summaryrefslogtreecommitdiff
path: root/thirdparty/harfbuzz/src/hb-repacker.hh
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/harfbuzz/src/hb-repacker.hh')
-rw-r--r--thirdparty/harfbuzz/src/hb-repacker.hh135
1 files changed, 45 insertions, 90 deletions
diff --git a/thirdparty/harfbuzz/src/hb-repacker.hh b/thirdparty/harfbuzz/src/hb-repacker.hh
index 5c46b4cccc..ce9ff90bb4 100644
--- a/thirdparty/harfbuzz/src/hb-repacker.hh
+++ b/thirdparty/harfbuzz/src/hb-repacker.hh
@@ -37,31 +37,28 @@
* For a detailed writeup on the overflow resolution algorithm see:
* docs/repacker.md
*/
-
struct graph_t
{
struct vertex_t
{
- vertex_t () :
- distance (0),
- space (0),
- parents (),
- start (0),
- end (0),
- priority(0) {}
-
- void fini () {
- obj.fini ();
- parents.fini ();
- }
-
hb_serialize_context_t::object_t obj;
- int64_t distance;
- int64_t space;
+ int64_t distance = 0 ;
+ int64_t space = 0 ;
hb_vector_t<unsigned> parents;
- unsigned start;
- unsigned end;
- unsigned priority;
+ unsigned start = 0;
+ unsigned end = 0;
+ unsigned priority = 0;
+
+ friend void swap (vertex_t& a, vertex_t& b)
+ {
+ hb_swap (a.obj, b.obj);
+ hb_swap (a.distance, b.distance);
+ hb_swap (a.space, b.space);
+ hb_swap (a.parents, b.parents);
+ hb_swap (a.start, b.start);
+ hb_swap (a.end, b.end);
+ hb_swap (a.priority, b.priority);
+ }
bool is_shared () const
{
@@ -153,7 +150,8 @@ struct graph_t
* the 'packed' object stack used internally in the
* serializer
*/
- graph_t (const hb_vector_t<hb_serialize_context_t::object_t *>& objects)
+ template<typename T>
+ graph_t (const T& objects)
: parents_invalid (true),
distance_invalid (true),
positions_invalid (true),
@@ -161,6 +159,8 @@ struct graph_t
{
num_roots_for_space_.push (1);
bool removed_nil = false;
+ vertices_.alloc (objects.length);
+ vertices_scratch_.alloc (objects.length);
for (unsigned i = 0; i < objects.length; i++)
{
// TODO(grieger): check all links point to valid objects.
@@ -186,7 +186,7 @@ struct graph_t
~graph_t ()
{
- vertices_.fini_deep ();
+ vertices_.fini ();
}
bool in_error () const
@@ -260,59 +260,6 @@ struct graph_t
}
/*
- * Generates a new topological sorting of graph using Kahn's
- * algorithm: https://en.wikipedia.org/wiki/Topological_sorting#Algorithms
- */
- void sort_kahn ()
- {
- positions_invalid = true;
-
- if (vertices_.length <= 1) {
- // Graph of 1 or less doesn't need sorting.
- return;
- }
-
- hb_vector_t<unsigned> queue;
- hb_vector_t<vertex_t> sorted_graph;
- if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
- hb_vector_t<unsigned> id_map;
- if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;
-
- hb_vector_t<unsigned> removed_edges;
- if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return;
- update_parents ();
-
- queue.push (root_idx ());
- int new_id = vertices_.length - 1;
-
- while (!queue.in_error () && queue.length)
- {
- unsigned next_id = queue[0];
- queue.remove (0);
-
- vertex_t& next = vertices_[next_id];
- sorted_graph[new_id] = next;
- id_map[next_id] = new_id--;
-
- for (const auto& link : next.obj.all_links ()) {
- removed_edges[link.objidx]++;
- if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx]))
- queue.push (link.objidx);
- }
- }
-
- check_success (!queue.in_error ());
- check_success (!sorted_graph.in_error ());
- if (!check_success (new_id == -1))
- print_orphaned_nodes ();
-
- remap_all_obj_indices (id_map, &sorted_graph);
-
- hb_swap (vertices_, sorted_graph);
- sorted_graph.fini_deep ();
- }
-
- /*
* Generates a new topological sorting of graph ordered by the shortest
* distance to each node.
