summaryrefslogtreecommitdiff
path: root/thirdparty/graphite/src/Pass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/graphite/src/Pass.cpp')
-rw-r--r--thirdparty/graphite/src/Pass.cpp1107
1 files changed, 1107 insertions, 0 deletions
diff --git a/thirdparty/graphite/src/Pass.cpp b/thirdparty/graphite/src/Pass.cpp
new file mode 100644
index 0000000000..db31c22d46
--- /dev/null
+++ b/thirdparty/graphite/src/Pass.cpp
@@ -0,0 +1,1107 @@
+/* GRAPHITE2 LICENSING
+
+ Copyright 2010, SIL International
+ All rights reserved.
+
+ This library is free software; you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License as published
+ by the Free Software Foundation; either version 2.1 of License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should also have received a copy of the GNU Lesser General Public
+ License along with this library in the file named "LICENSE".
+ If not, write to the Free Software Foundation, 51 Franklin Street,
+ Suite 500, Boston, MA 02110-1335, USA or visit their web page on the
+ internet at http://www.fsf.org/licenses/lgpl.html.
+
+Alternatively, the contents of this file may be used under the terms of the
+Mozilla Public License (http://mozilla.org/MPL) or the GNU General Public
+License, as published by the Free Software Foundation, either version 2
+of the License or (at your option) any later version.
+*/
+#include "inc/Main.h"
+#include "inc/debug.h"
+#include "inc/Endian.h"
+#include "inc/Pass.h"
+#include <cstring>
+#include <cstdlib>
+#include <cassert>
+#include <cmath>
+#include "inc/Segment.h"
+#include "inc/Code.h"
+#include "inc/Rule.h"
+#include "inc/Error.h"
+#include "inc/Collider.h"
+
+using namespace graphite2;
+using vm::Machine;
+typedef Machine::Code Code;
+
+enum KernCollison
+{
+ None = 0,
+ CrossSpace = 1,
+ InWord = 2,
+ reserved = 3
+};
+
+Pass::Pass()
+: m_silf(0),
+ m_cols(0),
+ m_rules(0),
+ m_ruleMap(0),
+ m_startStates(0),
+ m_transitions(0),
+ m_states(0),
+ m_codes(0),
+ m_progs(0),
+ m_numCollRuns(0),
+ m_kernColls(0),
+ m_iMaxLoop(0),
+ m_numGlyphs(0),
+ m_numRules(0),
+ m_numStates(0),
+ m_numTransition(0),
+ m_numSuccess(0),
+ m_successStart(0),
+ m_numColumns(0),
+ m_minPreCtxt(0),
+ m_maxPreCtxt(0),
+ m_colThreshold(0),
+ m_isReverseDir(false)
+{
+}
+
+Pass::~Pass()
+{
+ free(m_cols);
+ free(m_startStates);
+ free(m_transitions);
+ free(m_states);
+ free(m_ruleMap);
+
+ if (m_rules) delete [] m_rules;
+ if (m_codes) delete [] m_codes;
+ free(m_progs);
+}
+
+bool Pass::readPass(const byte * const pass_start, size_t pass_length, size_t subtable_base,
+ GR_MAYBE_UNUSED Face & face, passtype pt, GR_MAYBE_UNUSED uint32 version, Error &e)
+{
+ const byte * p = pass_start,
+ * const pass_end = p + pass_length;
+ size_t numRanges;
+
+ if (e.test(pass_length < 40, E_BADPASSLENGTH)) return face.error(e);
+ // Read in basic values
+ const byte flags = be::read<byte>(p);
+ if (e.test((flags & 0x1f) &&
+ (pt < PASS_TYPE_POSITIONING || !m_silf->aCollision() || !face.glyphs().hasBoxes() || !(m_silf->flags() & 0x20)),
+ E_BADCOLLISIONPASS))
+ return face.error(e);
+ m_numCollRuns = flags & 0x7;
+ m_kernColls = (flags >> 3) & 0x3;
+ m_isReverseDir = (flags >> 5) & 0x1;
+ m_iMaxLoop = be::read<byte>(p);
+ if (m_iMaxLoop < 1) m_iMaxLoop = 1;
+ be::skip<byte>(p,2); // skip maxContext & maxBackup
+ m_numRules = be::read<uint16>(p);
+ if (e.test(!m_numRules && m_numCollRuns == 0, E_BADEMPTYPASS)) return face.error(e);
+ be::skip<uint16>(p); // fsmOffset - not sure why we would want this
+ const byte * const pcCode = pass_start + be::read<uint32>(p) - subtable_base,
+ * const rcCode = pass_start + be::read<uint32>(p) - subtable_base,
+ * const aCode = pass_start + be::read<uint32>(p) - subtable_base;
+ be::skip<uint32>(p);
+ m_numStates = be::read<uint16>(p);
+ m_numTransition = be::read<uint16>(p);
+ m_numSuccess = be::read<uint16>(p);
+ m_numColumns = be::read<uint16>(p);
+ numRanges = be::read<uint16>(p);
+ be::skip<uint16>(p, 3); // skip searchRange, entrySelector & rangeShift.
+ assert(p - pass_start == 40);
+ // Perform some sanity checks.
+ if ( e.test(m_numTransition > m_numStates, E_BADNUMTRANS)
+ || e.test(m_numSuccess > m_numStates, E_BADNUMSUCCESS)
+ || e.test(m_numSuccess + m_numTransition < m_numStates, E_BADNUMSTATES)
+ || e.test(m_numRules && numRanges == 0, E_NORANGES)
+ || e.test(m_numColumns > 0x7FFF, E_BADNUMCOLUMNS))
+ return face.error(e);
+
+ m_successStart = m_numStates - m_numSuccess;
+ // test for beyond end - 1 to account for reading uint16
+ if (e.test(p + numRanges * 6 - 2 > pass_end, E_BADPASSLENGTH)) return face.error(e);
+ m_numGlyphs = be::peek<uint16>(p + numRanges * 6 - 4) + 1;
+ // Calculate the start of various arrays.
+ const byte * const ranges = p;
+ be::skip<uint16>(p, numRanges*3);
+ const byte * const o_rule_map = p;
+ be::skip<uint16>(p, m_numSuccess + 1);
+
+ // More sanity checks
+ if (e.test(reinterpret_cast<const byte *>(o_rule_map + m_numSuccess*sizeof(uint16)) > pass_end
+ || p > pass_end, E_BADRULEMAPLEN))
+ return face.error(e);
+ const size_t numEntries = be::peek<uint16>(o_rule_map + m_numSuccess*sizeof(uint16));
+ const byte * const rule_map = p;
+ be::skip<uint16>(p, numEntries);
+
+ if (e.test(p + 2*sizeof(uint8) > pass_end, E_BADPASSLENGTH)) return face.error(e);
+ m_minPreCtxt = be::read<uint8>(p);
+ m_maxPreCtxt = be::read<uint8>(p);
+ if (e.test(m_minPreCtxt > m_maxPreCtxt, E_BADCTXTLENBOUNDS)) return face.error(e);
+ const byte * const start_states = p;
+ be::skip<int16>(p, m_maxPreCtxt - m_minPreCtxt + 1);
+ const uint16 * const sort_keys = reinterpret_cast<const uint16 *>(p);
+ be::skip<uint16>(p, m_numRules);
+ const byte * const precontext = p;
+ be::skip<byte>(p, m_numRules);
+
+ if (e.test(p + sizeof(uint16) + sizeof(uint8) > pass_end, E_BADCTXTLENS)) return face.error(e);
+ m_colThreshold = be::read<uint8>(p);
+ if (m_colThreshold == 0) m_colThreshold = 10; // A default
+ const size_t pass_constraint_len = be::read<uint16>(p);
+
+ const uint16 * const o_constraint = reinterpret_cast<const uint16 *>(p);
+ be::skip<uint16>(p, m_numRules + 1);
+ const uint16 * const o_actions = reinterpret_cast<const uint16 *>(p);
+ be::skip<uint16>(p, m_numRules + 1);
+ const byte * const states = p;
+ if (e.test(2u*m_numTransition*m_numColumns >= (unsigned)(pass_end - p), E_BADPASSLENGTH)
+ || e.test(p >= pass_end, E_BADPASSLENGTH))
+ return face.error(e);
+ be::skip<int16>(p, m_numTransition*m_numColumns);
+ be::skip<uint8>(p);
+ if (e.test(p != pcCode, E_BADPASSCCODEPTR)) return face.error(e);
+ be::skip<byte>(p, pass_constraint_len);
+ if (e.test(p != rcCode, E_BADRULECCODEPTR)
+ || e.test(size_t(rcCode - pcCode) != pass_constraint_len, E_BADCCODELEN)) return face.error(e);
+ be::skip<byte>(p, be::peek<uint16>(o_constraint + m_numRules));
+ if (e.test(p != aCode, E_BADACTIONCODEPTR)) return face.error(e);
+ be::skip<byte>(p, be::peek<uint16>(o_actions + m_numRules));
+
+ // We should be at the end or within the pass
+ if (e.test(p > pass_end, E_BADPASSLENGTH)) return face.error(e);
+
+ // Load the pass constraint if there is one.
+ if (pass_constraint_len)
+ {
+ face.error_context(face.error_context() + 1);
+ m_cPConstraint = vm::Machine::Code(true, pcCode, pcCode + pass_constraint_len,
+ precontext[0], be::peek<uint16>(sort_keys), *m_silf, face, PASS_TYPE_UNKNOWN);
+ if (e.test(!m_cPConstraint, E_OUTOFMEM)
+ || e.test(m_cPConstraint.status() != Code::loaded, m_cPConstraint.status() + E_CODEFAILURE))
+ return face.error(e);
+ face.error_context(face.error_context() - 1);
+ }
+ if (m_numRules)
+ {
+ if (!readRanges(ranges, numRanges, e)) return face.error(e);
+ if (!readRules(rule_map, numEntries, precontext, sort_keys,
+ o_constraint, rcCode, o_actions, aCode, face, pt, e)) return false;
+ }
+#ifdef GRAPHITE2_TELEMETRY
+ telemetry::category _states_cat(face.tele.states);
+#endif
+ return m_numRules ? readStates(start_states, states, o_rule_map, face, e) : true;
+}
+
+
+bool Pass::readRules(const byte * rule_map, const size_t num_entries,
+ const byte *precontext, const uint16 * sort_key,
+ const uint16 * o_constraint, const byte *rc_data,
+ const uint16 * o_action, const byte * ac_data,
+ Face & face, passtype pt, Error &e)
+{
+ const byte * const ac_data_end = ac_data + be::peek<uint16>(o_action + m_numRules);
+ const byte * const rc_data_end = rc_data + be::peek<uint16>(o_constraint + m_numRules);
+
+ precontext += m_numRules;
+ sort_key += m_numRules;
+ o_constraint += m_numRules;
+ o_action += m_numRules;
+
+ // Load rules.
+ const byte * ac_begin = 0, * rc_begin = 0,
+ * ac_end = ac_data + be::peek<uint16>(o_action),
+ * rc_end = rc_data + be::peek<uint16>(o_constraint);
+
+ // Allocate pools
+ m_rules = new Rule [m_numRules];
+ m_codes = new Code [m_numRules*2];
+ int totalSlots = 0;
+ const uint16 *tsort = sort_key;
+ for (int i = 0; i < m_numRules; ++i)
+ totalSlots += be::peek<uint16>(--tsort);
+ const size_t prog_pool_sz = vm::Machine::Code::estimateCodeDataOut(ac_end - ac_data + rc_end - rc_data, 2 * m_numRules, totalSlots);
+ m_progs = gralloc<byte>(prog_pool_sz);
+ byte * prog_pool_free = m_progs,
+ * prog_pool_end = m_progs + prog_pool_sz;
+ if (e.test(!(m_rules && m_codes && m_progs), E_OUTOFMEM)) return face.error(e);
+
+ Rule * r = m_rules + m_numRules - 1;
+ for (size_t n = m_numRules; r >= m_rules; --n, --r, ac_end = ac_begin, rc_end = rc_begin)
+ {
+ face.error_context((face.error_context() & 0xFFFF00) + EC_ARULE + int((n - 1) << 24));
+ r->preContext = *--precontext;
+ r->sort = be::peek<uint16>(--sort_key);
+#ifndef NDEBUG
+ r->rule_idx = uint16(n - 1);
+#endif
+ if (r->sort > 63 || r->preContext >= r->sort || r->preContext > m_maxPreCtxt || r->preContext < m_minPreCtxt)
+ return false;
+ ac_begin = ac_data + be::peek<uint16>(--o_action);
+ --o_constraint;
+ rc_begin = be::peek<uint16>(o_constraint) ? rc_data + be::peek<uint16>(o_constraint) : rc_end;
+
+ if (ac_begin > ac_end || ac_begin > ac_data_end || ac_end > ac_data_end
+ || rc_begin > rc_end || rc_begin > rc_data_end || rc_end > rc_data_end
+ || vm::Machine::Code::estimateCodeDataOut(ac_end - ac_begin + rc_end - rc_begin, 2, r->sort) > size_t(prog_pool_end - prog_pool_free))
+ return false;
+ r->action = new (m_codes+n*2-2) vm::Machine::Code(false, ac_begin, ac_end, r->preContext, r->sort, *m_silf, face, pt, &prog_pool_free);
+ r->constraint = new (m_codes+n*2-1) vm::Machine::Code(true, rc_begin, rc_end, r->preContext, r->sort, *m_silf, face, pt, &prog_pool_free);
+
+ if (e.test(!r->action || !r->constraint, E_OUTOFMEM)
+ || e.test(r->action->status() != Code::loaded, r->action->status() + E_CODEFAILURE)
+ || e.test(r->constraint->status() != Code::loaded, r->constraint->status() + E_CODEFAILURE)
+ || e.test(!r->constraint->immutable(), E_MUTABLECCODE))
+ return face.error(e);
+ }
+
+ byte * const moved_progs = prog_pool_free > m_progs ? static_cast<byte *>(realloc(m_progs, prog_pool_free - m_progs)) : 0;
+ if (e.test(!moved_progs, E_OUTOFMEM))
+ {
+ free(m_progs);
+ m_progs = 0;
+ return face.error(e);
+ }
+
+ if (moved_progs != m_progs)
+ {
+ for (Code * c = m_codes, * const ce = c + m_numRules*2; c != ce; ++c)
+ {
+ c->externalProgramMoved(moved_progs - m_progs);
+ }
+ m_progs = moved_progs;
+ }
+
+ // Load the rule entries map
+ face.error_context((face.error_context() & 0xFFFF00) + EC_APASS);
+ //TODO: Coverity: 1315804: FORWARD_NULL
+ RuleEntry * re = m_ruleMap = gralloc<RuleEntry>(num_entries);
+ if (e.test(!re, E_OUTOFMEM)) return face.error(e);
+ for (size_t n = num_entries; n; --n, ++re)
+ {
+ const ptrdiff_t rn = be::read<uint16>(rule_map);
+ if (e.test(rn >= m_numRules, E_BADRULENUM)) return face.error(e);
+ re->rule = m_rules + rn;
+ }
+
+ return true;
+}
+
+static int cmpRuleEntry(const void *a, const void *b) { return (*(RuleEntry *)a < *(RuleEntry *)b ? -1 :
+ (*(RuleEntry *)b < *(RuleEntry *)a ? 1 : 0)); }
+
+bool Pass::readStates(const byte * starts, const byte *states, const byte * o_rule_map, GR_MAYBE_UNUSED Face & face, Error &e)
+{
+#ifdef GRAPHITE2_TELEMETRY
+ telemetry::category _states_cat(face.tele.starts);
+#endif
+ m_startStates = gralloc<uint16>(m_maxPreCtxt - m_minPreCtxt + 1);
+#ifdef GRAPHITE2_TELEMETRY
+ telemetry::set_category(face.tele.states);
+#endif
+ m_states = gralloc<State>(m_numStates);
+#ifdef GRAPHITE2_TELEMETRY
+ telemetry::set_category(face.tele.transitions);
+#endif
+ m_transitions = gralloc<uint16>(m_numTransition * m_numColumns);
+
+ if (e.test(!m_startStates || !m_states || !m_transitions, E_OUTOFMEM)) return face.error(e);
+ // load start states
+ for (uint16 * s = m_startStates,
+ * const s_end = s + m_maxPreCtxt - m_minPreCtxt + 1; s != s_end; ++s)
+ {
+ *s = be::read<uint16>(starts);
+ if (e.test(*s >= m_numStates, E_BADSTATE))
+ {
+ face.error_context((face.error_context() & 0xFFFF00) + EC_ASTARTS + int((s - m_startStates) << 24));
+ return face.error(e); // true;
+ }
+ }
+
+ // load state transition table.
+ for (uint16 * t = m_transitions,
+ * const t_end = t + m_numTransition*m_numColumns; t != t_end; ++t)
+ {
+ *t = be::read<uint16>(states);
+ if (e.test(*t >= m_numStates, E_BADSTATE))
+ {
+ face.error_context((face.error_context() & 0xFFFF00) + EC_ATRANS + int(((t - m_transitions) / m_numColumns) << 8));
+ return face.error(e);
+ }
+ }
+
+ State * s = m_states,
+ * const success_begin = m_states + m_numStates - m_numSuccess;
+ const RuleEntry * rule_map_end = m_ruleMap + be::peek<uint16>(o_rule_map + m_numSuccess*sizeof(uint16));
+ for (size_t n = m_numStates; n; --n, ++s)
+ {
+ RuleEntry * const begin = s < success_begin ? 0 : m_ruleMap + be::read<uint16>(o_rule_map),
+ * const end = s < success_begin ? 0 : m_ruleMap + be::peek<uint16>(o_rule_map);
+
+ if (e.test(begin >= rule_map_end || end > rule_map_end || begin > end, E_BADRULEMAPPING))
+ {
+ face.error_context((face.error_context() & 0xFFFF00) + EC_ARULEMAP + int(n << 24));
+ return face.error(e);
+ }
+ s->rules = begin;
+ s->rules_end = (end - begin <= FiniteStateMachine::MAX_RULES)? end :
+ begin + FiniteStateMachine::MAX_RULES;
+ if (begin) // keep UBSan happy can't call qsort with null begin
+ qsort(begin, end - begin, sizeof(RuleEntry), &cmpRuleEntry);
+ }
+
+ return true;
+}
+
+bool Pass::readRanges(const byte * ranges, size_t num_ranges, Error &e)
+{
+ m_cols = gralloc<uint16>(m_numGlyphs);
+ if (e.test(!m_cols, E_OUTOFMEM)) return false;
+ memset(m_cols, 0xFF, m_numGlyphs * sizeof(uint16));
+ for (size_t n = num_ranges; n; --n)
+ {
+ uint16 * ci = m_cols + be::read<uint16>(ranges),
+ * ci_end = m_cols + be::read<uint16>(ranges) + 1,
+ col = be::read<uint16>(ranges);
+
+ if (e.test(ci >= ci_end || ci_end > m_cols+m_numGlyphs || col >= m_numColumns, E_BADRANGE))
+ return false;
+
+ // A glyph must only belong to one column at a time
+ while (ci != ci_end && *ci == 0xffff)
+ *ci++ = col;
+
+ if (e.test(ci != ci_end, E_BADRANGE))
+ return false;
+ }
+ return true;
+}
+
+
+bool Pass::runGraphite(vm::Machine & m, FiniteStateMachine & fsm, bool reverse) const
+{
+ Slot *s = m.slotMap().segment.first();
+ if (!s || !testPassConstraint(m)) return true;
+ if (reverse)
+ {
+ m.slotMap().segment.reverseSlots();
+ s = m.slotMap().segment.first();
+ }
+ if (m_numRules)
+ {
+ Slot *currHigh = s->next();
+
+#if !defined GRAPHITE2_NTRACING
+ if (fsm.dbgout) *fsm.dbgout << "rules" << json::array;
+ json::closer rules_array_closer(fsm.dbgout);
+#endif
+
+ m.slotMap().highwater(currHigh);
+ int lc = m_iMaxLoop;
+ do
+ {
+ findNDoRule(s, m, fsm);
+ if (m.status() != Machine::finished) return false;
+ if (s && (s == m.slotMap().highwater() || m.slotMap().highpassed() || --lc == 0)) {
+ if (!lc)
+ s = m.slotMap().highwater();
+ lc = m_iMaxLoop;
+ if (s)
+ m.slotMap().highwater(s->next());
+ }
+ } while (s);
+ }
+ //TODO: Use enums for flags
+ const bool collisions = m_numCollRuns || m_kernColls;
+
+ if (!collisions || !m.slotMap().segment.hasCollisionInfo())
+ return true;
+
+ if (m_numCollRuns)
+ {
+ if (!(m.slotMap().segment.flags() & Segment::SEG_INITCOLLISIONS))
+ {
+ m.slotMap().segment.positionSlots(0, 0, 0, m.slotMap().dir(), true);
+// m.slotMap().segment.flags(m.slotMap().segment.flags() | Segment::SEG_INITCOLLISIONS);
+ }
+ if (!collisionShift(&m.slotMap().segment, m.slotMap().dir(), fsm.dbgout))
+ return false;
+ }
+ if ((m_kernColls) && !collisionKern(&m.slotMap().segment, m.slotMap().dir(), fsm.dbgout))
+ return false;
+ if (collisions && !collisionFinish(&m.slotMap().segment, fsm.dbgout))
+ return false;
+ return true;
+}
+
+bool Pass::runFSM(FiniteStateMachine& fsm, Slot * slot) const
+{
+ fsm.reset(slot, m_maxPreCtxt);
+ if (fsm.slots.context() < m_minPreCtxt)
+ return false;
+
+ uint16 state = m_startStates[m_maxPreCtxt - fsm.slots.context()];
+ uint8 free_slots = SlotMap::MAX_SLOTS;
+ do
+ {
+ fsm.slots.pushSlot(slot);
+ if (slot->gid() >= m_numGlyphs
+ || m_cols[slot->gid()] == 0xffffU
+ || --free_slots == 0
+ || state >= m_numTransition)
+ return free_slots != 0;
+
+ const uint16 * transitions = m_transitions + state*m_numColumns;
+ state = transitions[m_cols[slot->gid()]];
+ if (state >= m_successStart)
+ fsm.rules.accumulate_rules(m_states[state]);
+
+ slot = slot->next();
+ } while (state != 0 && slot);
+
+ fsm.slots.pushSlot(slot);
+ return true;
+}
+
+#if !defined GRAPHITE2_NTRACING
+
+inline
+Slot * input_slot(const SlotMap & slots, const int n)
+{
+ Slot * s = slots[slots.context() + n];
+ if (!s->isCopied()) return s;
+
+ return s->prev() ? s->prev()->next() : (s->next() ? s->next()->prev() : slots.segment.last());
+}
+
+inline
+Slot * output_slot(const SlotMap & slots, const int n)
+{
+ Slot * s = slots[slots.context() + n - 1];
+ return s ? s->next() : slots.segment.first();
+}
+
+#endif //!defined GRAPHITE2_NTRACING
+
+void Pass::findNDoRule(Slot * & slot, Machine &m, FiniteStateMachine & fsm) const
+{
+ assert(slot);
+
+ if (runFSM(fsm, slot))
+ {
+ // Search for the first rule which passes the constraint
+ const RuleEntry * r = fsm.rules.begin(),
+ * const re = fsm.rules.end();
+ while (r != re && !testConstraint(*r->rule, m))
+ {
+ ++r;
+ if (m.status() != Machine::finished)
+ return;
+ }
+
+#if !defined GRAPHITE2_NTRACING
+ if (fsm.dbgout)
+ {
+ if (fsm.rules.size() != 0)
+ {
+ *fsm.dbgout << json::item << json::object;
+ dumpRuleEventConsidered(fsm, *r);
+ if (r != re)
+ {
+ const int adv = doAction(r->rule->action, slot, m);
+ dumpRuleEventOutput(fsm, *r->rule, slot);
+ if (r->rule->action->deletes()) fsm.slots.collectGarbage(slot);
+ adjustSlot(adv, slot, fsm.slots);
+ *fsm.dbgout << "cursor" << objectid(dslot(&fsm.slots.segment, slot))
+ << json::close; // Close RuelEvent object
+
+ return;
+ }
+ else
+ {
+ *fsm.dbgout << json::close // close "considered" array
+ << "output" << json::null
+ << "cursor" << objectid(dslot(&fsm.slots.segment, slot->next()))
+ << json::close;
+ }
+ }
+ }
+ else
+#endif
+ {
+ if (r != re)
+ {
+ const int adv = doAction(r->rule->action, slot, m);
+ if (m.status() != Machine::finished) return;
+ if (r->rule->action->deletes()) fsm.slots.collectGarbage(slot);
+ adjustSlot(adv, slot, fsm.slots);
+ return;
+ }
+ }
+ }
+
+ slot = slot->next();
+ return;
+}
+
+#if !defined GRAPHITE2_NTRACING
+
+void Pass::dumpRuleEventConsidered(const FiniteStateMachine & fsm, const RuleEntry & re) const
+{
+ *fsm.dbgout << "considered" << json::array;
+ for (const RuleEntry *r = fsm.rules.begin(); r != &re; ++r)
+ {
+ if (r->rule->preContext > fsm.slots.context())
+ continue;
+ *fsm.dbgout << json::flat << json::object
+ << "id" << r->rule - m_rules
+ << "failed" << true
+ << "input" << json::flat << json::object
+ << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, -r->rule->preContext)))
+ << "length" << r->rule->sort
+ << json::close // close "input"
+ << json::close; // close Rule object
+ }
+}
+
+
+void Pass::dumpRuleEventOutput(const FiniteStateMachine & fsm, const Rule & r, Slot * const last_slot) const
+{
+ *fsm.dbgout << json::item << json::flat << json::object
+ << "id" << &r - m_rules
+ << "failed" << false
+ << "input" << json::flat << json::object
+ << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, 0)))
+ << "length" << r.sort - r.preContext
+ << json::close // close "input"
+ << json::close // close Rule object
+ << json::close // close considered array
+ << "output" << json::object
+ << "range" << json::flat << json::object
+ << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, 0)))
+ << "end" << objectid(dslot(&fsm.slots.segment, last_slot))
+ << json::close // close "input"
+ << "slots" << json::array;
+ const Position rsb_prepos = last_slot ? last_slot->origin() : fsm.slots.segment.advance();
+ fsm.slots.segment.positionSlots(0, 0, 0, fsm.slots.segment.currdir());
+
+ for(Slot * slot = output_slot(fsm.slots, 0); slot != last_slot; slot = slot->next())
+ *fsm.dbgout << dslot(&fsm.slots.segment, slot);
+ *fsm.dbgout << json::close // close "slots"
+ << "postshift" << (last_slot ? last_slot->origin() : fsm.slots.segment.advance()) - rsb_prepos
+ << json::close; // close "output" object
+
+}
+
+#endif
+
+
+inline
+bool Pass::testPassConstraint(Machine & m) const
+{
+ if (!m_cPConstraint) return true;
+
+ assert(m_cPConstraint.constraint());
+
+ m.slotMap().reset(*m.slotMap().segment.first(), 0);
+ m.slotMap().pushSlot(m.slotMap().segment.first());
+ vm::slotref * map = m.slotMap().begin();
+ const uint32 ret = m_cPConstraint.run(m, map);
+
+#if !defined GRAPHITE2_NTRACING
+ json * const dbgout = m.slotMap().segment.getFace()->logger();
+ if (dbgout)
+ *dbgout << "constraint" << (ret && m.status() == Machine::finished);
+#endif
+
+ return ret && m.status() == Machine::finished;
+}
+
+
+bool Pass::testConstraint(const Rule & r, Machine & m) const
+{
+ const uint16 curr_context = m.slotMap().context();
+ if (unsigned(r.sort + curr_context - r.preContext) > m.slotMap().size()
+ || curr_context - r.preContext < 0) return false;
+
+ vm::slotref * map = m.slotMap().begin() + curr_context - r.preContext;
+ if (map[r.sort - 1] == 0)
+ return false;
+
+ if (!*r.constraint) return true;
+ assert(r.constraint->constraint());
+ for (int n = r.sort; n && map; --n, ++map)
+ {
+ if (!*map) continue;
+ const int32 ret = r.constraint->run(m, map);
+ if (!ret || m.status() != Machine::finished)
+ return false;
+ }
+
+ return true;
+}
+
+
+void SlotMap::collectGarbage(Slot * &aSlot)
+{
+ for(Slot **s = begin(), *const *const se = end() - 1; s != se; ++s) {
+ Slot *& slot = *s;
+ if(slot && (slot->isDeleted() || slot->isCopied()))
+ {
+ if (slot == aSlot)
+ aSlot = slot->prev() ? slot->prev() : slot->next();
+ segment.freeSlot(slot);
+ }
+ }
+}
+
+
+
+int Pass::doAction(const Code *codeptr, Slot * & slot_out, vm::Machine & m) const
+{
+ assert(codeptr);
+ if (!*codeptr) return 0;
+ SlotMap & smap = m.slotMap();
+ vm::slotref * map = &smap[smap.context()];
+ smap.highpassed(false);
+
+ int32 ret = codeptr->run(m, map);
+
+ if (m.status() != Machine::finished)
+ {
+ slot_out = NULL;
+ smap.highwater(0);
+ return 0;
+ }
+
+ slot_out = *map;
+ return ret;
+}
+
+
+void Pass::adjustSlot(int delta, Slot * & slot_out, SlotMap & smap) const
+{
+ if (!slot_out)
+ {
+ if (smap.highpassed() || slot_out == smap.highwater())
+ {
+ slot_out = smap.segment.last();
+ ++delta;
+ if (!smap.highwater() || smap.highwater() == slot_out)
+ smap.highpassed(false);
+ }
+ else
+ {
+ slot_out = smap.segment.first();
+ --delta;
+ }
+ }
+ if (delta < 0)
+ {
+ while (++delta <= 0 && slot_out)
+ {
+ slot_out = slot_out->prev();
+ if (smap.highpassed() && smap.highwater() == slot_out)
+ smap.highpassed(false);
+ }
+ }
+ else if (delta > 0)
+ {
+ while (--delta >= 0 && slot_out)
+ {
+ if (slot_out == smap.highwater() && slot_out)
+ smap.highpassed(true);
+ slot_out = slot_out->next();
+ }
+ }
+}
+
+bool Pass::collisionShift(Segment *seg, int dir, json * const dbgout) const
+{
+ ShiftCollider shiftcoll(dbgout);
+ // bool isfirst = true;
+ bool hasCollisions = false;
+ Slot *start = seg->first(); // turn on collision fixing for the first slot
+ Slot *end = NULL;
+ bool moved = false;
+
+#if !defined GRAPHITE2_NTRACING
+ if (dbgout)
+ *dbgout << "collisions" << json::array
+ << json::flat << json::object << "num-loops" << m_numCollRuns << json::close;
+#endif
+
+ while (start)
+ {
+#if !defined GRAPHITE2_NTRACING
+ if (dbgout) *dbgout << json::object << "phase" << "1" << "moves" << json::array;
+#endif
+ hasCollisions = false;
+ end = NULL;
+ // phase 1 : position shiftable glyphs, ignoring kernable glyphs
+ for (Slot *s = start; s; s = s->next())
+ {
+ const SlotCollision * c = seg->collisionInfo(s);
+ if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN)) == SlotCollision::COLL_FIX
+ && !resolveCollisions(seg, s, start, shiftcoll, false, dir, moved, hasCollisions, dbgout))
+ return false;
+ if (s != start && (c->flags() & SlotCollision::COLL_END))
+ {
+ end = s->next();
+ break;
+ }
+ }
+
+#if !defined GRAPHITE2_NTRACING
+ if (dbgout)
+ *dbgout << json::close << json::close; // phase-1
+#endif
+
+ // phase 2 : loop until happy.
+ for (int i = 0; i < m_numCollRuns - 1; ++i)
+ {
+ if (hasCollisions || moved)
+ {
+
+#if !defined GRAPHITE2_NTRACING
+ if (dbgout)
+ *dbgout << json::object << "phase" << "2a" << "loop" << i << "moves" << json::array;
+#endif
+ // phase 2a : if any shiftable glyphs are in collision, iterate backwards,
+ // fixing them and ignoring other non-collided glyphs. Note that this handles ONLY
+ // glyphs that are actually in collision from phases 1 or 2b, and working backwards
+ // has the intended effect of breaking logjams.
+ if (hasCollisions)
+ {
+ hasCollisions = false;
+ #if 0
+ moved = true;
+ for (Slot *s = start; s != end; s = s->next())
+ {
+ SlotCollision * c = seg->collisionInfo(s);
+ c->setShift(Position(0, 0));
+ }
+ #endif
+ Slot *lend = end ? end->prev() : seg->last();
+ Slot *lstart = start->prev();
+ for (Slot *s = lend; s != lstart; s = s->prev())
+ {
+ SlotCollision * c = seg->collisionInfo(s);
+ if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN | SlotCollision::COLL_ISCOL))
+ == (SlotCollision::COLL_FIX | SlotCollision::COLL_ISCOL)) // ONLY if this glyph is still colliding
+ {
+ if (!resolveCollisions(seg, s, lend, shiftcoll, true, dir, moved, hasCollisions, dbgout))
+ return false;
+ c->setFlags(c->flags() | SlotCollision::COLL_TEMPLOCK);
+ }
+ }
+ }
+
+#if !defined GRAPHITE2_NTRACING
+ if (dbgout)
+ *dbgout << json::close << json::close // phase 2a
+ << json::object << "phase" << "2b" << "loop" << i << "moves" << json::array;
+#endif
+
+ // phase 2b : redo basic diacritic positioning pass for ALL glyphs. Each successive loop adjusts
+ // glyphs from their current adjusted position, which has the effect of gradually minimizing the
+ // resulting adjustment; ie, the final result will be gradually closer to the original location.
+ // Also it allows more flexibility in the final adjustment, since it is moving along the
+ // possible 8 vectors from successively different starting locations.
+ if (moved)
+ {
+ moved = false;
+ for (Slot *s = start; s != end; s = s->next())
+ {
+ SlotCollision * c = seg->collisionInfo(s);
+ if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_TEMPLOCK
+ | SlotCollision::COLL_KERN)) == SlotCollision::COLL_FIX
+ && !resolveCollisions(seg, s, start, shiftcoll, false, dir, moved, hasCollisions, dbgout))
+ return false;
+ else if (c->flags() & SlotCollision::COLL_TEMPLOCK)
+ c->setFlags(c->flags() & ~SlotCollision::COLL_TEMPLOCK);
+ }
+ }
+ // if (!hasCollisions) // no, don't leave yet because phase 2b will continue to improve things
+ // break;
+#if !defined GRAPHITE2_NTRACING
+ if (dbgout)
+ *dbgout << json::close << json::close; // phase 2
+#endif
+ }
+ }
+ if (!end)
+ break;
+ start = NULL;
+ for (Slot *s = end->prev(); s; s = s->next())
+ {
+ if (seg->collisionInfo(s)->flags() & SlotCollision::COLL_START)
+ {
+ start = s;
+ break;
+ }
+ }
+ }
+ return true;
+}
+
+bool Pass::collisionKern(Segment *seg, int dir, json * const dbgout) const
+{
+ Slot *start = seg->first();
+ float ymin = 1e38f;
+ float ymax = -1e38f;
+ const GlyphCache &gc = seg->getFace()->glyphs();
+
+ // phase 3 : handle kerning of clusters
+#if !defined GRAPHITE2_NTRACING
+ if (dbgout)
+ *dbgout << json::object << "phase" << "3" << "moves" << json::array;
+#endif
+
+ for (Slot *s = seg->first(); s; s = s->next())
+ {
+ if (!gc.check(s->gid()))
+ return false;
+ const SlotCollision * c = seg->collisionInfo(s);
+ const Rect &bbox = seg->theGlyphBBoxTemporary(s->gid());
+ float y = s->origin().y + c->shift().y;
+ if (!(c->flags() & SlotCollision::COLL_ISSPACE))
+ {
+ ymax = max(y + bbox.tr.y, ymax);
+ ymin = min(y + bbox.bl.y, ymin);
+ }
+ if (start && (c->flags() & (SlotCollision::COLL_KERN | SlotCollision::COLL_FIX))
+ == (SlotCollision::COLL_KERN | SlotCollision::COLL_FIX))
+ resolveKern(seg, s, start, dir, ymin, ymax, dbgout);
+ if (c->flags() & SlotCollision::COLL_END)
+ start = NULL;
+ if (c->flags() & SlotCollision::COLL_START)
+ start = s;
+ }
+
+#if !defined GRAPHITE2_NTRACING
+ if (dbgout)
+ *dbgout << json::close << json::close; // phase 3
+#endif
+ return true;
+}
+
+bool Pass::collisionFinish(Segment *seg, GR_MAYBE_UNUSED json * const dbgout) const
+{
+ for (Slot *s = seg->first(); s; s = s->next())
+ {
+ SlotCollision *c = seg->collisionInfo(s);
+ if (c->shift().x != 0 || c->shift().y != 0)
+ {
+ const Position newOffset = c->shift();
+ const Position nullPosition(0, 0);
+ c->setOffset(newOffset + c->offset());
+ c->setShift(nullPosition);
+ }
+ }
+// seg->positionSlots();
+
+#if !defined GRAPHITE2_NTRACING
+ if (dbgout)
+ *dbgout << json::close;
+#endif
+ return true;
+}
+
+// Can slot s be kerned, or is it attached to something that can be kerned?
+static bool inKernCluster(Segment *seg, Slot *s)
+{
+ SlotCollision *c = seg->collisionInfo(s);
+ if (c->flags() & SlotCollision::COLL_KERN /** && c->flags() & SlotCollision::COLL_FIX **/ )
+ return true;
+ while (s->attachedTo())
+ {
+ s = s->attachedTo();
+ c = seg->collisionInfo(s);
+ if (c->flags() & SlotCollision::COLL_KERN /** && c->flags() & SlotCollision::COLL_FIX **/ )
+ return true;
+ }
+ return false;
+}
+
+// Fix collisions for the given slot.
+// Return true if everything was fixed, false if there are still collisions remaining.
+// isRev means be we are processing backwards.
+bool Pass::resolveCollisions(Segment *seg, Slot *slotFix, Slot *start,
+ ShiftCollider &coll, GR_MAYBE_UNUSED bool isRev, int dir, bool &moved, bool &hasCol,
+ json * const dbgout) const
+{
+ Slot * nbor; // neighboring slot
+ SlotCollision *cFix = seg->collisionInfo(slotFix);
+ if (!coll.initSlot(seg, slotFix, cFix->limit(), cFix->margin(), cFix->marginWt(),
+ cFix->shift(), cFix->offset(), dir, dbgout))
+ return false;
+ bool collides = false;
+ // When we're processing forward, ignore kernable glyphs that preceed the target glyph.
+ // When processing backward, don't ignore these until we pass slotFix.
+ bool ignoreForKern = !isRev;
+ bool rtl = dir & 1;
+ Slot *base = slotFix;
+ while (base->attachedTo())
+ base = base->attachedTo();
+ Position zero(0., 0.);
+
+ // Look for collisions with the neighboring glyphs.
+ for (nbor = start; nbor; nbor = isRev ? nbor->prev() : nbor->next())
+ {
+ SlotCollision *cNbor = seg->collisionInfo(nbor);
+ bool sameCluster = nbor->isChildOf(base);
+ if (nbor != slotFix // don't process if this is the slot of interest
+ && !(cNbor->ignore()) // don't process if ignoring
+ && (nbor == base || sameCluster // process if in the same cluster as slotFix
+ || !inKernCluster(seg, nbor)) // or this cluster is not to be kerned
+// || (rtl ^ ignoreForKern)) // or it comes before(ltr) or after(rtl)
+ && (!isRev // if processing forwards then good to merge otherwise only:
+ || !(cNbor->flags() & SlotCollision::COLL_FIX) // merge in immovable stuff
+ || ((cNbor->flags() & SlotCollision::COLL_KERN) && !sameCluster) // ignore other kernable clusters
+ || (cNbor->flags() & SlotCollision::COLL_ISCOL)) // test against other collided glyphs
+ && !coll.mergeSlot(seg, nbor, cNbor, cNbor->shift(), !ignoreForKern, sameCluster, collides, false, dbgout))
+ return false;
+ else if (nbor == slotFix)
+ // Switching sides of this glyph - if we were ignoring kernable stuff before, don't anymore.
+ ignoreForKern = !ignoreForKern;
+
+ if (nbor != start && (cNbor->flags() & (isRev ? SlotCollision::COLL_START : SlotCollision::COLL_END)))
+ break;
+ }
+ bool isCol = false;
+ if (collides || cFix->shift().x != 0.f || cFix->shift().y != 0.f)
+ {
+ Position shift = coll.resolve(seg, isCol, dbgout);
+ // isCol has been set to true if a collision remains.
+ if (std::fabs(shift.x) < 1e38f && std::fabs(shift.y) < 1e38f)
+ {
+ if (sqr(shift.x-cFix->shift().x) + sqr(shift.y-cFix->shift().y) >= m_colThreshold * m_colThreshold)
+ moved = true;
+ cFix->setShift(shift);
+ if (slotFix->firstChild())
+ {
+ Rect bbox;
+ Position here = slotFix->origin() + shift;
+ float clusterMin = here.x;
+ slotFix->firstChild()->finalise(seg, NULL, here, bbox, 0, clusterMin, rtl, false);
+ }
+ }
+ }
+ else
+ {
+ // This glyph is not colliding with anything.
+#if !defined GRAPHITE2_NTRACING
+ if (dbgout)
+ {
+ *dbgout << json::object
+ << "missed" << objectid(dslot(seg, slotFix));
+ coll.outputJsonDbg(dbgout, seg, -1);
+ *dbgout << json::close;
+ }
+#endif
+ }
+
+ // Set the is-collision flag bit.
+ if (isCol)
+ { cFix->setFlags(cFix->flags() | SlotCollision::COLL_ISCOL | SlotCollision::COLL_KNOWN); }
+ else
+ { cFix->setFlags((cFix->flags() & ~SlotCollision::COLL_ISCOL) | SlotCollision::COLL_KNOWN); }
+ hasCol |= isCol;
+ return true;
+}
+
+float Pass::resolveKern(Segment *seg, Slot *slotFix, GR_MAYBE_UNUSED Slot *start, int dir,
+ float &ymin, float &ymax, json *const dbgout) const
+{
+ Slot *nbor; // neighboring slot
+ float currSpace = 0.;
+ bool collides = false;
+ unsigned int space_count = 0;
+ Slot *base = slotFix;
+ while (base->attachedTo())
+ base = base->attachedTo();
+ SlotCollision *cFix = seg->collisionInfo(base);
+ const GlyphCache &gc = seg->getFace()->glyphs();
+ const Rect &bbb = seg->theGlyphBBoxTemporary(slotFix->gid());
+ const float by = slotFix->origin().y + cFix->shift().y;
+
+ if (base != slotFix)
+ {
+ cFix->setFlags(cFix->flags() | SlotCollision::COLL_KERN | SlotCollision::COLL_FIX);
+ return 0;
+ }
+ bool seenEnd = (cFix->flags() & SlotCollision::COLL_END) != 0;
+ bool isInit = false;
+ KernCollider coll(dbgout);
+
+ ymax = max(by + bbb.tr.y, ymax);
+ ymin = min(by + bbb.bl.y, ymin);
+ for (nbor = slotFix->next(); nbor; nbor = nbor->next())
+ {
+ if (nbor->isChildOf(base))
+ continue;
+ if (!gc.check(nbor->gid()))
+ return 0.;
+ const Rect &bb = seg->theGlyphBBoxTemporary(nbor->gid());
+ SlotCollision *cNbor = seg->collisionInfo(nbor);
+ if ((bb.bl.y == 0.f && bb.tr.y == 0.f) || (cNbor->flags() & SlotCollision::COLL_ISSPACE))
+ {
+ if (m_kernColls == InWord)
+ break;
+ // Add space for a space glyph.
+ currSpace += nbor->advance();
+ ++space_count;
+ }
+ else
+ {
+ space_count = 0;
+ if (nbor != slotFix && !cNbor->ignore())
+ {
+ seenEnd = true;
+ if (!isInit)
+ {
+ if (!coll.initSlot(seg, slotFix, cFix->limit(), cFix->margin(),
+ cFix->shift(), cFix->offset(), dir, ymin, ymax, dbgout))
+ return 0.;
+ isInit = true;
+ }
+ collides |= coll.mergeSlot(seg, nbor, cNbor->shift(), currSpace, dir, dbgout);
+ }
+ }
+ if (cNbor->flags() & SlotCollision::COLL_END)
+ {
+ if (seenEnd && space_count < 2)
+ break;
+ else
+ seenEnd = true;
+ }
+ }
+ if (collides)
+ {
+ Position mv = coll.resolve(seg, slotFix, dir, dbgout);
+ coll.shift(mv, dir);
+ Position delta = slotFix->advancePos() + mv - cFix->shift();
+ slotFix->advance(delta);
+ cFix->setShift(mv);
+ return mv.x;
+ }
+ return 0.;
+}