundlePointer hunits_res( + ures_getByKey(rb, "hunits", nullptr, &status)); + if (U_FAILURE(status)) return; + int32_t hunits = ures_getInt(hunits_res.getAlias(), &status); + const UChar* type = ures_getStringByKey(rb, "type", nullptr, &status); + if (U_FAILURE(status)) return; + if (u_strCompare(type, -1, u"codepoints", -1, false) == 0) { + fType = CODE_POINTS; + } else if (u_strCompare(type, -1, u"graphclust", -1, false) == 0) { + fType = GRAPHEME_CLUSTER; + } + fName = ures_getStringByKey(rb, "model", nullptr, &status); + LocalUResourceBundlePointer dataRes(ures_getByKey(rb, "data", nullptr, &status)); + if (U_FAILURE(status)) return; + int32_t data_len = 0; + const int32_t* data = ures_getIntVector(dataRes.getAlias(), &data_len, &status); + fDict = uhash_open(uhash_hashUChars, uhash_compareUChars, nullptr, &status); + + StackUResourceBundle stackTempBundle; + ResourceDataValue value; + ures_getValueWithFallback(rb, "dict", stackTempBundle.getAlias(), value, status); + ResourceArray stringArray = value.getArray(status); + int32_t num_index = stringArray.getSize(); + if (U_FAILURE(status)) { return; } + + // put dict into hash + int32_t stringLength; + for (int32_t idx = 0; idx < num_index; idx++) { + stringArray.getValue(idx, value); + const UChar* str = value.getString(stringLength, status); + uhash_putiAllowZero(fDict, (void*)str, idx, &status); + if (U_FAILURE(status)) return; +#ifdef LSTM_VECTORIZER_DEBUG + printf("Assign ["); + while (*str != 0x0000) { + printf("U+%04x ", *str); + str++; + } + printf("] map to %d\n", idx-1); +#endif + } + int32_t mat1_size = (num_index + 1) * embedding_size; + int32_t mat2_size = embedding_size * 4 * hunits; + int32_t mat3_size = hunits * 4 * hunits; + int32_t mat4_size = 4 * hunits; + int32_t mat5_size = mat2_size; + int32_t mat6_size = mat3_size; + int32_t mat7_size = mat4_size; + int32_t mat8_size = 2 * hunits * 4; +#if U_DEBUG + int32_t mat9_size = 4; + U_ASSERT(data_len == mat1_size + mat2_size + mat3_size + mat4_size + mat5_size + + mat6_size + mat7_size + mat8_size + mat9_size); +#endif + + fEmbedding.init(data, (num_index + 1), embedding_size); + data += mat1_size; + fForwardW.init(data, embedding_size, 4 * hunits); + data += mat2_size; + fForwardU.init(data, hunits, 4 * hunits); + data += mat3_size; + fForwardB.init(data, 4 * hunits); + data += mat4_size; + fBackwardW.init(data, embedding_size, 4 * hunits); + data += mat5_size; + fBackwardU.init(data, hunits, 4 * hunits); + data += mat6_size; + fBackwardB.init(data, 4 * hunits); + data += mat7_size; + fOutputW.init(data, 2 * hunits, 4); + data += mat8_size; + fOutputB.init(data, 4); +} + +LSTMData::~LSTMData() { + uhash_close(fDict); + ures_close(fBundle); +} + +class Vectorizer : public UMemory { +public: + Vectorizer(UHashtable* dict) : fDict(dict) {} + virtual ~Vectorizer(); + virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, + UVector32 &offsets, UVector32 &indices, + UErrorCode &status) const = 0; +protected: + int32_t stringToIndex(const UChar* str) const { + UBool found = false; + int32_t ret = uhash_getiAndFound(fDict, (const void*)str, &found); + if (!found) { + ret = fDict->count; + } +#ifdef LSTM_VECTORIZER_DEBUG + printf("["); + while (*str != 0x0000) { + printf("U+%04x ", *str); + str++; + } + printf("] map to %d\n", ret); +#endif + return ret; + } + +private: + UHashtable* fDict; +}; + +Vectorizer::~Vectorizer() +{ +} + +class CodePointsVectorizer : public Vectorizer { +public: + CodePointsVectorizer(UHashtable* dict) : Vectorizer(dict) {} + virtual ~CodePointsVectorizer(); + virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, + UVector32 &offsets, UVector32 &indices, + UErrorCode &status) const override; +}; + +CodePointsVectorizer::~CodePointsVectorizer() +{ +} + +void CodePointsVectorizer::vectorize( + UText *text, int32_t startPos, int32_t endPos, + UVector32 &offsets, UVector32 &indices, UErrorCode &status) const +{ + if (offsets.ensureCapacity(endPos - startPos, status) && + indices.ensureCapacity(endPos - startPos, status)) { + if (U_FAILURE(status)) return; + utext_setNativeIndex(text, startPos); + int32_t current; + UChar str[2] = {0, 0}; + while (U_SUCCESS(status) && + (current = (int32_t)utext_getNativeIndex(text)) < endPos) { + // Since the LSTMBreakEngine is currently only accept chars in BMP, + // we can ignore the possibility of hitting supplementary code + // point. + str[0] = (UChar) utext_next32(text); + U_ASSERT(!U_IS_SURROGATE(str[0])); + offsets.addElement(current, status); + indices.addElement(stringToIndex(str), status); + } + } +} + +class GraphemeClusterVectorizer : public Vectorizer { +public: + GraphemeClusterVectorizer(UHashtable* dict) + : Vectorizer(dict) + { + } + virtual ~GraphemeClusterVectorizer(); + virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, + UVector32 &offsets, UVector32 &indices, + UErrorCode &status) const override; +}; + +GraphemeClusterVectorizer::~GraphemeClusterVectorizer() +{ +} + +constexpr int32_t MAX_GRAPHEME_CLSTER_LENGTH = 10; + +void GraphemeClusterVectorizer::vectorize( + UText *text, int32_t startPos, int32_t endPos, + UVector32 &offsets, UVector32 &indices, UErrorCode &status) const +{ + if (U_FAILURE(status)) return; + if (!offsets.ensureCapacity(endPos - startPos, status) || + !indices.ensureCapacity(endPos - startPos, status)) { + return; + } + if (U_FAILURE(status)) return; + LocalPointer<BreakIterator> graphemeIter(BreakIterator::createCharacterInstance(Locale(), status)); + if (U_FAILURE(status)) return; + graphemeIter->setText(text, status); + if (U_FAILURE(status)) return; + + if (startPos != 0) { + graphemeIter->preceding(startPos); + } + int32_t last = startPos; + int32_t current = startPos; + UChar str[MAX_GRAPHEME_CLSTER_LENGTH]; + while ((current = graphemeIter->next()) != BreakIterator::DONE) { + if (current >= endPos) { + break; + } + if (current > startPos) { + utext_extract(text, last, current, str, MAX_GRAPHEME_CLSTER_LENGTH, &status); + if (U_FAILURE(status)) return; + offsets.addElement(last, status); + indices.addElement(stringToIndex(str), status); + if (U_FAILURE(status)) return; + } + last = current; + } + if (U_FAILURE(status) || last >= endPos) { + return; + } + utext_extract(text, last, endPos, str, MAX_GRAPHEME_CLSTER_LENGTH, &status); + if (U_SUCCESS(status)) { + offsets.addElement(last, status); + indices.addElement(stringToIndex(str), status); + } +} + +// Computing LSTM as stated in +// https://en.wikipedia.org/wiki/Long_short-term_memory#LSTM_with_a_forget_gate +// ifco is temp array allocate outside which does not need to be +// input/output value but could avoid unnecessary memory alloc/free if passing +// in. +void compute( + int32_t hunits, + const ReadArray2D& W, const ReadArray2D& U, const ReadArray1D& b, + const ReadArray1D& x, Array1D& h, Array1D& c, + Array1D& ifco) +{ + // ifco = x * W + h * U + b + ifco.assign(b) + .addDotProduct(x, W) + .addDotProduct(h, U); + + ifco.slice(0*hunits, hunits).sigmoid(); // i: sigmod + ifco.slice(1*hunits, hunits).sigmoid(); // f: sigmoid + ifco.slice(2*hunits, hunits).tanh(); // c_: tanh + ifco.slice(3*hunits, hunits).sigmoid(); // o: sigmod + + c.hadamardProduct(ifco.slice(hunits, hunits)) + .addHadamardProduct(ifco.slice(0, hunits), ifco.slice(2*hunits, hunits)); + + h.tanh(c) + .hadamardProduct(ifco.slice(3*hunits, hunits)); +} + +// Minimum word size +static const int32_t MIN_WORD = 2; + +// Minimum number of characters for two words +static const int32_t MIN_WORD_SPAN = MIN_WORD * 2; + +int32_t +LSTMBreakEngine::divideUpDictionaryRange( UText *text, + int32_t startPos, + int32_t endPos, + UVector32 &foundBreaks, + UErrorCode& status) const { + if (U_FAILURE(status)) return 0; + int32_t beginFoundBreakSize = foundBreaks.size(); + utext_setNativeIndex(text, startPos); + utext_moveIndex32(text, MIN_WORD_SPAN); + if (utext_getNativeIndex(text) >= endPos) { + return 0; // Not enough characters for two words + } + utext_setNativeIndex(text, startPos); + + UVector32 offsets(status); + UVector32 indices(status); + if (U_FAILURE(status)) return 0; + fVectorizer->vectorize(text, startPos, endPos, offsets, indices, status); + if (U_FAILURE(status)) return 0; + int32_t* offsetsBuf = offsets.getBuffer(); + int32_t* indicesBuf = indices.getBuffer(); + + int32_t input_seq_len = indices.size(); + int32_t hunits = fData->fForwardU.d1(); + + // ----- Begin of all the Array memory allocation needed for this function + // Allocate temp array used inside compute() + Array1D ifco(4 * hunits, status); + + Array1D c(hunits, status); + Array1D logp(4, status); + + // TODO: limit size of hBackward. If input_seq_len is too big, we could + // run out of memory. + // Backward LSTM + Array2D hBackward(input_seq_len, hunits, status); + + // Allocate fbRow and slice the internal array in two. + Array1D fbRow(2 * hunits, status); + + // ----- End of all the Array memory allocation needed for this function + if (U_FAILURE(status)) return 0; + + // To save the needed memory usage, the following is different from the + // Python or ICU4X implementation. We first perform the Backward LSTM + // and then merge the iteration of the forward LSTM and the output layer + // together because we only neetdto remember the h[t-1] for Forward LSTM. + for (int32_t i = input_seq_len - 1; i >= 0; i--) { + Array1D hRow = hBackward.row(i); + if (i != input_seq_len - 1) { + hRow.assign(hBackward.row(i+1)); + } +#ifdef LSTM_DEBUG + printf("hRow %d\n", i); + hRow.print(); + printf("indicesBuf[%d] = %d\n", i, indicesBuf[i]); + printf("fData->fEmbedding.row(indicesBuf[%d]):\n", i); + fData->fEmbedding.row(indicesBuf[i]).print(); +#endif // LSTM_DEBUG + compute(hunits, + fData->fBackwardW, fData->fBackwardU, fData->fBackwardB, + fData->fEmbedding.row(indicesBuf[i]), + hRow, c, ifco); + } + + + Array1D forwardRow = fbRow.slice(0, hunits); // point to first half of data in fbRow. + Array1D backwardRow = fbRow.slice(hunits, hunits); // point to second half of data n fbRow. + + // The following iteration merge the forward LSTM and the output layer + // together. + c.clear(); // reuse c since it is the same size. + for (int32_t i = 0; i < input_seq_len; i++) { +#ifdef LSTM_DEBUG + printf("forwardRow %d\n", i); + forwardRow.print(); +#endif // LSTM_DEBUG + // Forward LSTM + // Calculate the result into forwardRow, which point to the data in the first half + // of fbRow. + compute(hunits, + fData->fForwardW, fData->fForwardU, fData->fForwardB, + fData->fEmbedding.row(indicesBuf[i]), + forwardRow, c, ifco); + + // assign the data from hBackward.row(i) to second half of fbRowa. + backwardRow.assign(hBackward.row(i)); + + logp.assign(fData->fOutputB).addDotProduct(fbRow, fData->fOutputW); +#ifdef