*/
@@ -328,7 +275,7 @@ struct graph_t
update_distances ();
hb_priority_queue_t queue;
- hb_vector_t<vertex_t> sorted_graph;
+ hb_vector_t<vertex_t> &sorted_graph = vertices_scratch_;
if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
hb_vector_t<unsigned> id_map;
if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;
@@ -344,8 +291,9 @@ struct graph_t
{
unsigned next_id = queue.pop_minimum().second;
- vertex_t& next = vertices_[next_id];
- sorted_graph[new_id] = next;
+ hb_swap (sorted_graph[new_id], vertices_[next_id]);
+ const vertex_t& next = sorted_graph[new_id];
+
id_map[next_id] = new_id--;
for (const auto& link : next.obj.all_links ()) {
@@ -369,7 +317,6 @@ struct graph_t
remap_all_obj_indices (id_map, &sorted_graph);
hb_swap (vertices_, sorted_graph);
- sorted_graph.fini_deep ();
}
/*
@@ -402,11 +349,15 @@ struct graph_t
while (roots)
{
unsigned next = HB_SET_VALUE_INVALID;
+ if (unlikely (!check_success (!roots.in_error ()))) break;
if (!roots.next (&next)) break;
hb_set_t connected_roots;
find_connected_nodes (next, roots, visited, connected_roots);
+ if (unlikely (!check_success (!connected_roots.in_error ()))) break;
+
isolate_subgraph (connected_roots);
+ if (unlikely (!check_success (!connected_roots.in_error ()))) break;
unsigned next_space = this->next_space ();
num_roots_for_space_.push (0);
@@ -423,6 +374,8 @@ struct graph_t
// into the 32 bit space as needed, instead of using isolation.
}
+
+
return true;
}
@@ -575,12 +528,10 @@ struct graph_t
// The last object is the root of the graph, so swap back the root to the end.
// The root's obj idx does change, however since it's root nothing else refers to it.
// all other obj idx's will be unaffected.
- vertex_t root = vertices_[vertices_.length - 2];
- vertices_[clone_idx] = *clone;
- vertices_[vertices_.length - 1] = root;
+ hb_swap (vertices_[vertices_.length - 2], *clone);
// Since the root moved, update the parents arrays of all children on the root.
- for (const auto& l : root.obj.all_links ())
+ for (const auto& l : root ().obj.all_links ())
vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
return clone_idx;
@@ -865,7 +816,7 @@ struct graph_t
// Redundant ones are filtered out later on by the visited set.
// According to https://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf
// for practical performance this is faster then using a more advanced queue
- // (such as a fibonaacci queue) with a fast decrease priority.
+ // (such as a fibonacci queue) with a fast decrease priority.
for (unsigned i = 0; i < vertices_.length; i++)
{
if (i == vertices_.length - 1)
@@ -1074,6 +1025,7 @@ struct graph_t
hb_set_t& visited,
hb_set_t& connected)
{
+ if (unlikely (!check_success (!visited.in_error ()))) return;
if (visited.has (start_idx)) return;
visited.add (start_idx);
@@ -1096,6 +1048,7 @@ struct graph_t
public:
// TODO(garretrieger): make private, will need to move most of offset overflow code into graph.
hb_vector_t<vertex_t> vertices_;
+ hb_vector_t<vertex_t> vertices_scratch_;
private:
bool parents_invalid;
bool distance_invalid;
@@ -1104,8 +1057,9 @@ struct graph_t
hb_vector_t<unsigned> num_roots_for_space_;
};
-static bool _try_isolating_subgraphs (const hb_vector_t<graph_t::overflow_record_t>& overflows,
- graph_t& sorted_graph)
+static inline
+bool _try_isolating_subgraphs (const hb_vector_t<graph_t::overflow_record_t>& overflows,
+ graph_t& sorted_graph)
{
unsigned space = 0;
hb_set_t roots_to_isolate;
@@ -1153,9 +1107,10 @@ static bool _try_isolating_subgraphs (const hb_vector_t<graph_t::overflow_record
return true;
}
-static bool _process_overflows (const hb_vector_t<graph_t::overflow_record_t>& overflows,
- hb_set_t& priority_bumped_parents,
- graph_t& sorted_graph)
+static inline
+bool _process_overflows (const hb_vector_t<graph_t::overflow_record_t>& overflows,
+ hb_set_t& priority_bumped_parents,
+ graph_t& sorted_graph)
{
bool resolution_attempted = false;
@@ -1213,14 +1168,14 @@ static bool _process_overflows (const hb_vector_t<graph_t::overflow_record_t>& o
* For a detailed writeup describing how the algorithm operates see:
* docs/repacker.md
*/
+template<typename T>
inline hb_blob_t*
-hb_resolve_overflows (const hb_vector_t<hb_serialize_context_t::object_t *>& packed,
+hb_resolve_overflows (const T& packed,
hb_tag_t table_tag,
unsigned max_rounds = 20) {
// Kahn sort is ~twice as fast as shortest distance sort and works for many fonts
// so try it first to save time.
graph_t sorted_graph (packed);
- sorted_graph.sort_kahn ();
if (!sorted_graph.will_overflow ())
{
return sorted_graph.serialize ();