LSTM_DEBUG + printf("backwardRow %d\n", i); + backwardRow.print(); + printf("logp %d\n", i); + logp.print(); +#endif // LSTM_DEBUG + + // current = argmax(logp) + LSTMClass current = (LSTMClass)logp.maxIndex(); + // BIES logic. + if (current == BEGIN || current == SINGLE) { + if (i != 0) { + foundBreaks.addElement(offsetsBuf[i], status); + if (U_FAILURE(status)) return 0; + } + } + } + return foundBreaks.size() - beginFoundBreakSize; +} + +Vectorizer* createVectorizer(const LSTMData* data, UErrorCode &status) { + if (U_FAILURE(status)) { + return nullptr; + } + switch (data->fType) { + case CODE_POINTS: + return new CodePointsVectorizer(data->fDict); + break; + case GRAPHEME_CLUSTER: + return new GraphemeClusterVectorizer(data->fDict); + break; + default: + break; + } + UPRV_UNREACHABLE_EXIT; +} + +LSTMBreakEngine::LSTMBreakEngine(const LSTMData* data, const UnicodeSet& set, UErrorCode &status) + : DictionaryBreakEngine(), fData(data), fVectorizer(createVectorizer(fData, status)) +{ + if (U_FAILURE(status)) { + fData = nullptr; // If failure, we should not delete fData in destructor because the caller will do so. + return; + } + setCharacters(set); +} + +LSTMBreakEngine::~LSTMBreakEngine() { + delete fData; + delete fVectorizer; +} + +const UChar* LSTMBreakEngine::name() const { + return fData->fName; +} + +UnicodeString defaultLSTM(UScriptCode script, UErrorCode& status) { + // open root from brkitr tree. + UResourceBundle *b = ures_open(U_ICUDATA_BRKITR, "", &status); + b = ures_getByKeyWithFallback(b, "lstm", b, &status); + UnicodeString result = ures_getUnicodeStringByKey(b, uscript_getShortName(script), &status); + ures_close(b); + return result; +} + +U_CAPI const LSTMData* U_EXPORT2 CreateLSTMDataForScript(UScriptCode script, UErrorCode& status) +{ + if (script != USCRIPT_KHMER && script != USCRIPT_LAO && script != USCRIPT_MYANMAR && script != USCRIPT_THAI) { + return nullptr; + } + UnicodeString name = defaultLSTM(script, status); + if (U_FAILURE(status)) return nullptr; + CharString namebuf; + namebuf.appendInvariantChars(name, status).truncate(namebuf.lastIndexOf('.')); + + LocalUResourceBundlePointer rb( + ures_openDirect(U_ICUDATA_BRKITR, namebuf.data(), &status)); + if (U_FAILURE(status)) return nullptr; + + return CreateLSTMData(rb.orphan(), status); +} + +U_CAPI const LSTMData* U_EXPORT2 CreateLSTMData(UResourceBundle* rb, UErrorCode& status) +{ + return new LSTMData(rb, status); +} + +U_CAPI const LanguageBreakEngine* U_EXPORT2 +CreateLSTMBreakEngine(UScriptCode script, const LSTMData* data, UErrorCode& status) +{ + UnicodeString unicodeSetString; + switch(script) { + case USCRIPT_THAI: + unicodeSetString = UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]]"); + break; + case USCRIPT_MYANMAR: + unicodeSetString = UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]]"); + break; + default: + delete data; + return nullptr; + } + UnicodeSet unicodeSet; + unicodeSet.applyPattern(unicodeSetString, status); + const LanguageBreakEngine* engine = new LSTMBreakEngine(data, unicodeSet, status); + if (U_FAILURE(status) || engine == nullptr) { + if (engine != nullptr) { + delete engine; + } else { + status = U_MEMORY_ALLOCATION_ERROR; + } + return nullptr; + } + return engine; +} + +U_CAPI void U_EXPORT2 DeleteLSTMData(const LSTMData* data) +{ + delete data; +} + +U_CAPI const UChar* U_EXPORT2 LSTMDataName(const LSTMData* data) +{ + return data->fName; +} + +U_NAMESPACE_END + +#endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |