diff options
Diffstat (limited to 'thirdparty/etcpak/ProcessRGB.cpp')
-rw-r--r-- | thirdparty/etcpak/ProcessRGB.cpp | 3100 |
1 files changed, 3100 insertions, 0 deletions
diff --git a/thirdparty/etcpak/ProcessRGB.cpp b/thirdparty/etcpak/ProcessRGB.cpp new file mode 100644 index 0000000000..7f4524d105 --- /dev/null +++ b/thirdparty/etcpak/ProcessRGB.cpp @@ -0,0 +1,3100 @@ +#include <array> +#include <string.h> +#include <limits> + +#ifdef __ARM_NEON +# include <arm_neon.h> +#endif + +#include "Dither.hpp" +#include "ForceInline.hpp" +#include "Math.hpp" +#include "ProcessCommon.hpp" +#include "ProcessRGB.hpp" +#include "Tables.hpp" +#include "Vector.hpp" +#if defined __SSE4_1__ || defined __AVX2__ || defined _MSC_VER +# ifdef _MSC_VER +# include <intrin.h> +# include <Windows.h> +# define _bswap(x) _byteswap_ulong(x) +# define _bswap64(x) _byteswap_uint64(x) +# else +# include <x86intrin.h> +# endif +#endif + +#ifndef _bswap +# define _bswap(x) __builtin_bswap32(x) +# define _bswap64(x) __builtin_bswap64(x) +#endif + +namespace +{ + +#if defined _MSC_VER && !defined __clang__ +static etcpak_force_inline unsigned long _bit_scan_forward( unsigned long mask ) +{ + unsigned long ret; + _BitScanForward( &ret, mask ); + return ret; +} +#endif + +typedef std::array<uint16_t, 4> v4i; + +#ifdef __AVX2__ +static etcpak_force_inline __m256i Sum4_AVX2( const uint8_t* data) noexcept +{ + __m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0); + __m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1); + __m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2); + __m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3); + + __m128i dm0 = _mm_and_si128(d0, _mm_set1_epi32(0x00FFFFFF)); + __m128i dm1 = _mm_and_si128(d1, _mm_set1_epi32(0x00FFFFFF)); + __m128i dm2 = _mm_and_si128(d2, _mm_set1_epi32(0x00FFFFFF)); + __m128i dm3 = _mm_and_si128(d3, _mm_set1_epi32(0x00FFFFFF)); + + __m256i t0 = _mm256_cvtepu8_epi16(dm0); + __m256i t1 = _mm256_cvtepu8_epi16(dm1); + __m256i t2 = _mm256_cvtepu8_epi16(dm2); + __m256i t3 = _mm256_cvtepu8_epi16(dm3); + + __m256i sum0 = _mm256_add_epi16(t0, t1); + __m256i sum1 = _mm256_add_epi16(t2, t3); + + __m256i s0 = _mm256_permute2x128_si256(sum0, sum1, (0) | (3 << 4)); // 0, 0, 3, 3 + __m256i s1 = _mm256_permute2x128_si256(sum0, sum1, (1) | (2 << 4)); // 1, 1, 2, 2 + + __m256i s2 = _mm256_permute4x64_epi64(s0, _MM_SHUFFLE(1, 3, 0, 2)); + __m256i s3 = _mm256_permute4x64_epi64(s0, _MM_SHUFFLE(0, 2, 1, 3)); + __m256i s4 = _mm256_permute4x64_epi64(s1, _MM_SHUFFLE(3, 1, 0, 2)); + __m256i s5 = _mm256_permute4x64_epi64(s1, _MM_SHUFFLE(2, 0, 1, 3)); + + __m256i sum5 = _mm256_add_epi16(s2, s3); // 3, 0, 3, 0 + __m256i sum6 = _mm256_add_epi16(s4, s5); // 2, 1, 1, 2 + return _mm256_add_epi16(sum5, sum6); // 3+2, 0+1, 3+1, 3+2 +} + +static etcpak_force_inline __m256i Average_AVX2( const __m256i data) noexcept +{ + __m256i a = _mm256_add_epi16(data, _mm256_set1_epi16(4)); + + return _mm256_srli_epi16(a, 3); +} + +static etcpak_force_inline __m128i CalcErrorBlock_AVX2( const __m256i data, const v4i a[8]) noexcept +{ + // + __m256i a0 = _mm256_load_si256((__m256i*)a[0].data()); + __m256i a1 = _mm256_load_si256((__m256i*)a[4].data()); + + // err = 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) ); + __m256i a4 = _mm256_madd_epi16(a0, a0); + __m256i a5 = _mm256_madd_epi16(a1, a1); + + __m256i a6 = _mm256_hadd_epi32(a4, a5); + __m256i a7 = _mm256_slli_epi32(a6, 3); + + __m256i a8 = _mm256_add_epi32(a7, _mm256_set1_epi32(0x3FFFFFFF)); // Big value to prevent negative values, but small enough to prevent overflow + + // average is not swapped + // err -= block[0] * 2 * average[0]; + // err -= block[1] * 2 * average[1]; + // err -= block[2] * 2 * average[2]; + __m256i a2 = _mm256_slli_epi16(a0, 1); + __m256i a3 = _mm256_slli_epi16(a1, 1); + __m256i b0 = _mm256_madd_epi16(a2, data); + __m256i b1 = _mm256_madd_epi16(a3, data); + + __m256i b2 = _mm256_hadd_epi32(b0, b1); + __m256i b3 = _mm256_sub_epi32(a8, b2); + __m256i b4 = _mm256_hadd_epi32(b3, b3); + + __m256i b5 = _mm256_permutevar8x32_epi32(b4, _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0)); + + return _mm256_castsi256_si128(b5); +} + +static etcpak_force_inline void ProcessAverages_AVX2(const __m256i d, v4i a[8] ) noexcept +{ + __m256i t = _mm256_add_epi16(_mm256_mullo_epi16(d, _mm256_set1_epi16(31)), _mm256_set1_epi16(128)); + + __m256i c = _mm256_srli_epi16(_mm256_add_epi16(t, _mm256_srli_epi16(t, 8)), 8); + + __m256i c1 = _mm256_shuffle_epi32(c, _MM_SHUFFLE(3, 2, 3, 2)); + __m256i diff = _mm256_sub_epi16(c, c1); + diff = _mm256_max_epi16(diff, _mm256_set1_epi16(-4)); + diff = _mm256_min_epi16(diff, _mm256_set1_epi16(3)); + + __m256i co = _mm256_add_epi16(c1, diff); + + c = _mm256_blend_epi16(co, c, 0xF0); + + __m256i a0 = _mm256_or_si256(_mm256_slli_epi16(c, 3), _mm256_srli_epi16(c, 2)); + + _mm256_store_si256((__m256i*)a[4].data(), a0); + + __m256i t0 = _mm256_add_epi16(_mm256_mullo_epi16(d, _mm256_set1_epi16(15)), _mm256_set1_epi16(128)); + __m256i t1 = _mm256_srli_epi16(_mm256_add_epi16(t0, _mm256_srli_epi16(t0, 8)), 8); + + __m256i t2 = _mm256_or_si256(t1, _mm256_slli_epi16(t1, 4)); + + _mm256_store_si256((__m256i*)a[0].data(), t2); +} + +static etcpak_force_inline uint64_t EncodeAverages_AVX2( const v4i a[8], size_t idx ) noexcept +{ + uint64_t d = ( idx << 24 ); + size_t base = idx << 1; + + __m128i a0 = _mm_load_si128((const __m128i*)a[base].data()); + + __m128i r0, r1; + + if( ( idx & 0x2 ) == 0 ) + { + r0 = _mm_srli_epi16(a0, 4); + + __m128i a1 = _mm_unpackhi_epi64(r0, r0); + r1 = _mm_slli_epi16(a1, 4); + } + else + { + __m128i a1 = _mm_and_si128(a0, _mm_set1_epi16(-8)); + + r0 = _mm_unpackhi_epi64(a1, a1); + __m128i a2 = _mm_sub_epi16(a1, r0); + __m128i a3 = _mm_srai_epi16(a2, 3); + r1 = _mm_and_si128(a3, _mm_set1_epi16(0x07)); + } + + __m128i r2 = _mm_or_si128(r0, r1); + // do missing swap for average values + __m128i r3 = _mm_shufflelo_epi16(r2, _MM_SHUFFLE(3, 0, 1, 2)); + __m128i r4 = _mm_packus_epi16(r3, _mm_setzero_si128()); + d |= _mm_cvtsi128_si32(r4); + + return d; +} + +static etcpak_force_inline uint64_t CheckSolid_AVX2( const uint8_t* src ) noexcept +{ + __m256i d0 = _mm256_loadu_si256(((__m256i*)src) + 0); + __m256i d1 = _mm256_loadu_si256(((__m256i*)src) + 1); + + __m256i c = _mm256_broadcastd_epi32(_mm256_castsi256_si128(d0)); + + __m256i c0 = _mm256_cmpeq_epi8(d0, c); + __m256i c1 = _mm256_cmpeq_epi8(d1, c); + + __m256i m = _mm256_and_si256(c0, c1); + + if (!_mm256_testc_si256(m, _mm256_set1_epi32(-1))) + { + return 0; + } + + return 0x02000000 | + ( (unsigned int)( src[0] & 0xF8 ) << 16 ) | + ( (unsigned int)( src[1] & 0xF8 ) << 8 ) | + ( (unsigned int)( src[2] & 0xF8 ) ); +} + +static etcpak_force_inline __m128i PrepareAverages_AVX2( v4i a[8], const uint8_t* src) noexcept +{ + __m256i sum4 = Sum4_AVX2( src ); + + ProcessAverages_AVX2(Average_AVX2( sum4 ), a ); + + return CalcErrorBlock_AVX2( sum4, a); +} + +static etcpak_force_inline __m128i PrepareAverages_AVX2( v4i a[8], const __m256i sum4) noexcept +{ + ProcessAverages_AVX2(Average_AVX2( sum4 ), a ); + + return CalcErrorBlock_AVX2( sum4, a); +} + +static etcpak_force_inline void FindBestFit_4x2_AVX2( uint32_t terr[2][8], uint32_t tsel[8], v4i a[8], const uint32_t offset, const uint8_t* data) noexcept +{ + __m256i sel0 = _mm256_setzero_si256(); + __m256i sel1 = _mm256_setzero_si256(); + + for (unsigned int j = 0; j < 2; ++j) + { + unsigned int bid = offset + 1 - j; + + __m256i squareErrorSum = _mm256_setzero_si256(); + + __m128i a0 = _mm_loadl_epi64((const __m128i*)a[bid].data()); + __m256i a1 = _mm256_broadcastq_epi64(a0); + + // Processing one full row each iteration + for (size_t i = 0; i < 8; i += 4) + { + __m128i rgb = _mm_loadu_si128((const __m128i*)(data + i * 4)); + + __m256i rgb16 = _mm256_cvtepu8_epi16(rgb); + __m256i d = _mm256_sub_epi16(a1, rgb16); + + // The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16 + // This produces slightly different results, but is significant faster + __m256i pixel0 = _mm256_madd_epi16(d, _mm256_set_epi16(0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14)); + __m256i pixel1 = _mm256_packs_epi32(pixel0, pixel0); + __m256i pixel2 = _mm256_hadd_epi16(pixel1, pixel1); + __m128i pixel3 = _mm256_castsi256_si128(pixel2); + + __m128i pix0 = _mm_broadcastw_epi16(pixel3); + __m128i pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); + __m256i pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); + + // Processing first two pixels of the row + { + __m256i pix = _mm256_abs_epi16(pixel); + + // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. + // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. + __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); + __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); + + __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); + __m256i minError = _mm256_min_epi16(error0, error1); + + // Exploiting symmetry of the selector table and use the sign bit + // This produces slightly different results, but is significant faster + __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); + + // Interleaving values so madd instruction can be used + __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); + __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); + + __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); + // Squaring the minimum error to produce correct values when adding + __m256i squareError = _mm256_madd_epi16(minError2, minError2); + + squareErrorSum = _mm256_add_epi32(squareErrorSum, squareError); + + // Packing selector bits + __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i + j * 8)); + __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i + j * 8)); + + sel0 = _mm256_or_si256(sel0, minIndexLo2); + sel1 = _mm256_or_si256(sel1, minIndexHi2); + } + + pixel3 = _mm256_extracti128_si256(pixel2, 1); + pix0 = _mm_broadcastw_epi16(pixel3); + pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); + pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); + + // Processing second two pixels of the row + { + __m256i pix = _mm256_abs_epi16(pixel); + + // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. + // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. + __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); + __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); + + __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); + __m256i minError = _mm256_min_epi16(error0, error1); + + // Exploiting symmetry of the selector table and use the sign bit + __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); + + // Interleaving values so madd instruction can be used + __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); + __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); + + __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); + // Squaring the minimum error to produce correct values when adding + __m256i squareError = _mm256_madd_epi16(minError2, minError2); + + squareErrorSum = _mm256_add_epi32(squareErrorSum, squareError); + + // Packing selector bits + __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i + j * 8)); + __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i + j * 8)); + __m256i minIndexLo3 = _mm256_slli_epi16(minIndexLo2, 2); + __m256i minIndexHi3 = _mm256_slli_epi16(minIndexHi2, 2); + + sel0 = _mm256_or_si256(sel0, minIndexLo3); + sel1 = _mm256_or_si256(sel1, minIndexHi3); + } + } + + data += 8 * 4; + + _mm256_store_si256((__m256i*)terr[1 - j], squareErrorSum); + } + + // Interleave selector bits + __m256i minIndexLo0 = _mm256_unpacklo_epi16(sel0, sel1); + __m256i minIndexHi0 = _mm256_unpackhi_epi16(sel0, sel1); + + __m256i minIndexLo1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (0) | (2 << 4)); + __m256i minIndexHi1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (1) | (3 << 4)); + + __m256i minIndexHi2 = _mm256_slli_epi32(minIndexHi1, 1); + + __m256i sel = _mm256_or_si256(minIndexLo1, minIndexHi2); + + _mm256_store_si256((__m256i*)tsel, sel); +} + +static etcpak_force_inline void FindBestFit_2x4_AVX2( uint32_t terr[2][8], uint32_t tsel[8], v4i a[8], const uint32_t offset, const uint8_t* data) noexcept +{ + __m256i sel0 = _mm256_setzero_si256(); + __m256i sel1 = _mm256_setzero_si256(); + + __m256i squareErrorSum0 = _mm256_setzero_si256(); + __m256i squareErrorSum1 = _mm256_setzero_si256(); + + __m128i a0 = _mm_loadl_epi64((const __m128i*)a[offset + 1].data()); + __m128i a1 = _mm_loadl_epi64((const __m128i*)a[offset + 0].data()); + + __m128i a2 = _mm_broadcastq_epi64(a0); + __m128i a3 = _mm_broadcastq_epi64(a1); + __m256i a4 = _mm256_insertf128_si256(_mm256_castsi128_si256(a2), a3, 1); + + // Processing one full row each iteration + for (size_t i = 0; i < 16; i += 4) + { + __m128i rgb = _mm_loadu_si128((const __m128i*)(data + i * 4)); + + __m256i rgb16 = _mm256_cvtepu8_epi16(rgb); + __m256i d = _mm256_sub_epi16(a4, rgb16); + + // The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16 + // This produces slightly different results, but is significant faster + __m256i pixel0 = _mm256_madd_epi16(d, _mm256_set_epi16(0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14)); + __m256i pixel1 = _mm256_packs_epi32(pixel0, pixel0); + __m256i pixel2 = _mm256_hadd_epi16(pixel1, pixel1); + __m128i pixel3 = _mm256_castsi256_si128(pixel2); + + __m128i pix0 = _mm_broadcastw_epi16(pixel3); + __m128i pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); + __m256i pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); + + // Processing first two pixels of the row + { + __m256i pix = _mm256_abs_epi16(pixel); + + // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. + // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. + __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); + __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); + + __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); + __m256i minError = _mm256_min_epi16(error0, error1); + + // Exploiting symmetry of the selector table and use the sign bit + __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); + + // Interleaving values so madd instruction can be used + __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); + __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); + + __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); + // Squaring the minimum error to produce correct values when adding + __m256i squareError = _mm256_madd_epi16(minError2, minError2); + + squareErrorSum0 = _mm256_add_epi32(squareErrorSum0, squareError); + + // Packing selector bits + __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i)); + __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i)); + + sel0 = _mm256_or_si256(sel0, minIndexLo2); + sel1 = _mm256_or_si256(sel1, minIndexHi2); + } + + pixel3 = _mm256_extracti128_si256(pixel2, 1); + pix0 = _mm_broadcastw_epi16(pixel3); + pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); + pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); + + // Processing second two pixels of the row + { + __m256i pix = _mm256_abs_epi16(pixel); + + // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. + // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. + __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); + __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); + + __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); + __m256i minError = _mm256_min_epi16(error0, error1); + + // Exploiting symmetry of the selector table and use the sign bit + __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); + + // Interleaving values so madd instruction can be used + __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); + __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); + + __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); + // Squaring the minimum error to produce correct values when adding + __m256i squareError = _mm256_madd_epi16(minError2, minError2); + + squareErrorSum1 = _mm256_add_epi32(squareErrorSum1, squareError); + + // Packing selector bits + __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i)); + __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i)); + __m256i minIndexLo3 = _mm256_slli_epi16(minIndexLo2, 2); + __m256i minIndexHi3 = _mm256_slli_epi16(minIndexHi2, 2); + + sel0 = _mm256_or_si256(sel0, minIndexLo3); + sel1 = _mm256_or_si256(sel1, minIndexHi3); + } + } + + _mm256_store_si256((__m256i*)terr[1], squareErrorSum0); + _mm256_store_si256((__m256i*)terr[0], squareErrorSum1); + + // Interleave selector bits + __m256i minIndexLo0 = _mm256_unpacklo_epi16(sel0, sel1); + __m256i minIndexHi0 = _mm256_unpackhi_epi16(sel0, sel1); + + __m256i minIndexLo1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (0) | (2 << 4)); + __m256i minIndexHi1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (1) | (3 << 4)); + + __m256i minIndexHi2 = _mm256_slli_epi32(minIndexHi1, 1); + + __m256i sel = _mm256_or_si256(minIndexLo1, minIndexHi2); + + _mm256_store_si256((__m256i*)tsel, sel); +} + +static etcpak_force_inline uint64_t EncodeSelectors_AVX2( uint64_t d, const uint32_t terr[2][8], const uint32_t tsel[8], const bool rotate) noexcept +{ + size_t tidx[2]; + + // Get index of minimum error (terr[0] and terr[1]) + __m256i err0 = _mm256_load_si256((const __m256i*)terr[0]); + __m256i err1 = _mm256_load_si256((const __m256i*)terr[1]); + + __m256i errLo = _mm256_permute2x128_si256(err0, err1, (0) | (2 << 4)); + __m256i errHi = _mm256_permute2x128_si256(err0, err1, (1) | (3 << 4)); + + __m256i errMin0 = _mm256_min_epu32(errLo, errHi); + + __m256i errMin1 = _mm256_shuffle_epi32(errMin0, _MM_SHUFFLE(2, 3, 0, 1)); + __m256i errMin2 = _mm256_min_epu32(errMin0, errMin1); + + __m256i errMin3 = _mm256_shuffle_epi32(errMin2, _MM_SHUFFLE(1, 0, 3, 2)); + __m256i errMin4 = _mm256_min_epu32(errMin3, errMin2); + + __m256i errMin5 = _mm256_permute2x128_si256(errMin4, errMin4, (0) | (0 << 4)); + __m256i errMin6 = _mm256_permute2x128_si256(errMin4, errMin4, (1) | (1 << 4)); + + __m256i errMask0 = _mm256_cmpeq_epi32(errMin5, err0); + __m256i errMask1 = _mm256_cmpeq_epi32(errMin6, err1); + + uint32_t mask0 = _mm256_movemask_epi8(errMask0); + uint32_t mask1 = _mm256_movemask_epi8(errMask1); + + tidx[0] = _bit_scan_forward(mask0) >> 2; + tidx[1] = _bit_scan_forward(mask1) >> 2; + + d |= tidx[0] << 26; + d |= tidx[1] << 29; + + unsigned int t0 = tsel[tidx[0]]; + unsigned int t1 = tsel[tidx[1]]; + + if (!rotate) + { + t0 &= 0xFF00FF00; + t1 &= 0x00FF00FF; + } + else + { + t0 &= 0xCCCCCCCC; + t1 &= 0x33333333; + } + + // Flip selectors from sign bit + unsigned int t2 = (t0 | t1) ^ 0xFFFF0000; + + return d | static_cast<uint64_t>(_bswap(t2)) << 32; +} + +static etcpak_force_inline __m128i r6g7b6_AVX2(__m128 cof, __m128 chf, __m128 cvf) noexcept +{ + __m128i co = _mm_cvttps_epi32(cof); + __m128i ch = _mm_cvttps_epi32(chf); + __m128i cv = _mm_cvttps_epi32(cvf); + + __m128i coh = _mm_packus_epi32(co, ch); + __m128i cv0 = _mm_packus_epi32(cv, _mm_setzero_si128()); + + __m256i cohv0 = _mm256_inserti128_si256(_mm256_castsi128_si256(coh), cv0, 1); + __m256i cohv1 = _mm256_min_epu16(cohv0, _mm256_set1_epi16(1023)); + + __m256i cohv2 = _mm256_sub_epi16(cohv1, _mm256_set1_epi16(15)); + __m256i cohv3 = _mm256_srai_epi16(cohv2, 1); + + __m256i cohvrb0 = _mm256_add_epi16(cohv3, _mm256_set1_epi16(11)); + __m256i cohvrb1 = _mm256_add_epi16(cohv3, _mm256_set1_epi16(4)); + __m256i cohvg0 = _mm256_add_epi16(cohv3, _mm256_set1_epi16(9)); + __m256i cohvg1 = _mm256_add_epi16(cohv3, _mm256_set1_epi16(6)); + + __m256i cohvrb2 = _mm256_srai_epi16(cohvrb0, 7); + __m256i cohvrb3 = _mm256_srai_epi16(cohvrb1, 7); + __m256i cohvg2 = _mm256_srai_epi16(cohvg0, 8); + __m256i cohvg3 = _mm256_srai_epi16(cohvg1, 8); + + __m256i cohvrb4 = _mm256_sub_epi16(cohvrb0, cohvrb2); + __m256i cohvrb5 = _mm256_sub_epi16(cohvrb4, cohvrb3); + __m256i cohvg4 = _mm256_sub_epi16(cohvg0, cohvg2); + __m256i cohvg5 = _mm256_sub_epi16(cohvg4, cohvg3); + + __m256i cohvrb6 = _mm256_srai_epi16(cohvrb5, 3); + __m256i cohvg6 = _mm256_srai_epi16(cohvg5, 2); + + __m256i cohv4 = _mm256_blend_epi16(cohvg6, cohvrb6, 0x55); + + __m128i cohv5 = _mm_packus_epi16(_mm256_castsi256_si128(cohv4), _mm256_extracti128_si256(cohv4, 1)); + return _mm_shuffle_epi8(cohv5, _mm_setr_epi8(6, 5, 4, -1, 2, 1, 0, -1, 10, 9, 8, -1, -1, -1, -1, -1)); +} + +struct Plane +{ + uint64_t plane; + uint64_t error; + __m256i sum4; +}; + +static etcpak_force_inline Plane Planar_AVX2(const uint8_t* src) +{ + __m128i d0 = _mm_loadu_si128(((__m128i*)src) + 0); + __m128i d1 = _mm_loadu_si128(((__m128i*)src) + 1); + __m128i d2 = _mm_loadu_si128(((__m128i*)src) + 2); + __m128i d3 = _mm_loadu_si128(((__m128i*)src) + 3); + + __m128i rgb0 = _mm_shuffle_epi8(d0, _mm_setr_epi8(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, -1, -1, -1, -1)); + __m128i rgb1 = _mm_shuffle_epi8(d1, _mm_setr_epi8(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, -1, -1, -1, -1)); + __m128i rgb2 = _mm_shuffle_epi8(d2, _mm_setr_epi8(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, -1, -1, -1, -1)); + __m128i rgb3 = _mm_shuffle_epi8(d3, _mm_setr_epi8(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, -1, -1, -1, -1)); + + __m128i rg0 = _mm_unpacklo_epi32(rgb0, rgb1); + __m128i rg1 = _mm_unpacklo_epi32(rgb2, rgb3); + __m128i b0 = _mm_unpackhi_epi32(rgb0, rgb1); + __m128i b1 = _mm_unpackhi_epi32(rgb2, rgb3); + + // swap channels + __m128i b8 = _mm_unpacklo_epi64(rg0, rg1); + __m128i g8 = _mm_unpackhi_epi64(rg0, rg1); + __m128i r8 = _mm_unpacklo_epi64(b0, b1); + + __m128i t0 = _mm_sad_epu8(r8, _mm_setzero_si128()); + __m128i t1 = _mm_sad_epu8(g8, _mm_setzero_si128()); + __m128i t2 = _mm_sad_epu8(b8, _mm_setzero_si128()); + + __m128i r8s = _mm_shuffle_epi8(r8, _mm_set_epi8(0xF, 0xE, 0xB, 0xA, 0x7, 0x6, 0x3, 0x2, 0xD, 0xC, 0x9, 0x8, 0x5, 0x4, 0x1, 0x0)); + __m128i g8s = _mm_shuffle_epi8(g8, _mm_set_epi8(0xF, 0xE, 0xB, 0xA, 0x7, 0x6, 0x3, 0x2, 0xD, 0xC, 0x9, 0x8, 0x5, 0x4, 0x1, 0x0)); + __m128i b8s = _mm_shuffle_epi8(b8, _mm_set_epi8(0xF, 0xE, 0xB, 0xA, 0x7, 0x6, 0x3, 0x2, 0xD, 0xC, 0x9, 0x8, 0x5, 0x4, 0x1, 0x0)); + + __m128i s0 = _mm_sad_epu8(r8s, _mm_setzero_si128()); + __m128i s1 = _mm_sad_epu8(g8s, _mm_setzero_si128()); + __m128i s2 = _mm_sad_epu8(b8s, _mm_setzero_si128()); + + __m256i sr0 = _mm256_insertf128_si256(_mm256_castsi128_si256(t0), s0, 1); + __m256i sg0 = _mm256_insertf128_si256(_mm256_castsi128_si256(t1), s1, 1); + __m256i sb0 = _mm256_insertf128_si256(_mm256_castsi128_si256(t2), s2, 1); + + __m256i sr1 = _mm256_slli_epi64(sr0, 32); + __m256i sg1 = _mm256_slli_epi64(sg0, 16); + + __m256i srb = _mm256_or_si256(sr1, sb0); + __m256i srgb = _mm256_or_si256(srb, sg1); + + __m128i t3 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(t0), _mm_castsi128_ps(t1), _MM_SHUFFLE(2, 0, 2, 0))); + __m128i t4 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3, 1, 2, 0)); + __m128i t5 = _mm_hadd_epi32(t3, t4); + __m128i t6 = _mm_shuffle_epi32(t5, _MM_SHUFFLE(1, 1, 1, 1)); + __m128i t7 = _mm_shuffle_epi32(t5, _MM_SHUFFLE(2, 2, 2, 2)); + + __m256i sr = _mm256_broadcastw_epi16(t5); + __m256i sg = _mm256_broadcastw_epi16(t6); + __m256i sb = _mm256_broadcastw_epi16(t7); + + __m256i r08 = _mm256_cvtepu8_epi16(r8); + __m256i g08 = _mm256_cvtepu8_epi16(g8); + __m256i b08 = _mm256_cvtepu8_epi16(b8); + + __m256i r16 = _mm256_slli_epi16(r08, 4); + __m256i g16 = _mm256_slli_epi16(g08, 4); + __m256i b16 = _mm256_slli_epi16(b08, 4); + + __m256i difR0 = _mm256_sub_epi16(r16, sr); + __m256i difG0 = _mm256_sub_epi16(g16, sg); + __m256i difB0 = _mm256_sub_epi16(b16, sb); + + __m256i difRyz = _mm256_madd_epi16(difR0, _mm256_set_epi16(255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255)); + __m256i difGyz = _mm256_madd_epi16(difG0, _mm256_set_epi16(255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255)); + __m256i difByz = _mm256_madd_epi16(difB0, _mm256_set_epi16(255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255)); + + __m256i difRxz = _mm256_madd_epi16(difR0, _mm256_set_epi16(255, 255, 255, 255, 85, 85, 85, 85, -85, -85, -85, -85, -255, -255, -255, -255)); + __m256i difGxz = _mm256_madd_epi16(difG0, _mm256_set_epi16(255, 255, 255, 255, 85, 85, 85, 85, -85, -85, -85, -85, -255, -255, -255, -255)); + __m256i difBxz = _mm256_madd_epi16(difB0, _mm256_set_epi16(255, 255, 255, 255, 85, 85, 85, 85, -85, -85, -85, -85, -255, -255, -255, -255)); + + __m256i difRGyz = _mm256_hadd_epi32(difRyz, difGyz); + __m256i difByzxz = _mm256_hadd_epi32(difByz, difBxz); + + __m256i difRGxz = _mm256_hadd_epi32(difRxz, difGxz); + + __m128i sumRGyz = _mm_add_epi32(_mm256_castsi256_si128(difRGyz), _mm256_extracti128_si256(difRGyz, 1)); + __m128i sumByzxz = _mm_add_epi32(_mm256_castsi256_si128(difByzxz), _mm256_extracti128_si256(difByzxz, 1)); + __m128i sumRGxz = _mm_add_epi32(_mm256_castsi256_si128(difRGxz), _mm256_extracti128_si256(difRGxz, 1)); + + __m128i sumRGByz = _mm_hadd_epi32(sumRGyz, sumByzxz); + __m128i sumRGByzxz = _mm_hadd_epi32(sumRGxz, sumByzxz); + + __m128i sumRGBxz = _mm_shuffle_epi32(sumRGByzxz, _MM_SHUFFLE(2, 3, 1, 0)); + + __m128 sumRGByzf = _mm_cvtepi32_ps(sumRGByz); + __m128 sumRGBxzf = _mm_cvtepi32_ps(sumRGBxz); + + const float value = (255 * 255 * 8.0f + 85 * 85 * 8.0f) * 16.0f; + + __m128 scale = _mm_set1_ps(-4.0f / value); + + __m128 af = _mm_mul_ps(sumRGBxzf, scale); + __m128 bf = _mm_mul_ps(sumRGByzf, scale); + + __m128 df = _mm_mul_ps(_mm_cvtepi32_ps(t5), _mm_set1_ps(4.0f / 16.0f)); + + // calculating the three colors RGBO, RGBH, and RGBV. RGB = df - af * x - bf * y; + __m128 cof0 = _mm_fnmadd_ps(af, _mm_set1_ps(-255.0f), _mm_fnmadd_ps(bf, _mm_set1_ps(-255.0f), df)); + __m128 chf0 = _mm_fnmadd_ps(af, _mm_set1_ps( 425.0f), _mm_fnmadd_ps(bf, _mm_set1_ps(-255.0f), df)); + __m128 cvf0 = _mm_fnmadd_ps(af, _mm_set1_ps(-255.0f), _mm_fnmadd_ps(bf, _mm_set1_ps( 425.0f), df)); + + // convert to r6g7b6 + __m128i cohv = r6g7b6_AVX2(cof0, chf0, cvf0); + + uint64_t rgbho = _mm_extract_epi64(cohv, 0); + uint32_t rgbv0 = _mm_extract_epi32(cohv, 2); + + // Error calculation + auto ro0 = (rgbho >> 48) & 0x3F; + auto go0 = (rgbho >> 40) & 0x7F; + auto bo0 = (rgbho >> 32) & 0x3F; + auto ro1 = (ro0 >> 4) | (ro0 << 2); + auto go1 = (go0 >> 6) | (go0 << 1); + auto bo1 = (bo0 >> 4) | (bo0 << 2); + auto ro2 = (ro1 << 2) + 2; + auto go2 = (go1 << 2) + 2; + auto bo2 = (bo1 << 2) + 2; + + __m256i ro3 = _mm256_set1_epi16(ro2); + __m256i go3 = _mm256_set1_epi16(go2); + __m256i bo3 = _mm256_set1_epi16(bo2); + + auto rh0 = (rgbho >> 16) & 0x3F; + auto gh0 = (rgbho >> 8) & 0x7F; + auto bh0 = (rgbho >> 0) & 0x3F; + auto rh1 = (rh0 >> 4) | (rh0 << 2); + auto gh1 = (gh0 >> 6) | (gh0 << 1); + auto bh1 = (bh0 >> 4) | (bh0 << 2); + + auto rh2 = rh1 - ro1; + auto gh2 = gh1 - go1; + auto bh2 = bh1 - bo1; + + __m256i rh3 = _mm256_set1_epi16(rh2); + __m256i gh3 = _mm256_set1_epi16(gh2); + __m256i bh3 = _mm256_set1_epi16(bh2); + + auto rv0 = (rgbv0 >> 16) & 0x3F; + auto gv0 = (rgbv0 >> 8) & 0x7F; + auto bv0 = (rgbv0 >> 0) & 0x3F; + auto rv1 = (rv0 >> 4) | (rv0 << 2); + auto gv1 = (gv0 >> 6) | (gv0 << 1); + auto bv1 = (bv0 >> 4) | (bv0 << 2); + + auto rv2 = rv1 - ro1; + auto gv2 = gv1 - go1; + auto bv2 = bv1 - bo1; + + __m256i rv3 = _mm256_set1_epi16(rv2); + __m256i gv3 = _mm256_set1_epi16(gv2); + __m256i bv3 = _mm256_set1_epi16(bv2); + + __m256i x = _mm256_set_epi16(3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0); + + __m256i rh4 = _mm256_mullo_epi16(rh3, x); + __m256i gh4 = _mm256_mullo_epi16(gh3, x); + __m256i bh4 = _mm256_mullo_epi16(bh3, x); + + __m256i y = _mm256_set_epi16(3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0); + + __m256i rv4 = _mm256_mullo_epi16(rv3, y); + __m256i gv4 = _mm256_mullo_epi16(gv3, y); + __m256i bv4 = _mm256_mullo_epi16(bv3, y); + + __m256i rxy = _mm256_add_epi16(rh4, rv4); + __m256i gxy = _mm256_add_epi16(gh4, gv4); + __m256i bxy = _mm256_add_epi16(bh4, bv4); + + __m256i rp0 = _mm256_add_epi16(rxy, ro3); + __m256i gp0 = _mm256_add_epi16(gxy, go3); + __m256i bp0 = _mm256_add_epi16(bxy, bo3); + + __m256i rp1 = _mm256_srai_epi16(rp0, 2); + __m256i gp1 = _mm256_srai_epi16(gp0, 2); + __m256i bp1 = _mm256_srai_epi16(bp0, 2); + + __m256i rp2 = _mm256_max_epi16(_mm256_min_epi16(rp1, _mm256_set1_epi16(255)), _mm256_setzero_si256()); + __m256i gp2 = _mm256_max_epi16(_mm256_min_epi16(gp1, _mm256_set1_epi16(255)), _mm256_setzero_si256()); + __m256i bp2 = _mm256_max_epi16(_mm256_min_epi16(bp1, _mm256_set1_epi16(255)), _mm256_setzero_si256()); + + __m256i rdif = _mm256_sub_epi16(r08, rp2); + __m256i gdif = _mm256_sub_epi16(g08, gp2); + __m256i bdif = _mm256_sub_epi16(b08, bp2); + + __m256i rerr = _mm256_mullo_epi16(rdif, _mm256_set1_epi16(38)); + __m256i gerr = _mm256_mullo_epi16(gdif, _mm256_set1_epi16(76)); + __m256i berr = _mm256_mullo_epi16(bdif, _mm256_set1_epi16(14)); + + __m256i sum0 = _mm256_add_epi16(rerr, gerr); + __m256i sum1 = _mm256_add_epi16(sum0, berr); + + __m256i sum2 = _mm256_madd_epi16(sum1, sum1); + + __m128i sum3 = _mm_add_epi32(_mm256_castsi256_si128(sum2), _mm256_extracti128_si256(sum2, 1)); + + uint32_t err0 = _mm_extract_epi32(sum3, 0); + uint32_t err1 = _mm_extract_epi32(sum3, 1); + uint32_t err2 = _mm_extract_epi32(sum3, 2); + uint32_t err3 = _mm_extract_epi32(sum3, 3); + + uint64_t error = err0 + err1 + err2 + err3; + /**/ + + uint32_t rgbv = ( rgbv0 & 0x3F ) | ( ( rgbv0 >> 2 ) & 0x1FC0 ) | ( ( rgbv0 >> 3 ) & 0x7E000 ); + uint64_t rgbho0_ = ( rgbho & 0x3F0000003F ) | ( ( rgbho >> 2 ) & 0x1FC000001FC0 ) | ( ( rgbho >> 3 ) & 0x7E0000007E000 ); + uint64_t rgbho0 = ( rgbho0_ & 0x7FFFF ) | ( ( rgbho0_ >> 13 ) & 0x3FFFF80000 ); + + uint32_t hi = rgbv | ((rgbho0 & 0x1FFF) << 19); + rgbho0 >>= 13; + uint32_t lo = ( rgbho0 & 0x1 ) | ( ( rgbho0 & 0x1FE ) << 1 ) | ( ( rgbho0 & 0x600 ) << 2 ) | ( ( rgbho0 & 0x3F800 ) << 5 ) | ( ( rgbho0 & 0x1FC0000 ) << 6 ); + + uint32_t idx = ( ( rgbho >> 33 ) & 0xF ) | ( ( rgbho >> 41 ) & 0x10 ) | ( ( rgbho >> 48 ) & 0x20 ); + lo |= g_flags[idx]; + uint64_t result = static_cast<uint32_t>(_bswap(lo)); + result |= static_cast<uint64_t>(static_cast<uint32_t>(_bswap(hi))) << 32; + + Plane plane; + + plane.plane = result; + plane.error = error; + plane.sum4 = _mm256_permute4x64_epi64(srgb, _MM_SHUFFLE(2, 3, 0, 1)); + + return plane; +} + +static etcpak_force_inline uint64_t EncodeSelectors_AVX2( uint64_t d, const uint32_t terr[2][8], const uint32_t tsel[8], const bool rotate, const uint64_t value, const uint32_t error) noexcept +{ + size_t tidx[2]; + + // Get index of minimum error (terr[0] and terr[1]) + __m256i err0 = _mm256_load_si256((const __m256i*)terr[0]); + __m256i err1 = _mm256_load_si256((const __m256i*)terr[1]); + + __m256i errLo = _mm256_permute2x128_si256(err0, err1, (0) | (2 << 4)); + __m256i errHi = _mm256_permute2x128_si256(err0, err1, (1) | (3 << 4)); + + __m256i errMin0 = _mm256_min_epu32(errLo, errHi); + + __m256i errMin1 = _mm256_shuffle_epi32(errMin0, _MM_SHUFFLE(2, 3, 0, 1)); + __m256i errMin2 = _mm256_min_epu32(errMin0, errMin1); + + __m256i errMin3 = _mm256_shuffle_epi32(errMin2, _MM_SHUFFLE(1, 0, 3, 2)); + __m256i errMin4 = _mm256_min_epu32(errMin3, errMin2); + + __m256i errMin5 = _mm256_permute2x128_si256(errMin4, errMin4, (0) | (0 << 4)); + __m256i errMin6 = _mm256_permute2x128_si256(errMin4, errMin4, (1) | (1 << 4)); + + __m256i errMask0 = _mm256_cmpeq_epi32(errMin5, err0); + __m256i errMask1 = _mm256_cmpeq_epi32(errMin6, err1); + + uint32_t mask0 = _mm256_movemask_epi8(errMask0); + uint32_t mask1 = _mm256_movemask_epi8(errMask1); + + tidx[0] = _bit_scan_forward(mask0) >> 2; + tidx[1] = _bit_scan_forward(mask1) >> 2; + + if ((terr[0][tidx[0]] + terr[1][tidx[1]]) >= error) + { + return value; + } + + d |= tidx[0] << 26; + d |= tidx[1] << 29; + + unsigned int t0 = tsel[tidx[0]]; + unsigned int t1 = tsel[tidx[1]]; + + if (!rotate) + { + t0 &= 0xFF00FF00; + t1 &= 0x00FF00FF; + } + else + { + t0 &= 0xCCCCCCCC; + t1 &= 0x33333333; + } + + // Flip selectors from sign bit + unsigned int t2 = (t0 | t1) ^ 0xFFFF0000; + + return d | static_cast<uint64_t>(_bswap(t2)) << 32; +} + +#endif + +static etcpak_force_inline void Average( const uint8_t* data, v4i* a ) +{ +#ifdef __SSE4_1__ + __m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0); + __m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1); + __m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2); + __m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3); + + __m128i d0l = _mm_unpacklo_epi8(d0, _mm_setzero_si128()); + __m128i d0h = _mm_unpackhi_epi8(d0, _mm_setzero_si128()); + __m128i d1l = _mm_unpacklo_epi8(d1, _mm_setzero_si128()); + __m128i d1h = _mm_unpackhi_epi8(d1, _mm_setzero_si128()); + __m128i d2l = _mm_unpacklo_epi8(d2, _mm_setzero_si128()); + __m128i d2h = _mm_unpackhi_epi8(d2, _mm_setzero_si128()); + __m128i d3l = _mm_unpacklo_epi8(d3, _mm_setzero_si128()); + __m128i d3h = _mm_unpackhi_epi8(d3, _mm_setzero_si128()); + + __m128i sum0 = _mm_add_epi16(d0l, d1l); + __m128i sum1 = _mm_add_epi16(d0h, d1h); + __m128i sum2 = _mm_add_epi16(d2l, d3l); + __m128i sum3 = _mm_add_epi16(d2h, d3h); + + __m128i sum0l = _mm_unpacklo_epi16(sum0, _mm_setzero_si128()); + __m128i sum0h = _mm_unpackhi_epi16(sum0, _mm_setzero_si128()); + __m128i sum1l = _mm_unpacklo_epi16(sum1, _mm_setzero_si128()); + __m128i sum1h = _mm_unpackhi_epi16(sum1, _mm_setzero_si128()); + __m128i sum2l = _mm_unpacklo_epi16(sum2, _mm_setzero_si128()); + __m128i sum2h = _mm_unpackhi_epi16(sum2, _mm_setzero_si128()); + __m128i sum3l = _mm_unpacklo_epi16(sum3, _mm_setzero_si128()); + __m128i sum3h = _mm_unpackhi_epi16(sum3, _mm_setzero_si128()); + + __m128i b0 = _mm_add_epi32(sum0l, sum0h); + __m128i b1 = _mm_add_epi32(sum1l, sum1h); + __m128i b2 = _mm_add_epi32(sum2l, sum2h); + __m128i b3 = _mm_add_epi32(sum3l, sum3h); + + __m128i a0 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b2, b3), _mm_set1_epi32(4)), 3); + __m128i a1 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b0, b1), _mm_set1_epi32(4)), 3); + __m128i a2 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b1, b3), _mm_set1_epi32(4)), 3); + __m128i a3 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b0, b2), _mm_set1_epi32(4)), 3); + + _mm_storeu_si128((__m128i*)&a[0], _mm_packus_epi32(_mm_shuffle_epi32(a0, _MM_SHUFFLE(3, 0, 1, 2)), _mm_shuffle_epi32(a1, _MM_SHUFFLE(3, 0, 1, 2)))); + _mm_storeu_si128((__m128i*)&a[2], _mm_packus_epi32(_mm_shuffle_epi32(a2, _MM_SHUFFLE(3, 0, 1, 2)), _mm_shuffle_epi32(a3, _MM_SHUFFLE(3, 0, 1, 2)))); +#elif defined __ARM_NEON + uint8x16x2_t t0 = vzipq_u8(vld1q_u8(data + 0), uint8x16_t()); + uint8x16x2_t t1 = vzipq_u8(vld1q_u8(data + 16), uint8x16_t()); + uint8x16x2_t t2 = vzipq_u8(vld1q_u8(data + 32), uint8x16_t()); + uint8x16x2_t t3 = vzipq_u8(vld1q_u8(data + 48), uint8x16_t()); + + uint16x8x2_t d0 = { vreinterpretq_u16_u8(t0.val[0]), vreinterpretq_u16_u8(t0.val[1]) }; + uint16x8x2_t d1 = { vreinterpretq_u16_u8(t1.val[0]), vreinterpretq_u16_u8(t1.val[1]) }; + uint16x8x2_t d2 = { vreinterpretq_u16_u8(t2.val[0]), vreinterpretq_u16_u8(t2.val[1]) }; + uint16x8x2_t d3 = { vreinterpretq_u16_u8(t3.val[0]), vreinterpretq_u16_u8(t3.val[1]) }; + + uint16x8x2_t s0 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[0] ), vreinterpretq_s16_u16( d1.val[0] ) ) ), uint16x8_t()); + uint16x8x2_t s1 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[1] ), vreinterpretq_s16_u16( d1.val[1] ) ) ), uint16x8_t()); + uint16x8x2_t s2 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[0] ), vreinterpretq_s16_u16( d3.val[0] ) ) ), uint16x8_t()); + uint16x8x2_t s3 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[1] ), vreinterpretq_s16_u16( d3.val[1] ) ) ), uint16x8_t()); + + uint32x4x2_t sum0 = { vreinterpretq_u32_u16(s0.val[0]), vreinterpretq_u32_u16(s0.val[1]) }; + uint32x4x2_t sum1 = { vreinterpretq_u32_u16(s1.val[0]), vreinterpretq_u32_u16(s1.val[1]) }; + uint32x4x2_t sum2 = { vreinterpretq_u32_u16(s2.val[0]), vreinterpretq_u32_u16(s2.val[1]) }; + uint32x4x2_t sum3 = { vreinterpretq_u32_u16(s3.val[0]), vreinterpretq_u32_u16(s3.val[1]) }; + + uint32x4_t b0 = vaddq_u32(sum0.val[0], sum0.val[1]); + uint32x4_t b1 = vaddq_u32(sum1.val[0], sum1.val[1]); + uint32x4_t b2 = vaddq_u32(sum2.val[0], sum2.val[1]); + uint32x4_t b3 = vaddq_u32(sum3.val[0], sum3.val[1]); + + uint32x4_t a0 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b2, b3), vdupq_n_u32(4)), 3); + uint32x4_t a1 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b0, b1), vdupq_n_u32(4)), 3); + uint32x4_t a2 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b1, b3), vdupq_n_u32(4)), 3); + uint32x4_t a3 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b0, b2), vdupq_n_u32(4)), 3); + + uint16x8_t o0 = vcombine_u16(vqmovun_s32(vreinterpretq_s32_u32( a0 )), vqmovun_s32(vreinterpretq_s32_u32( a1 ))); + uint16x8_t o1 = vcombine_u16(vqmovun_s32(vreinterpretq_s32_u32( a2 )), vqmovun_s32(vreinterpretq_s32_u32( a3 ))); + + a[0] = v4i{o0[2], o0[1], o0[0], 0}; + a[1] = v4i{o0[6], o0[5], o0[4], 0}; + a[2] = v4i{o1[2], o1[1], o1[0], 0}; + a[3] = v4i{o1[6], o1[5], o1[4], 0}; +#else + uint32_t r[4]; + uint32_t g[4]; + uint32_t b[4]; + + memset(r, 0, sizeof(r)); + memset(g, 0, sizeof(g)); + memset(b, 0, sizeof(b)); + + for( int j=0; j<4; j++ ) + { + for( int i=0; i<4; i++ ) + { + int index = (j & 2) + (i >> 1); + b[index] += *data++; + g[index] += *data++; + r[index] += *data++; + data++; + } + } + + a[0] = v4i{ uint16_t( (r[2] + r[3] + 4) / 8 ), uint16_t( (g[2] + g[3] + 4) / 8 ), uint16_t( (b[2] + b[3] + 4) / 8 ), 0}; + a[1] = v4i{ uint16_t( (r[0] + r[1] + 4) / 8 ), uint16_t( (g[0] + g[1] + 4) / 8 ), uint16_t( (b[0] + b[1] + 4) / 8 ), 0}; + a[2] = v4i{ uint16_t( (r[1] + r[3] + 4) / 8 ), uint16_t( (g[1] + g[3] + 4) / 8 ), uint16_t( (b[1] + b[3] + 4) / 8 ), 0}; + a[3] = v4i{ uint16_t( (r[0] + r[2] + 4) / 8 ), uint16_t( (g[0] + g[2] + 4) / 8 ), uint16_t( (b[0] + b[2] + 4) / 8 ), 0}; +#endif +} + +static etcpak_force_inline void CalcErrorBlock( const uint8_t* data, unsigned int err[4][4] ) +{ +#ifdef __SSE4_1__ + __m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0); + __m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1); + __m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2); + __m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3); + + __m128i dm0 = _mm_and_si128(d0, _mm_set1_epi32(0x00FFFFFF)); + __m128i dm1 = _mm_and_si128(d1, _mm_set1_epi32(0x00FFFFFF)); + __m128i dm2 = _mm_and_si128(d2, _mm_set1_epi32(0x00FFFFFF)); + __m128i dm3 = _mm_and_si128(d3, _mm_set1_epi32(0x00FFFFFF)); + + __m128i d0l = _mm_unpacklo_epi8(dm0, _mm_setzero_si128()); + __m128i d0h = _mm_unpackhi_epi8(dm0, _mm_setzero_si128()); + __m128i d1l = _mm_unpacklo_epi8(dm1, _mm_setzero_si128()); + __m128i d1h = _mm_unpackhi_epi8(dm1, _mm_setzero_si128()); + __m128i d2l = _mm_unpacklo_epi8(dm2, _mm_setzero_si128()); + __m128i d2h = _mm_unpackhi_epi8(dm2, _mm_setzero_si128()); + __m128i d3l = _mm_unpacklo_epi8(dm3, _mm_setzero_si128()); + __m128i d3h = _mm_unpackhi_epi8(dm3, _mm_setzero_si128()); + + __m128i sum0 = _mm_add_epi16(d0l, d1l); + __m128i sum1 = _mm_add_epi16(d0h, d1h); + __m128i sum2 = _mm_add_epi16(d2l, d3l); + __m128i sum3 = _mm_add_epi16(d2h, d3h); + + __m128i sum0l = _mm_unpacklo_epi16(sum0, _mm_setzero_si128()); + __m128i sum0h = _mm_unpackhi_epi16(sum0, _mm_setzero_si128()); + __m128i sum1l = _mm_unpacklo_epi16(sum1, _mm_setzero_si128()); + __m128i sum1h = _mm_unpackhi_epi16(sum1, _mm_setzero_si128()); + __m128i sum2l = _mm_unpacklo_epi16(sum2, _mm_setzero_si128()); + __m128i sum2h = _mm_unpackhi_epi16(sum2, _mm_setzero_si128()); + __m128i sum3l = _mm_unpacklo_epi16(sum3, _mm_setzero_si128()); + __m128i sum3h = _mm_unpackhi_epi16(sum3, _mm_setzero_si128()); + + __m128i b0 = _mm_add_epi32(sum0l, sum0h); + __m128i b1 = _mm_add_epi32(sum1l, sum1h); + __m128i b2 = _mm_add_epi32(sum2l, sum2h); + __m128i b3 = _mm_add_epi32(sum3l, sum3h); + + __m128i a0 = _mm_add_epi32(b2, b3); + __m128i a1 = _mm_add_epi32(b0, b1); + __m128i a2 = _mm_add_epi32(b1, b3); + __m128i a3 = _mm_add_epi32(b0, b2); + + _mm_storeu_si128((__m128i*)&err[0], a0); + _mm_storeu_si128((__m128i*)&err[1], a1); + _mm_storeu_si128((__m128i*)&err[2], a2); + _mm_storeu_si128((__m128i*)&err[3], a3); +#elif defined __ARM_NEON + uint8x16x2_t t0 = vzipq_u8(vld1q_u8(data + 0), uint8x16_t()); + uint8x16x2_t t1 = vzipq_u8(vld1q_u8(data + 16), uint8x16_t()); + uint8x16x2_t t2 = vzipq_u8(vld1q_u8(data + 32), uint8x16_t()); + uint8x16x2_t t3 = vzipq_u8(vld1q_u8(data + 48), uint8x16_t()); + + uint16x8x2_t d0 = { vreinterpretq_u16_u8(t0.val[0]), vreinterpretq_u16_u8(t0.val[1]) }; + uint16x8x2_t d1 = { vreinterpretq_u16_u8(t1.val[0]), vreinterpretq_u16_u8(t1.val[1]) }; + uint16x8x2_t d2 = { vreinterpretq_u16_u8(t2.val[0]), vreinterpretq_u16_u8(t2.val[1]) }; + uint16x8x2_t d3 = { vreinterpretq_u16_u8(t3.val[0]), vreinterpretq_u16_u8(t3.val[1]) }; + + uint16x8x2_t s0 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[0] ), vreinterpretq_s16_u16( d1.val[0] ))), uint16x8_t()); + uint16x8x2_t s1 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[1] ), vreinterpretq_s16_u16( d1.val[1] ))), uint16x8_t()); + uint16x8x2_t s2 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[0] ), vreinterpretq_s16_u16( d3.val[0] ))), uint16x8_t()); + uint16x8x2_t s3 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[1] ), vreinterpretq_s16_u16( d3.val[1] ))), uint16x8_t()); + + uint32x4x2_t sum0 = { vreinterpretq_u32_u16(s0.val[0]), vreinterpretq_u32_u16(s0.val[1]) }; + uint32x4x2_t sum1 = { vreinterpretq_u32_u16(s1.val[0]), vreinterpretq_u32_u16(s1.val[1]) }; + uint32x4x2_t sum2 = { vreinterpretq_u32_u16(s2.val[0]), vreinterpretq_u32_u16(s2.val[1]) }; + uint32x4x2_t sum3 = { vreinterpretq_u32_u16(s3.val[0]), vreinterpretq_u32_u16(s3.val[1]) }; + + uint32x4_t b0 = vaddq_u32(sum0.val[0], sum0.val[1]); + uint32x4_t b1 = vaddq_u32(sum1.val[0], sum1.val[1]); + uint32x4_t b2 = vaddq_u32(sum2.val[0], sum2.val[1]); + uint32x4_t b3 = vaddq_u32(sum3.val[0], sum3.val[1]); + + uint32x4_t a0 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b2, b3) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); + uint32x4_t a1 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b0, b1) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); + uint32x4_t a2 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b1, b3) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); + uint32x4_t a3 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b0, b2) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); + + vst1q_u32(err[0], a0); + vst1q_u32(err[1], a1); + vst1q_u32(err[2], a2); + vst1q_u32(err[3], a3); +#else + unsigned int terr[4][4]; + + memset(terr, 0, 16 * sizeof(unsigned int)); + + for( int j=0; j<4; j++ ) + { + for( int i=0; i<4; i++ ) + { + int index = (j & 2) + (i >> 1); + unsigned int d = *data++; + terr[index][0] += d; + d = *data++; + terr[index][1] += d; + d = *data++; + terr[index][2] += d; + data++; + } + } + + for( int i=0; i<3; i++ ) + { + err[0][i] = terr[2][i] + terr[3][i]; + err[1][i] = terr[0][i] + terr[1][i]; + err[2][i] = terr[1][i] + terr[3][i]; + err[3][i] = terr[0][i] + terr[2][i]; + } + for( int i=0; i<4; i++ ) + { + err[i][3] = 0; + } +#endif +} + +static etcpak_force_inline unsigned int CalcError( const unsigned int block[4], const v4i& average ) +{ + unsigned int err = 0x3FFFFFFF; // Big value to prevent negative values, but small enough to prevent overflow + err -= block[0] * 2 * average[2]; + err -= block[1] * 2 * average[1]; + err -= block[2] * 2 * average[0]; + err += 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) ); + return err; +} + +static etcpak_force_inline void ProcessAverages( v4i* a ) +{ +#ifdef __SSE4_1__ + for( int i=0; i<2; i++ ) + { + __m128i d = _mm_loadu_si128((__m128i*)a[i*2].data()); + + __m128i t = _mm_add_epi16(_mm_mullo_epi16(d, _mm_set1_epi16(31)), _mm_set1_epi16(128)); + + __m128i c = _mm_srli_epi16(_mm_add_epi16(t, _mm_srli_epi16(t, 8)), 8); + + __m128i c1 = _mm_shuffle_epi32(c, _MM_SHUFFLE(3, 2, 3, 2)); + __m128i diff = _mm_sub_epi16(c, c1); + diff = _mm_max_epi16(diff, _mm_set1_epi16(-4)); + diff = _mm_min_epi16(diff, _mm_set1_epi16(3)); + + __m128i co = _mm_add_epi16(c1, diff); + + c = _mm_blend_epi16(co, c, 0xF0); + + __m128i a0 = _mm_or_si128(_mm_slli_epi16(c, 3), _mm_srli_epi16(c, 2)); + + _mm_storeu_si128((__m128i*)a[4+i*2].data(), a0); + } + + for( int i=0; i<2; i++ ) + { + __m128i d = _mm_loadu_si128((__m128i*)a[i*2].data()); + + __m128i t0 = _mm_add_epi16(_mm_mullo_epi16(d, _mm_set1_epi16(15)), _mm_set1_epi16(128)); + __m128i t1 = _mm_srli_epi16(_mm_add_epi16(t0, _mm_srli_epi16(t0, 8)), 8); + + __m128i t2 = _mm_or_si128(t1, _mm_slli_epi16(t1, 4)); + + _mm_storeu_si128((__m128i*)a[i*2].data(), t2); + } +#elif defined __ARM_NEON + for( int i=0; i<2; i++ ) + { + int16x8_t d = vld1q_s16((int16_t*)&a[i*2]); + int16x8_t t = vaddq_s16(vmulq_s16(d, vdupq_n_s16(31)), vdupq_n_s16(128)); + int16x8_t c = vshrq_n_s16(vaddq_s16(t, vshrq_n_s16(t, 8)), 8); + + int16x8_t c1 = vcombine_s16(vget_high_s16(c), vget_high_s16(c)); + int16x8_t diff = vsubq_s16(c, c1); + diff = vmaxq_s16(diff, vdupq_n_s16(-4)); + diff = vminq_s16(diff, vdupq_n_s16(3)); + + int16x8_t co = vaddq_s16(c1, diff); + + c = vcombine_s16(vget_low_s16(co), vget_high_s16(c)); + + int16x8_t a0 = vorrq_s16(vshlq_n_s16(c, 3), vshrq_n_s16(c, 2)); + + vst1q_s16((int16_t*)&a[4+i*2], a0); + } + + for( int i=0; i<2; i++ ) + { + int16x8_t d = vld1q_s16((int16_t*)&a[i*2]); + + int16x8_t t0 = vaddq_s16(vmulq_s16(d, vdupq_n_s16(15)), vdupq_n_s16(128)); + int16x8_t t1 = vshrq_n_s16(vaddq_s16(t0, vshrq_n_s16(t0, 8)), 8); + + int16x8_t t2 = vorrq_s16(t1, vshlq_n_s16(t1, 4)); + + vst1q_s16((int16_t*)&a[i*2], t2); + } +#else + for( int i=0; i<2; i++ ) + { + for( int j=0; j<3; j++ ) + { + int32_t c1 = mul8bit( a[i*2+1][j], 31 ); + int32_t c2 = mul8bit( a[i*2][j], 31 ); + + int32_t diff = c2 - c1; + if( diff > 3 ) diff = 3; + else if( diff < -4 ) diff = -4; + + int32_t co = c1 + diff; + + a[5+i*2][j] = ( c1 << 3 ) | ( c1 >> 2 ); + a[4+i*2][j] = ( co << 3 ) | ( co >> 2 ); + } + } + + for( int i=0; i<4; i++ ) + { + a[i][0] = g_avg2[mul8bit( a[i][0], 15 )]; + a[i][1] = g_avg2[mul8bit( a[i][1], 15 )]; + a[i][2] = g_avg2[mul8bit( a[i][2], 15 )]; + } +#endif +} + +static etcpak_force_inline void EncodeAverages( uint64_t& _d, const v4i* a, size_t idx ) +{ + auto d = _d; + d |= ( idx << 24 ); + size_t base = idx << 1; + + if( ( idx & 0x2 ) == 0 ) + { + for( int i=0; i<3; i++ ) + { + d |= uint64_t( a[base+0][i] >> 4 ) << ( i*8 ); + d |= uint64_t( a[base+1][i] >> 4 ) << ( i*8 + 4 ); + } + } + else + { + for( int i=0; i<3; i++ ) + { + d |= uint64_t( a[base+1][i] & 0xF8 ) << ( i*8 ); + int32_t c = ( ( a[base+0][i] & 0xF8 ) - ( a[base+1][i] & 0xF8 ) ) >> 3; + c &= ~0xFFFFFFF8; + d |= ((uint64_t)c) << ( i*8 ); + } + } + _d = d; +} + +static etcpak_force_inline uint64_t CheckSolid( const uint8_t* src ) +{ +#ifdef __SSE4_1__ + __m128i d0 = _mm_loadu_si128(((__m128i*)src) + 0); + __m128i d1 = _mm_loadu_si128(((__m128i*)src) + 1); + __m128i d2 = _mm_loadu_si128(((__m128i*)src) + 2); + __m128i d3 = _mm_loadu_si128(((__m128i*)src) + 3); + + __m128i c = _mm_shuffle_epi32(d0, _MM_SHUFFLE(0, 0, 0, 0)); + + __m128i c0 = _mm_cmpeq_epi8(d0, c); + __m128i c1 = _mm_cmpeq_epi8(d1, c); + __m128i c2 = _mm_cmpeq_epi8(d2, c); + __m128i c3 = _mm_cmpeq_epi8(d3, c); + + __m128i m0 = _mm_and_si128(c0, c1); + __m128i m1 = _mm_and_si128(c2, c3); + __m128i m = _mm_and_si128(m0, m1); + + if (!_mm_testc_si128(m, _mm_set1_epi32(-1))) + { + return 0; + } +#elif defined __ARM_NEON + int32x4_t d0 = vld1q_s32((int32_t*)src + 0); + int32x4_t d1 = vld1q_s32((int32_t*)src + 4); + int32x4_t d2 = vld1q_s32((int32_t*)src + 8); + int32x4_t d3 = vld1q_s32((int32_t*)src + 12); + + int32x4_t c = vdupq_n_s32(d0[0]); + + int32x4_t c0 = vreinterpretq_s32_u32(vceqq_s32(d0, c)); + int32x4_t c1 = vreinterpretq_s32_u32(vceqq_s32(d1, c)); + int32x4_t c2 = vreinterpretq_s32_u32(vceqq_s32(d2, c)); + int32x4_t c3 = vreinterpretq_s32_u32(vceqq_s32(d3, c)); + + int32x4_t m0 = vandq_s32(c0, c1); + int32x4_t m1 = vandq_s32(c2, c3); + int64x2_t m = vreinterpretq_s64_s32(vandq_s32(m0, m1)); + + if (m[0] != -1 || m[1] != -1) + { + return 0; + } +#else + const uint8_t* ptr = src + 4; + for( int i=1; i<16; i++ ) + { + if( memcmp( src, ptr, 4 ) != 0 ) + { + return 0; + } + ptr += 4; + } +#endif + return 0x02000000 | + ( (unsigned int)( src[0] & 0xF8 ) << 16 ) | + ( (unsigned int)( src[1] & 0xF8 ) << 8 ) | + ( (unsigned int)( src[2] & 0xF8 ) ); +} + +static etcpak_force_inline void PrepareAverages( v4i a[8], const uint8_t* src, unsigned int err[4] ) +{ + Average( src, a ); + ProcessAverages( a ); + + unsigned int errblock[4][4]; + CalcErrorBlock( src, errblock ); + + for( int i=0; i<4; i++ ) + { + err[i/2] += CalcError( errblock[i], a[i] ); + err[2+i/2] += CalcError( errblock[i], a[i+4] ); + } +} + +static etcpak_force_inline void FindBestFit( uint64_t terr[2][8], uint16_t tsel[16][8], v4i a[8], const uint32_t* id, const uint8_t* data ) +{ + for( size_t i=0; i<16; i++ ) + { + uint16_t* sel = tsel[i]; + unsigned int bid = id[i]; + uint64_t* ter = terr[bid%2]; + + uint8_t b = *data++; + uint8_t g = *data++; + uint8_t r = *data++; + data++; + + int dr = a[bid][0] - r; + int dg = a[bid][1] - g; + int db = a[bid][2] - b; + +#ifdef __SSE4_1__ + // Reference implementation + + __m128i pix = _mm_set1_epi32(dr * 77 + dg * 151 + db * 28); + // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. + __m128i error0 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[0])); + __m128i error1 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[1])); + __m128i error2 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[0])); + __m128i error3 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[1])); + + __m128i index0 = _mm_and_si128(_mm_cmplt_epi32(error1, error0), _mm_set1_epi32(1)); + __m128i minError0 = _mm_min_epi32(error0, error1); + + __m128i index1 = _mm_sub_epi32(_mm_set1_epi32(2), _mm_cmplt_epi32(error3, error2)); + __m128i minError1 = _mm_min_epi32(error2, error3); + + __m128i minIndex0 = _mm_blendv_epi8(index0, index1, _mm_cmplt_epi32(minError1, minError0)); + __m128i minError = _mm_min_epi32(minError0, minError1); + + // Squaring the minimum error to produce correct values when adding + __m128i minErrorLow = _mm_shuffle_epi32(minError, _MM_SHUFFLE(1, 1, 0, 0)); + __m128i squareErrorLow = _mm_mul_epi32(minErrorLow, minErrorLow); + squareErrorLow = _mm_add_epi64(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 0)); + _mm_storeu_si128(((__m128i*)ter) + 0, squareErrorLow); + __m128i minErrorHigh = _mm_shuffle_epi32(minError, _MM_SHUFFLE(3, 3, 2, 2)); + __m128i squareErrorHigh = _mm_mul_epi32(minErrorHigh, minErrorHigh); + squareErrorHigh = _mm_add_epi64(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 1)); + _mm_storeu_si128(((__m128i*)ter) + 1, squareErrorHigh); + + // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. + error0 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[2])); + error1 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[3])); + error2 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[2])); + error3 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[3])); + + index0 = _mm_and_si128(_mm_cmplt_epi32(error1, error0), _mm_set1_epi32(1)); + minError0 = _mm_min_epi32(error0, error1); + + index1 = _mm_sub_epi32(_mm_set1_epi32(2), _mm_cmplt_epi32(error3, error2)); + minError1 = _mm_min_epi32(error2, error3); + + __m128i minIndex1 = _mm_blendv_epi8(index0, index1, _mm_cmplt_epi32(minError1, minError0)); + minError = _mm_min_epi32(minError0, minError1); + + // Squaring the minimum error to produce correct values when adding + minErrorLow = _mm_shuffle_epi32(minError, _MM_SHUFFLE(1, 1, 0, 0)); + squareErrorLow = _mm_mul_epi32(minErrorLow, minErrorLow); + squareErrorLow = _mm_add_epi64(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 2)); + _mm_storeu_si128(((__m128i*)ter) + 2, squareErrorLow); + minErrorHigh = _mm_shuffle_epi32(minError, _MM_SHUFFLE(3, 3, 2, 2)); + squareErrorHigh = _mm_mul_epi32(minErrorHigh, minErrorHigh); + squareErrorHigh = _mm_add_epi64(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 3)); + _mm_storeu_si128(((__m128i*)ter) + 3, squareErrorHigh); + __m128i minIndex = _mm_packs_epi32(minIndex0, minIndex1); + _mm_storeu_si128((__m128i*)sel, minIndex); +#elif defined __ARM_NEON + int32x4_t pix = vdupq_n_s32(dr * 77 + dg * 151 + db * 28); + + // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. + uint32x4_t error0 = vreinterpretq_u32_s32(vabsq_s32(vaddq_s32(pix, g_table256_NEON[0]))); + uint32x4_t error1 = vreinterpretq_u32_s32(vabsq_s32(vaddq_s32(pix, g_table256_NEON[1]))); + uint32x4_t error2 = vreinterpretq_u32_s32(vabsq_s32(vsubq_s32(pix, g_table256_NEON[0]))); + uint32x4_t error3 = vreinterpretq_u32_s32(vabsq_s32(vsubq_s32(pix, g_table256_NEON[1]))); + + uint32x4_t index0 = vandq_u32(vcltq_u32(error1, error0), vdupq_n_u32(1)); + uint32x4_t minError0 = vminq_u32(error0, error1); + + uint32x4_t index1 = vreinterpretq_u32_s32(vsubq_s32(vdupq_n_s32(2), vreinterpretq_s32_u32(vcltq_u32(error3, error2)))); + uint32x4_t minError1 = vminq_u32(error2, error3); + + uint32x4_t blendMask = vcltq_u32(minError1, minError0); + uint32x4_t minIndex0 = vorrq_u32(vbicq_u32(index0, blendMask), vandq_u32(index1, blendMask)); + uint32x4_t minError = vminq_u32(minError0, minError1); + + // Squaring the minimum error to produce correct values when adding + uint32x4_t squareErrorLow = vmulq_u32(minError, minError); + uint32x4_t squareErrorHigh = vshrq_n_u32(vreinterpretq_u32_s32(vqdmulhq_s32(vreinterpretq_s32_u32(minError), vreinterpretq_s32_u32(minError))), 1); + uint32x4x2_t squareErrorZip = vzipq_u32(squareErrorLow, squareErrorHigh); + uint64x2x2_t squareError = { vreinterpretq_u64_u32(squareErrorZip.val[0]), vreinterpretq_u64_u32(squareErrorZip.val[1]) }; + squareError.val[0] = vaddq_u64(squareError.val[0], vld1q_u64(ter + 0)); + squareError.val[1] = vaddq_u64(squareError.val[1], vld1q_u64(ter + 2)); + vst1q_u64(ter + 0, squareError.val[0]); + vst1q_u64(ter + 2, squareError.val[1]); + + // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. + error0 = vreinterpretq_u32_s32( vabsq_s32(vaddq_s32(pix, g_table256_NEON[2]))); + error1 = vreinterpretq_u32_s32( vabsq_s32(vaddq_s32(pix, g_table256_NEON[3]))); + error2 = vreinterpretq_u32_s32( vabsq_s32(vsubq_s32(pix, g_table256_NEON[2]))); + error3 = vreinterpretq_u32_s32( vabsq_s32(vsubq_s32(pix, g_table256_NEON[3]))); + + index0 = vandq_u32(vcltq_u32(error1, error0), vdupq_n_u32(1)); + minError0 = vminq_u32(error0, error1); + + index1 = vreinterpretq_u32_s32( vsubq_s32(vdupq_n_s32(2), vreinterpretq_s32_u32(vcltq_u32(error3, error2))) ); + minError1 = vminq_u32(error2, error3); + + blendMask = vcltq_u32(minError1, minError0); + uint32x4_t minIndex1 = vorrq_u32(vbicq_u32(index0, blendMask), vandq_u32(index1, blendMask)); + minError = vminq_u32(minError0, minError1); + + // Squaring the minimum error to produce correct values when adding + squareErrorLow = vmulq_u32(minError, minError); + squareErrorHigh = vshrq_n_u32(vreinterpretq_u32_s32( vqdmulhq_s32(vreinterpretq_s32_u32(minError), vreinterpretq_s32_u32(minError)) ), 1 ); + squareErrorZip = vzipq_u32(squareErrorLow, squareErrorHigh); + squareError.val[0] = vaddq_u64(vreinterpretq_u64_u32( squareErrorZip.val[0] ), vld1q_u64(ter + 4)); + squareError.val[1] = vaddq_u64(vreinterpretq_u64_u32( squareErrorZip.val[1] ), vld1q_u64(ter + 6)); + vst1q_u64(ter + 4, squareError.val[0]); + vst1q_u64(ter + 6, squareError.val[1]); + + uint16x8_t minIndex = vcombine_u16(vqmovn_u32(minIndex0), vqmovn_u32(minIndex1)); + vst1q_u16(sel, minIndex); +#else + int pix = dr * 77 + dg * 151 + db * 28; + + for( int t=0; t<8; t++ ) + { + const int64_t* tab = g_table256[t]; + unsigned int idx = 0; + uint64_t err = sq( tab[0] + pix ); + for( int j=1; j<4; j++ ) + { + uint64_t local = sq( tab[j] + pix ); + if( local < err ) + { + err = local; + idx = j; + } + } + *sel++ = idx; + *ter++ += err; + } +#endif + } +} + +#if defined __SSE4_1__ || defined __ARM_NEON +// Non-reference implementation, but faster. Produces same results as the AVX2 version +static etcpak_force_inline void FindBestFit( uint32_t terr[2][8], uint16_t tsel[16][8], v4i a[8], const uint32_t* id, const uint8_t* data ) +{ + for( size_t i=0; i<16; i++ ) + { + uint16_t* sel = tsel[i]; + unsigned int bid = id[i]; + uint32_t* ter = terr[bid%2]; + + uint8_t b = *data++; + uint8_t g = *data++; + uint8_t r = *data++; + data++; + + int dr = a[bid][0] - r; + int dg = a[bid][1] - g; + int db = a[bid][2] - b; + +#ifdef __SSE4_1__ + // The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16 + // This produces slightly different results, but is significant faster + __m128i pixel = _mm_set1_epi16(dr * 38 + dg * 76 + db * 14); + __m128i pix = _mm_abs_epi16(pixel); + + // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. + // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. + __m128i error0 = _mm_abs_epi16(_mm_sub_epi16(pix, g_table128_SIMD[0])); + __m128i error1 = _mm_abs_epi16(_mm_sub_epi16(pix, g_table128_SIMD[1])); + + __m128i index = _mm_and_si128(_mm_cmplt_epi16(error1, error0), _mm_set1_epi16(1)); + __m128i minError = _mm_min_epi16(error0, error1); + + // Exploiting symmetry of the selector table and use the sign bit + // This produces slightly different results, but is needed to produce same results as AVX2 implementation + __m128i indexBit = _mm_andnot_si128(_mm_srli_epi16(pixel, 15), _mm_set1_epi8(-1)); + __m128i minIndex = _mm_or_si128(index, _mm_add_epi16(indexBit, indexBit)); + + // Squaring the minimum error to produce correct values when adding + __m128i squareErrorLo = _mm_mullo_epi16(minError, minError); + __m128i squareErrorHi = _mm_mulhi_epi16(minError, minError); + + __m128i squareErrorLow = _mm_unpacklo_epi16(squareErrorLo, squareErrorHi); + __m128i squareErrorHigh = _mm_unpackhi_epi16(squareErrorLo, squareErrorHi); + + squareErrorLow = _mm_add_epi32(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 0)); + _mm_storeu_si128(((__m128i*)ter) + 0, squareErrorLow); + squareErrorHigh = _mm_add_epi32(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 1)); + _mm_storeu_si128(((__m128i*)ter) + 1, squareErrorHigh); + + _mm_storeu_si128((__m128i*)sel, minIndex); +#elif defined __ARM_NEON + int16x8_t pixel = vdupq_n_s16( dr * 38 + dg * 76 + db * 14 ); + int16x8_t pix = vabsq_s16( pixel ); + + int16x8_t error0 = vabsq_s16( vsubq_s16( pix, g_table128_NEON[0] ) ); + int16x8_t error1 = vabsq_s16( vsubq_s16( pix, g_table128_NEON[1] ) ); + + int16x8_t index = vandq_s16( vreinterpretq_s16_u16( vcltq_s16( error1, error0 ) ), vdupq_n_s16( 1 ) ); + int16x8_t minError = vminq_s16( error0, error1 ); + + int16x8_t indexBit = vandq_s16( vmvnq_s16( vshrq_n_s16( pixel, 15 ) ), vdupq_n_s16( -1 ) ); + int16x8_t minIndex = vorrq_s16( index, vaddq_s16( indexBit, indexBit ) ); + + int16x4_t minErrorLow = vget_low_s16( minError ); + int16x4_t minErrorHigh = vget_high_s16( minError ); + + int32x4_t squareErrorLow = vmull_s16( minErrorLow, minErrorLow ); + int32x4_t squareErrorHigh = vmull_s16( minErrorHigh, minErrorHigh ); + + int32x4_t squareErrorSumLow = vaddq_s32( squareErrorLow, vld1q_s32( (int32_t*)ter ) ); + int32x4_t squareErrorSumHigh = vaddq_s32( squareErrorHigh, vld1q_s32( (int32_t*)ter + 4 ) ); + + vst1q_s32( (int32_t*)ter, squareErrorSumLow ); + vst1q_s32( (int32_t*)ter + 4, squareErrorSumHigh ); + + vst1q_s16( (int16_t*)sel, minIndex ); +#endif + } +} +#endif + +static etcpak_force_inline uint8_t convert6(float f) +{ + int i = (std::min(std::max(static_cast<int>(f), 0), 1023) - 15) >> 1; + return (i + 11 - ((i + 11) >> 7) - ((i + 4) >> 7)) >> 3; +} + +static etcpak_force_inline uint8_t convert7(float f) +{ + int i = (std::min(std::max(static_cast<int>(f), 0), 1023) - 15) >> 1; + return (i + 9 - ((i + 9) >> 8) - ((i + 6) >> 8)) >> 2; +} + +static etcpak_force_inline std::pair<uint64_t, uint64_t> Planar(const uint8_t* src) +{ + int32_t r = 0; + int32_t g = 0; + int32_t b = 0; + + for (int i = 0; i < 16; ++i) + { + b += src[i * 4 + 0]; + g += src[i * 4 + 1]; + r += src[i * 4 + 2]; + } + + int32_t difRyz = 0; + int32_t difGyz = 0; + int32_t difByz = 0; + int32_t difRxz = 0; + int32_t difGxz = 0; + int32_t difBxz = 0; + + const int32_t scaling[] = { -255, -85, 85, 255 }; + + for (int i = 0; i < 16; ++i) + { + int32_t difB = (static_cast<int>(src[i * 4 + 0]) << 4) - b; + int32_t difG = (static_cast<int>(src[i * 4 + 1]) << 4) - g; + int32_t difR = (static_cast<int>(src[i * 4 + 2]) << 4) - r; + + difRyz += difR * scaling[i % 4]; + difGyz += difG * scaling[i % 4]; + difByz += difB * scaling[i % 4]; + + difRxz += difR * scaling[i / 4]; + difGxz += difG * scaling[i / 4]; + difBxz += difB * scaling[i / 4]; + } + + const float scale = -4.0f / ((255 * 255 * 8.0f + 85 * 85 * 8.0f) * 16.0f); + + float aR = difRxz * scale; + float aG = difGxz * scale; + float aB = difBxz * scale; + + float bR = difRyz * scale; + float bG = difGyz * scale; + float bB = difByz * scale; + + float dR = r * (4.0f / 16.0f); + float dG = g * (4.0f / 16.0f); + float dB = b * (4.0f / 16.0f); + + // calculating the three colors RGBO, RGBH, and RGBV. RGB = df - af * x - bf * y; + float cofR = std::fma(aR, 255.0f, std::fma(bR, 255.0f, dR)); + float cofG = std::fma(aG, 255.0f, std::fma(bG, 255.0f, dG)); + float cofB = std::fma(aB, 255.0f, std::fma(bB, 255.0f, dB)); + float chfR = std::fma(aR, -425.0f, std::fma(bR, 255.0f, dR)); + float chfG = std::fma(aG, -425.0f, std::fma(bG, 255.0f, dG)); + float chfB = std::fma(aB, -425.0f, std::fma(bB, 255.0f, dB)); + float cvfR = std::fma(aR, 255.0f, std::fma(bR, -425.0f, dR)); + float cvfG = std::fma(aG, 255.0f, std::fma(bG, -425.0f, dG)); + float cvfB = std::fma(aB, 255.0f, std::fma(bB, -425.0f, dB)); + + // convert to r6g7b6 + int32_t coR = convert6(cofR); + int32_t coG = convert7(cofG); + int32_t coB = convert6(cofB); + int32_t chR = convert6(chfR); + int32_t chG = convert7(chfG); + int32_t chB = convert6(chfB); + int32_t cvR = convert6(cvfR); + int32_t cvG = convert7(cvfG); + int32_t cvB = convert6(cvfB); + + // Error calculation + auto ro0 = coR; + auto go0 = coG; + auto bo0 = coB; + auto ro1 = (ro0 >> 4) | (ro0 << 2); + auto go1 = (go0 >> 6) | (go0 << 1); + auto bo1 = (bo0 >> 4) | (bo0 << 2); + auto ro2 = (ro1 << 2) + 2; + auto go2 = (go1 << 2) + 2; + auto bo2 = (bo1 << 2) + 2; + + auto rh0 = chR; + auto gh0 = chG; + auto bh0 = chB; + auto rh1 = (rh0 >> 4) | (rh0 << 2); + auto gh1 = (gh0 >> 6) | (gh0 << 1); + auto bh1 = (bh0 >> 4) | (bh0 << 2); + + auto rh2 = rh1 - ro1; + auto gh2 = gh1 - go1; + auto bh2 = bh1 - bo1; + + auto rv0 = cvR; + auto gv0 = cvG; + auto bv0 = cvB; + auto rv1 = (rv0 >> 4) | (rv0 << 2); + auto gv1 = (gv0 >> 6) | (gv0 << 1); + auto bv1 = (bv0 >> 4) | (bv0 << 2); + + auto rv2 = rv1 - ro1; + auto gv2 = gv1 - go1; + auto bv2 = bv1 - bo1; + + uint64_t error = 0; + + for (int i = 0; i < 16; ++i) + { + int32_t cR = clampu8((rh2 * (i / 4) + rv2 * (i % 4) + ro2) >> 2); + int32_t cG = clampu8((gh2 * (i / 4) + gv2 * (i % 4) + go2) >> 2); + int32_t cB = clampu8((bh2 * (i / 4) + bv2 * (i % 4) + bo2) >> 2); + + int32_t difB = static_cast<int>(src[i * 4 + 0]) - cB; + int32_t difG = static_cast<int>(src[i * 4 + 1]) - cG; + int32_t difR = static_cast<int>(src[i * 4 + 2]) - cR; + + int32_t dif = difR * 38 + difG * 76 + difB * 14; + + error += dif * dif; + } + + /**/ + uint32_t rgbv = cvB | (cvG << 6) | (cvR << 13); + uint32_t rgbh = chB | (chG << 6) | (chR << 13); + uint32_t hi = rgbv | ((rgbh & 0x1FFF) << 19); + uint32_t lo = (chR & 0x1) | 0x2 | ((chR << 1) & 0x7C); + lo |= ((coB & 0x07) << 7) | ((coB & 0x18) << 8) | ((coB & 0x20) << 11); + lo |= ((coG & 0x3F) << 17) | ((coG & 0x40) << 18); + lo |= coR << 25; + + const auto idx = (coR & 0x20) | ((coG & 0x20) >> 1) | ((coB & 0x1E) >> 1); + + lo |= g_flags[idx]; + + uint64_t result = static_cast<uint32_t>(_bswap(lo)); + result |= static_cast<uint64_t>(static_cast<uint32_t>(_bswap(hi))) << 32; + + return std::make_pair(result, error); +} + +#ifdef __ARM_NEON + +static etcpak_force_inline int32x2_t Planar_NEON_DifXZ( int16x8_t dif_lo, int16x8_t dif_hi ) +{ + int32x4_t dif0 = vmull_n_s16( vget_low_s16( dif_lo ), -255 ); + int32x4_t dif1 = vmull_n_s16( vget_high_s16( dif_lo ), -85 ); + int32x4_t dif2 = vmull_n_s16( vget_low_s16( dif_hi ), 85 ); + int32x4_t dif3 = vmull_n_s16( vget_high_s16( dif_hi ), 255 ); + int32x4_t dif4 = vaddq_s32( vaddq_s32( dif0, dif1 ), vaddq_s32( dif2, dif3 ) ); + +#ifndef __aarch64__ + int32x2_t dif5 = vpadd_s32( vget_low_s32( dif4 ), vget_high_s32( dif4 ) ); + return vpadd_s32( dif5, dif5 ); +#else + return vdup_n_s32( vaddvq_s32( dif4 ) ); +#endif +} + +static etcpak_force_inline int32x2_t Planar_NEON_DifYZ( int16x8_t dif_lo, int16x8_t dif_hi ) +{ + int16x4_t scaling = { -255, -85, 85, 255 }; + int32x4_t dif0 = vmull_s16( vget_low_s16( dif_lo ), scaling ); + int32x4_t dif1 = vmull_s16( vget_high_s16( dif_lo ), scaling ); + int32x4_t dif2 = vmull_s16( vget_low_s16( dif_hi ), scaling ); + int32x4_t dif3 = vmull_s16( vget_high_s16( dif_hi ), scaling ); + int32x4_t dif4 = vaddq_s32( vaddq_s32( dif0, dif1 ), vaddq_s32( dif2, dif3 ) ); + +#ifndef __aarch64__ + int32x2_t dif5 = vpadd_s32( vget_low_s32( dif4 ), vget_high_s32( dif4 ) ); + return vpadd_s32( dif5, dif5 ); +#else + return vdup_n_s32( vaddvq_s32( dif4 ) ); +#endif +} + +static etcpak_force_inline int16x8_t Planar_NEON_SumWide( uint8x16_t src ) +{ + uint16x8_t accu8 = vpaddlq_u8( src ); +#ifndef __aarch64__ + uint16x4_t accu4 = vpadd_u16( vget_low_u16( accu8 ), vget_high_u16( accu8 ) ); + uint16x4_t accu2 = vpadd_u16( accu4, accu4 ); + uint16x4_t accu1 = vpadd_u16( accu2, accu2 ); + return vreinterpretq_s16_u16( vcombine_u16( accu1, accu1 ) ); +#else + return vdupq_n_s16( vaddvq_u16( accu8 ) ); +#endif +} + +static etcpak_force_inline int16x8_t convert6_NEON( int32x4_t lo, int32x4_t hi ) +{ + uint16x8_t x = vcombine_u16( vqmovun_s32( lo ), vqmovun_s32( hi ) ); + int16x8_t i = vreinterpretq_s16_u16( vshrq_n_u16( vqshlq_n_u16( x, 6 ), 6) ); // clamp 0-1023 + i = vhsubq_s16( i, vdupq_n_s16( 15 ) ); + + int16x8_t ip11 = vaddq_s16( i, vdupq_n_s16( 11 ) ); + int16x8_t ip4 = vaddq_s16( i, vdupq_n_s16( 4 ) ); + + return vshrq_n_s16( vsubq_s16( vsubq_s16( ip11, vshrq_n_s16( ip11, 7 ) ), vshrq_n_s16( ip4, 7) ), 3 ); +} + +static etcpak_force_inline int16x4_t convert7_NEON( int32x4_t x ) +{ + int16x4_t i = vreinterpret_s16_u16( vshr_n_u16( vqshl_n_u16( vqmovun_s32( x ), 6 ), 6 ) ); // clamp 0-1023 + i = vhsub_s16( i, vdup_n_s16( 15 ) ); + + int16x4_t p9 = vadd_s16( i, vdup_n_s16( 9 ) ); + int16x4_t p6 = vadd_s16( i, vdup_n_s16( 6 ) ); + return vshr_n_s16( vsub_s16( vsub_s16( p9, vshr_n_s16( p9, 8 ) ), vshr_n_s16( p6, 8 ) ), 2 ); +} + +static etcpak_force_inline std::pair<uint64_t, uint64_t> Planar_NEON( const uint8_t* src ) +{ + uint8x16x4_t srcBlock = vld4q_u8( src ); + + int16x8_t bSumWide = Planar_NEON_SumWide( srcBlock.val[0] ); + int16x8_t gSumWide = Planar_NEON_SumWide( srcBlock.val[1] ); + int16x8_t rSumWide = Planar_NEON_SumWide( srcBlock.val[2] ); + + int16x8_t dif_R_lo = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_low_u8( srcBlock.val[2] ), 4) ), rSumWide ); + int16x8_t dif_R_hi = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_high_u8( srcBlock.val[2] ), 4) ), rSumWide ); + + int16x8_t dif_G_lo = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_low_u8( srcBlock.val[1] ), 4 ) ), gSumWide ); + int16x8_t dif_G_hi = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_high_u8( srcBlock.val[1] ), 4 ) ), gSumWide ); + + int16x8_t dif_B_lo = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_low_u8( srcBlock.val[0] ), 4) ), bSumWide ); + int16x8_t dif_B_hi = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_high_u8( srcBlock.val[0] ), 4) ), bSumWide ); + + int32x2x2_t dif_xz_z = vzip_s32( vzip_s32( Planar_NEON_DifXZ( dif_B_lo, dif_B_hi ), Planar_NEON_DifXZ( dif_R_lo, dif_R_hi ) ).val[0], Planar_NEON_DifXZ( dif_G_lo, dif_G_hi ) ); + int32x4_t dif_xz = vcombine_s32( dif_xz_z.val[0], dif_xz_z.val[1] ); + int32x2x2_t dif_yz_z = vzip_s32( vzip_s32( Planar_NEON_DifYZ( dif_B_lo, dif_B_hi ), Planar_NEON_DifYZ( dif_R_lo, dif_R_hi ) ).val[0], Planar_NEON_DifYZ( dif_G_lo, dif_G_hi ) ); + int32x4_t dif_yz = vcombine_s32( dif_yz_z.val[0], dif_yz_z.val[1] ); + + const float fscale = -4.0f / ( (255 * 255 * 8.0f + 85 * 85 * 8.0f ) * 16.0f ); + float32x4_t fa = vmulq_n_f32( vcvtq_f32_s32( dif_xz ), fscale ); + float32x4_t fb = vmulq_n_f32( vcvtq_f32_s32( dif_yz ), fscale ); + int16x4_t bgrgSum = vzip_s16( vzip_s16( vget_low_s16( bSumWide ), vget_low_s16( rSumWide ) ).val[0], vget_low_s16( gSumWide ) ).val[0]; + float32x4_t fd = vmulq_n_f32( vcvtq_f32_s32( vmovl_s16( bgrgSum ) ), 4.0f / 16.0f); + + float32x4_t cof = vmlaq_n_f32( vmlaq_n_f32( fd, fb, 255.0f ), fa, 255.0f ); + float32x4_t chf = vmlaq_n_f32( vmlaq_n_f32( fd, fb, 255.0f ), fa, -425.0f ); + float32x4_t cvf = vmlaq_n_f32( vmlaq_n_f32( fd, fb, -425.0f ), fa, 255.0f ); + + int32x4_t coi = vcvtq_s32_f32( cof ); + int32x4_t chi = vcvtq_s32_f32( chf ); + int32x4_t cvi = vcvtq_s32_f32( cvf ); + + int32x4x2_t tr_hv = vtrnq_s32( chi, cvi ); + int32x4x2_t tr_o = vtrnq_s32( coi, coi ); + + int16x8_t c_hvoo_br_6 = convert6_NEON( tr_hv.val[0], tr_o.val[0] ); + int16x4_t c_hvox_g_7 = convert7_NEON( vcombine_s32( vget_low_s32( tr_hv.val[1] ), vget_low_s32( tr_o.val[1] ) ) ); + int16x8_t c_hvoo_br_8 = vorrq_s16( vshrq_n_s16( c_hvoo_br_6, 4 ), vshlq_n_s16( c_hvoo_br_6, 2 ) ); + int16x4_t c_hvox_g_8 = vorr_s16( vshr_n_s16( c_hvox_g_7, 6 ), vshl_n_s16( c_hvox_g_7, 1 ) ); + + int16x4_t rec_gxbr_o = vext_s16( c_hvox_g_8, vget_high_s16( c_hvoo_br_8 ), 3 ); + + rec_gxbr_o = vadd_s16( vshl_n_s16( rec_gxbr_o, 2 ), vdup_n_s16( 2 ) ); + int16x8_t rec_ro_wide = vdupq_lane_s16( rec_gxbr_o, 3 ); + int16x8_t rec_go_wide = vdupq_lane_s16( rec_gxbr_o, 0 ); + int16x8_t rec_bo_wide = vdupq_lane_s16( rec_gxbr_o, 1 ); + + int16x4_t br_hv2 = vsub_s16( vget_low_s16( c_hvoo_br_8 ), vget_high_s16( c_hvoo_br_8 ) ); + int16x4_t gg_hv2 = vsub_s16( c_hvox_g_8, vdup_lane_s16( c_hvox_g_8, 2 ) ); + + int16x8_t scaleh_lo = { 0, 0, 0, 0, 1, 1, 1, 1 }; + int16x8_t scaleh_hi = { 2, 2, 2, 2, 3, 3, 3, 3 }; + int16x8_t scalev = { 0, 1, 2, 3, 0, 1, 2, 3 }; + + int16x8_t rec_r_1 = vmlaq_lane_s16( rec_ro_wide, scalev, br_hv2, 3 ); + int16x8_t rec_r_lo = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_r_1, scaleh_lo, br_hv2, 2 ), 2 ) ) ); + int16x8_t rec_r_hi = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_r_1, scaleh_hi, br_hv2, 2 ), 2 ) ) ); + + int16x8_t rec_b_1 = vmlaq_lane_s16( rec_bo_wide, scalev, br_hv2, 1 ); + int16x8_t rec_b_lo = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_b_1, scaleh_lo, br_hv2, 0 ), 2 ) ) ); + int16x8_t rec_b_hi = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_b_1, scaleh_hi, br_hv2, 0 ), 2 ) ) ); + + int16x8_t rec_g_1 = vmlaq_lane_s16( rec_go_wide, scalev, gg_hv2, 1 ); + int16x8_t rec_g_lo = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_g_1, scaleh_lo, gg_hv2, 0 ), 2 ) ) ); + int16x8_t rec_g_hi = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_g_1, scaleh_hi, gg_hv2, 0 ), 2 ) ) ); + + int16x8_t dif_r_lo = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_low_u8( srcBlock.val[2] ) ) ), rec_r_lo ); + int16x8_t dif_r_hi = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_high_u8( srcBlock.val[2] ) ) ), rec_r_hi ); + + int16x8_t dif_g_lo = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_low_u8( srcBlock.val[1] ) ) ), rec_g_lo ); + int16x8_t dif_g_hi = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_high_u8( srcBlock.val[1] ) ) ), rec_g_hi ); + + int16x8_t dif_b_lo = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_low_u8( srcBlock.val[0] ) ) ), rec_b_lo ); + int16x8_t dif_b_hi = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_high_u8( srcBlock.val[0] ) ) ), rec_b_hi ); + + int16x8_t dif_lo = vmlaq_n_s16( vmlaq_n_s16( vmulq_n_s16( dif_r_lo, 38 ), dif_g_lo, 76 ), dif_b_lo, 14 ); + int16x8_t dif_hi = vmlaq_n_s16( vmlaq_n_s16( vmulq_n_s16( dif_r_hi, 38 ), dif_g_hi, 76 ), dif_b_hi, 14 ); + + int16x4_t tmpDif = vget_low_s16( dif_lo ); + int32x4_t difsq_0 = vmull_s16( tmpDif, tmpDif ); + tmpDif = vget_high_s16( dif_lo ); + int32x4_t difsq_1 = vmull_s16( tmpDif, tmpDif ); + tmpDif = vget_low_s16( dif_hi ); + int32x4_t difsq_2 = vmull_s16( tmpDif, tmpDif ); + tmpDif = vget_high_s16( dif_hi ); + int32x4_t difsq_3 = vmull_s16( tmpDif, tmpDif ); + + uint32x4_t difsq_5 = vaddq_u32( vreinterpretq_u32_s32( difsq_0 ), vreinterpretq_u32_s32( difsq_1 ) ); + uint32x4_t difsq_6 = vaddq_u32( vreinterpretq_u32_s32( difsq_2 ), vreinterpretq_u32_s32( difsq_3) ); + + uint64x2_t difsq_7 = vaddl_u32( vget_low_u32( difsq_5 ), vget_high_u32( difsq_5 ) ); + uint64x2_t difsq_8 = vaddl_u32( vget_low_u32( difsq_6 ), vget_high_u32( difsq_6 ) ); + + uint64x2_t difsq_9 = vaddq_u64( difsq_7, difsq_8 ); + +#ifdef __aarch64__ + uint64_t error = vaddvq_u64( difsq_9 ); +#else + uint64_t error = vgetq_lane_u64( difsq_9, 0 ) + vgetq_lane_u64( difsq_9, 1 ); +#endif + + int32_t coR = c_hvoo_br_6[6]; + int32_t coG = c_hvox_g_7[2]; + int32_t coB = c_hvoo_br_6[4]; + + int32_t chR = c_hvoo_br_6[2]; + int32_t chG = c_hvox_g_7[0]; + int32_t chB = c_hvoo_br_6[0]; + + int32_t cvR = c_hvoo_br_6[3]; + int32_t cvG = c_hvox_g_7[1]; + int32_t cvB = c_hvoo_br_6[1]; + + uint32_t rgbv = cvB | ( cvG << 6 ) | ( cvR << 13 ); + uint32_t rgbh = chB | ( chG << 6 ) | ( chR << 13 ); + uint32_t hi = rgbv | ( ( rgbh & 0x1FFF ) << 19 ); + uint32_t lo = ( chR & 0x1 ) | 0x2 | ( ( chR << 1 ) & 0x7C ); + lo |= ( ( coB & 0x07 ) << 7 ) | ( ( coB & 0x18 ) << 8 ) | ( ( coB & 0x20 ) << 11 ); + lo |= ( ( coG & 0x3F) << 17) | ( (coG & 0x40 ) << 18 ); + lo |= coR << 25; + + const auto idx = ( coR & 0x20 ) | ( ( coG & 0x20 ) >> 1 ) | ( ( coB & 0x1E ) >> 1 ); + + lo |= g_flags[idx]; + + uint64_t result = static_cast<uint32_t>( _bswap(lo) ); + result |= static_cast<uint64_t>( static_cast<uint32_t>( _bswap( hi ) ) ) << 32; + + return std::make_pair( result, error ); +} + +#endif + +template<class T, class S> +static etcpak_force_inline uint64_t EncodeSelectors( uint64_t d, const T terr[2][8], const S tsel[16][8], const uint32_t* id, const uint64_t value, const uint64_t error) +{ + size_t tidx[2]; + tidx[0] = GetLeastError( terr[0], 8 ); + tidx[1] = GetLeastError( terr[1], 8 ); + + if ((terr[0][tidx[0]] + terr[1][tidx[1]]) >= error) + { + return value; + } + + d |= tidx[0] << 26; + d |= tidx[1] << 29; + for( int i=0; i<16; i++ ) + { + uint64_t t = tsel[i][tidx[id[i]%2]]; + d |= ( t & 0x1 ) << ( i + 32 ); + d |= ( t & 0x2 ) << ( i + 47 ); + } + + return FixByteOrder(d); +} + +} + +static etcpak_force_inline uint64_t ProcessRGB( const uint8_t* src ) +{ +#ifdef __AVX2__ + uint64_t d = CheckSolid_AVX2( src ); + if( d != 0 ) return d; + + alignas(32) v4i a[8]; + + __m128i err0 = PrepareAverages_AVX2( a, src ); + + // Get index of minimum error (err0) + __m128i err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(2, 3, 0, 1)); + __m128i errMin0 = _mm_min_epu32(err0, err1); + + __m128i errMin1 = _mm_shuffle_epi32(errMin0, _MM_SHUFFLE(1, 0, 3, 2)); + __m128i errMin2 = _mm_min_epu32(errMin1, errMin0); + + __m128i errMask = _mm_cmpeq_epi32(errMin2, err0); + + uint32_t mask = _mm_movemask_epi8(errMask); + + uint32_t idx = _bit_scan_forward(mask) >> 2; + + d |= EncodeAverages_AVX2( a, idx ); + + alignas(32) uint32_t terr[2][8] = {}; + alignas(32) uint32_t tsel[8]; + + if ((idx == 0) || (idx == 2)) + { + FindBestFit_4x2_AVX2( terr, tsel, a, idx * 2, src ); + } + else + { + FindBestFit_2x4_AVX2( terr, tsel, a, idx * 2, src ); + } + + return EncodeSelectors_AVX2( d, terr, tsel, (idx % 2) == 1 ); +#else + uint64_t d = CheckSolid( src ); + if( d != 0 ) return d; + + v4i a[8]; + unsigned int err[4] = {}; + PrepareAverages( a, src, err ); + size_t idx = GetLeastError( err, 4 ); + EncodeAverages( d, a, idx ); + +#if ( defined __SSE4_1__ || defined __ARM_NEON ) && !defined REFERENCE_IMPLEMENTATION + uint32_t terr[2][8] = {}; +#else + uint64_t terr[2][8] = {}; +#endif + uint16_t tsel[16][8]; + auto id = g_id[idx]; + FindBestFit( terr, tsel, a, id, src ); + + return FixByteOrder( EncodeSelectors( d, terr, tsel, id ) ); +#endif +} + +static etcpak_force_inline uint64_t ProcessRGB_ETC2( const uint8_t* src ) +{ +#ifdef __AVX2__ + uint64_t d = CheckSolid_AVX2( src ); + if( d != 0 ) return d; + + auto plane = Planar_AVX2( src ); + + alignas(32) v4i a[8]; + + __m128i err0 = PrepareAverages_AVX2( a, plane.sum4 ); + + // Get index of minimum error (err0) + __m128i err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(2, 3, 0, 1)); + __m128i errMin0 = _mm_min_epu32(err0, err1); + + __m128i errMin1 = _mm_shuffle_epi32(errMin0, _MM_SHUFFLE(1, 0, 3, 2)); + __m128i errMin2 = _mm_min_epu32(errMin1, errMin0); + + __m128i errMask = _mm_cmpeq_epi32(errMin2, err0); + + uint32_t mask = _mm_movemask_epi8(errMask); + + size_t idx = _bit_scan_forward(mask) >> 2; + + d = EncodeAverages_AVX2( a, idx ); + + alignas(32) uint32_t terr[2][8] = {}; + alignas(32) uint32_t tsel[8]; + + if ((idx == 0) || (idx == 2)) + { + FindBestFit_4x2_AVX2( terr, tsel, a, idx * 2, src ); + } + else + { + FindBestFit_2x4_AVX2( terr, tsel, a, idx * 2, src ); + } + + return EncodeSelectors_AVX2( d, terr, tsel, (idx % 2) == 1, plane.plane, plane.error ); +#else + uint64_t d = CheckSolid( src ); + if (d != 0) return d; + +#ifdef __ARM_NEON + auto result = Planar_NEON( src ); +#else + auto result = Planar( src ); +#endif + + v4i a[8]; + unsigned int err[4] = {}; + PrepareAverages( a, src, err ); + size_t idx = GetLeastError( err, 4 ); + EncodeAverages( d, a, idx ); + +#if ( defined __SSE4_1__ || defined __ARM_NEON ) && !defined REFERENCE_IMPLEMENTATION + uint32_t terr[2][8] = {}; +#else + uint64_t terr[2][8] = {}; +#endif + uint16_t tsel[16][8]; + auto id = g_id[idx]; + FindBestFit( terr, tsel, a, id, src ); + + return EncodeSelectors( d, terr, tsel, id, result.first, result.second ); +#endif +} + +#ifdef __SSE4_1__ +template<int K> +static etcpak_force_inline __m128i Widen( const __m128i src ) +{ + static_assert( K >= 0 && K <= 7, "Index out of range" ); + + __m128i tmp; + switch( K ) + { + case 0: + tmp = _mm_shufflelo_epi16( src, _MM_SHUFFLE( 0, 0, 0, 0 ) ); + return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 0, 0, 0, 0 ) ); + case 1: + tmp = _mm_shufflelo_epi16( src, _MM_SHUFFLE( 1, 1, 1, 1 ) ); + return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 0, 0, 0, 0 ) ); + case 2: + tmp = _mm_shufflelo_epi16( src, _MM_SHUFFLE( 2, 2, 2, 2 ) ); + return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 0, 0, 0, 0 ) ); + case 3: + tmp = _mm_shufflelo_epi16( src, _MM_SHUFFLE( 3, 3, 3, 3 ) ); + return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 0, 0, 0, 0 ) ); + case 4: + tmp = _mm_shufflehi_epi16( src, _MM_SHUFFLE( 0, 0, 0, 0 ) ); + return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 2, 2, 2, 2 ) ); + case 5: + tmp = _mm_shufflehi_epi16( src, _MM_SHUFFLE( 1, 1, 1, 1 ) ); + return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 2, 2, 2, 2 ) ); + case 6: + tmp = _mm_shufflehi_epi16( src, _MM_SHUFFLE( 2, 2, 2, 2 ) ); + return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 2, 2, 2, 2 ) ); + case 7: + tmp = _mm_shufflehi_epi16( src, _MM_SHUFFLE( 3, 3, 3, 3 ) ); + return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 2, 2, 2, 2 ) ); + } +} + +static etcpak_force_inline int GetMulSel( int sel ) +{ + switch( sel ) + { + case 0: + return 0; + case 1: + case 2: + case 3: + return 1; + case 4: + return 2; + case 5: + case 6: + case 7: + return 3; + case 8: + case 9: + case 10: + case 11: + case 12: + case 13: + return 4; + case 14: + case 15: + return 5; + } +} + +#endif + +#ifdef __ARM_NEON + +static constexpr etcpak_force_inline int GetMulSel(int sel) +{ + return ( sel < 1 ) ? 0 : ( sel < 4 ) ? 1 : ( sel < 5 ) ? 2 : ( sel < 8 ) ? 3 : ( sel < 14 ) ? 4 : 5; +} + +static constexpr int ClampConstant( int x, int min, int max ) +{ + return x < min ? min : x > max ? max : x; +} + +template <int Index> +etcpak_force_inline static uint16x8_t ErrorProbe_EAC_NEON( uint8x8_t recVal, uint8x16_t alphaBlock ) +{ + uint8x8_t srcValWide; +#ifndef __aarch64__ + if( Index < 8 ) + srcValWide = vdup_lane_u8( vget_low_u8( alphaBlock ), ClampConstant( Index, 0, 8 ) ); + else + srcValWide = vdup_lane_u8( vget_high_u8( alphaBlock ), ClampConstant( Index - 8, 0, 8 ) ); +#else + srcValWide = vdup_laneq_u8( alphaBlock, Index ); +#endif + + uint8x8_t deltaVal = vabd_u8( srcValWide, recVal ); + return vmull_u8( deltaVal, deltaVal ); +} + +etcpak_force_inline static uint16_t MinError_EAC_NEON( uint16x8_t errProbe ) +{ +#ifndef __aarch64__ + uint16x4_t tmpErr = vpmin_u16( vget_low_u16( errProbe ), vget_high_u16( errProbe ) ); + tmpErr = vpmin_u16( tmpErr, tmpErr ); + return vpmin_u16( tmpErr, tmpErr )[0]; +#else + return vminvq_u16( errProbe ); +#endif +} + +template <int Index> +etcpak_force_inline static uint64_t MinErrorIndex_EAC_NEON( uint8x8_t recVal, uint8x16_t alphaBlock ) +{ + uint16x8_t errProbe = ErrorProbe_EAC_NEON<Index>( recVal, alphaBlock ); + uint16x8_t minErrMask = vceqq_u16( errProbe, vdupq_n_u16( MinError_EAC_NEON( errProbe ) ) ); + uint64_t idx = __builtin_ctzll( vget_lane_u64( vreinterpret_u64_u8( vqmovn_u16( minErrMask ) ), 0 ) ); + idx >>= 3; + idx <<= 45 - Index * 3; + + return idx; +} + +template <int Index> +etcpak_force_inline static int16x8_t WidenMultiplier_EAC_NEON( int16x8_t multipliers ) +{ + constexpr int Lane = GetMulSel( Index ); +#ifndef __aarch64__ + if( Lane < 4 ) + return vdupq_lane_s16( vget_low_s16( multipliers ), ClampConstant( Lane, 0, 4 ) ); + else + return vdupq_lane_s16( vget_high_s16( multipliers ), ClampConstant( Lane - 4, 0, 4 ) ); +#else + return vdupq_laneq_s16( multipliers, Lane ); +#endif +} + +#endif + +static etcpak_force_inline uint64_t ProcessAlpha_ETC2( const uint8_t* src ) +{ +#if defined __SSE4_1__ + // Check solid + __m128i s = _mm_loadu_si128( (__m128i*)src ); + __m128i solidCmp = _mm_set1_epi8( src[0] ); + __m128i cmpRes = _mm_cmpeq_epi8( s, solidCmp ); + if( _mm_testc_si128( cmpRes, _mm_set1_epi32( -1 ) ) ) + { + return src[0]; + } + + // Calculate min, max + __m128i s1 = _mm_shuffle_epi32( s, _MM_SHUFFLE( 2, 3, 0, 1 ) ); + __m128i max1 = _mm_max_epu8( s, s1 ); + __m128i min1 = _mm_min_epu8( s, s1 ); + __m128i smax2 = _mm_shuffle_epi32( max1, _MM_SHUFFLE( 0, 0, 2, 2 ) ); + __m128i smin2 = _mm_shuffle_epi32( min1, _MM_SHUFFLE( 0, 0, 2, 2 ) ); + __m128i max2 = _mm_max_epu8( max1, smax2 ); + __m128i min2 = _mm_min_epu8( min1, smin2 ); + __m128i smax3 = _mm_alignr_epi8( max2, max2, 2 ); + __m128i smin3 = _mm_alignr_epi8( min2, min2, 2 ); + __m128i max3 = _mm_max_epu8( max2, smax3 ); + __m128i min3 = _mm_min_epu8( min2, smin3 ); + __m128i smax4 = _mm_alignr_epi8( max3, max3, 1 ); + __m128i smin4 = _mm_alignr_epi8( min3, min3, 1 ); + __m128i max = _mm_max_epu8( max3, smax4 ); + __m128i min = _mm_min_epu8( min3, smin4 ); + __m128i max16 = _mm_unpacklo_epi8( max, _mm_setzero_si128() ); + __m128i min16 = _mm_unpacklo_epi8( min, _mm_setzero_si128() ); + + // src range, mid + __m128i srcRange = _mm_sub_epi16( max16, min16 ); + __m128i srcRangeHalf = _mm_srli_epi16( srcRange, 1 ); + __m128i srcMid = _mm_add_epi16( min16, srcRangeHalf ); + + // multiplier + __m128i mul1 = _mm_mulhi_epi16( srcRange, g_alphaRange_SIMD ); + __m128i mul = _mm_add_epi16( mul1, _mm_set1_epi16( 1 ) ); + + // wide source + __m128i s16_1 = _mm_shuffle_epi32( s, _MM_SHUFFLE( 3, 2, 3, 2 ) ); + __m128i s16[2] = { _mm_unpacklo_epi8( s, _mm_setzero_si128() ), _mm_unpacklo_epi8( s16_1, _mm_setzero_si128() ) }; + + __m128i sr[16] = { + Widen<0>( s16[0] ), + Widen<1>( s16[0] ), + Widen<2>( s16[0] ), + Widen<3>( s16[0] ), + Widen<4>( s16[0] ), + Widen<5>( s16[0] ), + Widen<6>( s16[0] ), + Widen<7>( s16[0] ), + Widen<0>( s16[1] ), + Widen<1>( s16[1] ), + Widen<2>( s16[1] ), + Widen<3>( s16[1] ), + Widen<4>( s16[1] ), + Widen<5>( s16[1] ), + Widen<6>( s16[1] ), + Widen<7>( s16[1] ) + }; + +#ifdef __AVX2__ + __m256i srcRangeWide = _mm256_broadcastsi128_si256( srcRange ); + __m256i srcMidWide = _mm256_broadcastsi128_si256( srcMid ); + + __m256i mulWide1 = _mm256_mulhi_epi16( srcRangeWide, g_alphaRange_AVX ); + __m256i mulWide = _mm256_add_epi16( mulWide1, _mm256_set1_epi16( 1 ) ); + + __m256i modMul[8] = { + _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[0] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[0] ) ) ), _mm256_setzero_si256() ), + _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[1] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[1] ) ) ), _mm256_setzero_si256() ), + _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[2] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[2] ) ) ), _mm256_setzero_si256() ), + _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[3] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[3] ) ) ), _mm256_setzero_si256() ), + _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[4] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[4] ) ) ), _mm256_setzero_si256() ), + _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[5] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[5] ) ) ), _mm256_setzero_si256() ), + _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[6] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[6] ) ) ), _mm256_setzero_si256() ), + _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[7] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[7] ) ) ), _mm256_setzero_si256() ), + }; + + // find selector + __m256i mulErr = _mm256_setzero_si256(); + for( int j=0; j<16; j++ ) + { + __m256i s16Wide = _mm256_broadcastsi128_si256( sr[j] ); + __m256i err1, err2; + + err1 = _mm256_sub_epi16( s16Wide, modMul[0] ); + __m256i localErr = _mm256_mullo_epi16( err1, err1 ); + + err1 = _mm256_sub_epi16( s16Wide, modMul[1] ); + err2 = _mm256_mullo_epi16( err1, err1 ); + localErr = _mm256_min_epu16( localErr, err2 ); + + err1 = _mm256_sub_epi16( s16Wide, modMul[2] ); + err2 = _mm256_mullo_epi16( err1, err1 ); + localErr = _mm256_min_epu16( localErr, err2 ); + + err1 = _mm256_sub_epi16( s16Wide, modMul[3] ); + err2 = _mm256_mullo_epi16( err1, err1 ); + localErr = _mm256_min_epu16( localErr, err2 ); + + err1 = _mm256_sub_epi16( s16Wide, modMul[4] ); + err2 = _mm256_mullo_epi16( err1, err1 ); + localErr = _mm256_min_epu16( localErr, err2 ); + + err1 = _mm256_sub_epi16( s16Wide, modMul[5] ); + err2 = _mm256_mullo_epi16( err1, err1 ); + localErr = _mm256_min_epu16( localErr, err2 ); + + err1 = _mm256_sub_epi16( s16Wide, modMul[6] ); + err2 = _mm256_mullo_epi16( err1, err1 ); + localErr = _mm256_min_epu16( localErr, err2 ); + + err1 = _mm256_sub_epi16( s16Wide, modMul[7] ); + err2 = _mm256_mullo_epi16( err1, err1 ); + localErr = _mm256_min_epu16( localErr, err2 ); + + // note that this can overflow, but since we're looking for the smallest error, it shouldn't matter + mulErr = _mm256_adds_epu16( mulErr, localErr ); + } + uint64_t minPos1 = _mm_cvtsi128_si64( _mm_minpos_epu16( _mm256_castsi256_si128( mulErr ) ) ); + uint64_t minPos2 = _mm_cvtsi128_si64( _mm_minpos_epu16( _mm256_extracti128_si256( mulErr, 1 ) ) ); + int sel = ( ( minPos1 & 0xFFFF ) < ( minPos2 & 0xFFFF ) ) ? ( minPos1 >> 16 ) : ( 8 + ( minPos2 >> 16 ) ); + + __m128i recVal16; + switch( sel ) + { + case 0: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<0>( mul ), g_alpha_SIMD[0] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<0>( mul ), g_alpha_SIMD[0] ) ) ), _mm_setzero_si128() ); + break; + case 1: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[1] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[1] ) ) ), _mm_setzero_si128() ); + break; + case 2: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[2] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[2] ) ) ), _mm_setzero_si128() ); + break; + case 3: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[3] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[3] ) ) ), _mm_setzero_si128() ); + break; + case 4: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<2>( mul ), g_alpha_SIMD[4] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<2>( mul ), g_alpha_SIMD[4] ) ) ), _mm_setzero_si128() ); + break; + case 5: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[5] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[5] ) ) ), _mm_setzero_si128() ); + break; + case 6: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[6] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[6] ) ) ), _mm_setzero_si128() ); + break; + case 7: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[7] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[7] ) ) ), _mm_setzero_si128() ); + break; + case 8: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[8] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[8] ) ) ), _mm_setzero_si128() ); + break; + case 9: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[9] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[9] ) ) ), _mm_setzero_si128() ); + break; + case 10: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[10] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[10] ) ) ), _mm_setzero_si128() ); + break; + case 11: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[11] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[11] ) ) ), _mm_setzero_si128() ); + break; + case 12: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[12] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[12] ) ) ), _mm_setzero_si128() ); + break; + case 13: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[13] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[13] ) ) ), _mm_setzero_si128() ); + break; + case 14: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[14] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[14] ) ) ), _mm_setzero_si128() ); + break; + case 15: + recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[15] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[15] ) ) ), _mm_setzero_si128() ); + break; + default: + assert( false ); + break; + } +#else + // wide multiplier + __m128i rangeMul[16] = { + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<0>( mul ), g_alpha_SIMD[0] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<0>( mul ), g_alpha_SIMD[0] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[1] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[1] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[2] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[2] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[3] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[3] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<2>( mul ), g_alpha_SIMD[4] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<2>( mul ), g_alpha_SIMD[4] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[5] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[5] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[6] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[6] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[7] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[7] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[8] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[8] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[9] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[9] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[10] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[10] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[11] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[11] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[12] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[12] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[13] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[13] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[14] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[14] ) ) ), _mm_setzero_si128() ), + _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[15] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[15] ) ) ), _mm_setzero_si128() ) + }; + + // find selector + int err = std::numeric_limits<int>::max(); + int sel; + for( int r=0; r<16; r++ ) + { + __m128i err1, err2, minerr; + __m128i recVal16 = rangeMul[r]; + int rangeErr; + + err1 = _mm_sub_epi16( sr[0], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr = _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[1], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[2], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[3], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[4], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[5], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[6], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[7], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[8], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[9], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[10], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[11], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[12], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[13], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[14], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + err1 = _mm_sub_epi16( sr[15], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; + + if( rangeErr < err ) + { + err = rangeErr; + sel = r; + if( err == 0 ) break; + } + } + + __m128i recVal16 = rangeMul[sel]; +#endif + + // find indices + __m128i err1, err2, minerr; + uint64_t idx = 0, tmp; + + err1 = _mm_sub_epi16( sr[0], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 15*3; + + err1 = _mm_sub_epi16( sr[1], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 14*3; + + err1 = _mm_sub_epi16( sr[2], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 13*3; + + err1 = _mm_sub_epi16( sr[3], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 12*3; + + err1 = _mm_sub_epi16( sr[4], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 11*3; + + err1 = _mm_sub_epi16( sr[5], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 10*3; + + err1 = _mm_sub_epi16( sr[6], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 9*3; + + err1 = _mm_sub_epi16( sr[7], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 8*3; + + err1 = _mm_sub_epi16( sr[8], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 7*3; + + err1 = _mm_sub_epi16( sr[9], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 6*3; + + err1 = _mm_sub_epi16( sr[10], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 5*3; + + err1 = _mm_sub_epi16( sr[11], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 4*3; + + err1 = _mm_sub_epi16( sr[12], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 3*3; + + err1 = _mm_sub_epi16( sr[13], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 2*3; + + err1 = _mm_sub_epi16( sr[14], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 1*3; + + err1 = _mm_sub_epi16( sr[15], recVal16 ); + err2 = _mm_mullo_epi16( err1, err1 ); + minerr = _mm_minpos_epu16( err2 ); + tmp = _mm_cvtsi128_si64( minerr ); + idx |= ( tmp >> 16 ) << 0*3; + + uint16_t rm[8]; + _mm_storeu_si128( (__m128i*)rm, mul ); + uint16_t sm = _mm_cvtsi128_si64( srcMid ); + + uint64_t d = ( uint64_t( sm ) << 56 ) | + ( uint64_t( rm[GetMulSel( sel )] ) << 52 ) | + ( uint64_t( sel ) << 48 ) | + idx; + + return _bswap64( d ); +#elif defined __ARM_NEON + + int16x8_t srcMidWide, multipliers; + int srcMid; + uint8x16_t srcAlphaBlock = vld1q_u8( src ); + { + uint8_t ref = src[0]; + uint8x16_t a0 = vdupq_n_u8( ref ); + uint8x16_t r = vceqq_u8( srcAlphaBlock, a0 ); + int64x2_t m = vreinterpretq_s64_u8( r ); + if( m[0] == -1 && m[1] == -1 ) + return ref; + + // srcRange +#ifdef __aarch64__ + uint8_t min = vminvq_u8( srcAlphaBlock ); + uint8_t max = vmaxvq_u8( srcAlphaBlock ); + uint8_t srcRange = max - min; + multipliers = vqaddq_s16( vshrq_n_s16( vqdmulhq_n_s16( g_alphaRange_NEON, srcRange ), 1 ), vdupq_n_s16( 1 ) ); + srcMid = min + srcRange / 2; + srcMidWide = vdupq_n_s16( srcMid ); +#else + uint8x8_t vmin = vpmin_u8( vget_low_u8( srcAlphaBlock ), vget_high_u8( srcAlphaBlock ) ); + vmin = vpmin_u8( vmin, vmin ); + vmin = vpmin_u8( vmin, vmin ); + vmin = vpmin_u8( vmin, vmin ); + uint8x8_t vmax = vpmax_u8( vget_low_u8( srcAlphaBlock ), vget_high_u8( srcAlphaBlock ) ); + vmax = vpmax_u8( vmax, vmax ); + vmax = vpmax_u8( vmax, vmax ); + vmax = vpmax_u8( vmax, vmax ); + + int16x8_t srcRangeWide = vreinterpretq_s16_u16( vsubl_u8( vmax, vmin ) ); + multipliers = vqaddq_s16( vshrq_n_s16( vqdmulhq_s16( g_alphaRange_NEON, srcRangeWide ), 1 ), vdupq_n_s16( 1 ) ); + srcMidWide = vsraq_n_s16( vreinterpretq_s16_u16(vmovl_u8(vmin)), srcRangeWide, 1); + srcMid = vgetq_lane_s16( srcMidWide, 0 ); +#endif + } + + // calculate reconstructed values +#define EAC_APPLY_16X( m ) m( 0 ) m( 1 ) m( 2 ) m( 3 ) m( 4 ) m( 5 ) m( 6 ) m( 7 ) m( 8 ) m( 9 ) m( 10 ) m( 11 ) m( 12 ) m( 13 ) m( 14 ) m( 15 ) + +#define EAC_RECONSTRUCT_VALUE( n ) vqmovun_s16( vmlaq_s16( srcMidWide, g_alpha_NEON[n], WidenMultiplier_EAC_NEON<n>( multipliers ) ) ), + uint8x8_t recVals[16] = { EAC_APPLY_16X( EAC_RECONSTRUCT_VALUE ) }; + + // find selector + int err = std::numeric_limits<int>::max(); + int sel = 0; + for( int r = 0; r < 16; r++ ) + { + uint8x8_t recVal = recVals[r]; + + int rangeErr = 0; +#define EAC_ACCUMULATE_ERROR( n ) rangeErr += MinError_EAC_NEON( ErrorProbe_EAC_NEON<n>( recVal, srcAlphaBlock ) ); + EAC_APPLY_16X( EAC_ACCUMULATE_ERROR ) + + if( rangeErr < err ) + { + err = rangeErr; + sel = r; + if ( err == 0 ) break; + } + } + + // combine results + uint64_t d = ( uint64_t( srcMid ) << 56 ) | + ( uint64_t( multipliers[GetMulSel( sel )] ) << 52 ) | + ( uint64_t( sel ) << 48); + + // generate indices + uint8x8_t recVal = recVals[sel]; +#define EAC_INSERT_INDEX(n) d |= MinErrorIndex_EAC_NEON<n>( recVal, srcAlphaBlock ); + EAC_APPLY_16X( EAC_INSERT_INDEX ) + + return _bswap64( d ); + +#undef EAC_APPLY_16X +#undef EAC_INSERT_INDEX +#undef EAC_ACCUMULATE_ERROR +#undef EAC_RECONSTRUCT_VALUE + +#else + { + bool solid = true; + const uint8_t* ptr = src + 1; + const uint8_t ref = *src; + for( int i=1; i<16; i++ ) + { + if( ref != *ptr++ ) + { + solid = false; + break; + } + } + if( solid ) + { + return ref; + } + } + + uint8_t min = src[0]; + uint8_t max = src[0]; + for( int i=1; i<16; i++ ) + { + if( min > src[i] ) min = src[i]; + else if( max < src[i] ) max = src[i]; + } + int srcRange = max - min; + int srcMid = min + srcRange / 2; + + uint8_t buf[16][16]; + int err = std::numeric_limits<int>::max(); + int sel; + int selmul; + for( int r=0; r<16; r++ ) + { + int mul = ( ( srcRange * g_alphaRange[r] ) >> 16 ) + 1; + + int rangeErr = 0; + for( int i=0; i<16; i++ ) + { + const auto srcVal = src[i]; + + int idx = 0; + const auto modVal = g_alpha[r][0] * mul; + const auto recVal = clampu8( srcMid + modVal ); + int localErr = sq( srcVal - recVal ); + + if( localErr != 0 ) + { + for( int j=1; j<8; j++ ) + { + const auto modVal = g_alpha[r][j] * mul; + const auto recVal = clampu8( srcMid + modVal ); + const auto errProbe = sq( srcVal - recVal ); + if( errProbe < localErr ) + { + localErr = errProbe; + idx = j; + } + } + } + + buf[r][i] = idx; + rangeErr += localErr; + } + + if( rangeErr < err ) + { + err = rangeErr; + sel = r; + selmul = mul; + if( err == 0 ) break; + } + } + + uint64_t d = ( uint64_t( srcMid ) << 56 ) | + ( uint64_t( selmul ) << 52 ) | + ( uint64_t( sel ) << 48 ); + + int offset = 45; + auto ptr = buf[sel]; + for( int i=0; i<16; i++ ) + { + d |= uint64_t( *ptr++ ) << offset; + offset -= 3; + } + + return _bswap64( d ); +#endif +} + + +void CompressEtc1Alpha( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width ) +{ + int w = 0; + uint32_t buf[4*4]; + do + { +#ifdef __SSE4_1__ + __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); + __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); + __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); + __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); + + _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); + + __m128i c0 = _mm_castps_si128( px0 ); + __m128i c1 = _mm_castps_si128( px1 ); + __m128i c2 = _mm_castps_si128( px2 ); + __m128i c3 = _mm_castps_si128( px3 ); + + __m128i mask = _mm_setr_epi32( 0x03030303, 0x07070707, 0x0b0b0b0b, 0x0f0f0f0f ); + __m128i p0 = _mm_shuffle_epi8( c0, mask ); + __m128i p1 = _mm_shuffle_epi8( c1, mask ); + __m128i p2 = _mm_shuffle_epi8( c2, mask ); + __m128i p3 = _mm_shuffle_epi8( c3, mask ); + + _mm_store_si128( (__m128i*)(buf + 0), p0 ); + _mm_store_si128( (__m128i*)(buf + 4), p1 ); + _mm_store_si128( (__m128i*)(buf + 8), p2 ); + _mm_store_si128( (__m128i*)(buf + 12), p3 ); + + src += 4; +#else + auto ptr = buf; + for( int x=0; x<4; x++ ) + { + unsigned int a = *src >> 24; + *ptr++ = a | ( a << 8 ) | ( a << 16 ); + src += width; + a = *src >> 24; + *ptr++ = a | ( a << 8 ) | ( a << 16 ); + src += width; + a = *src >> 24; + *ptr++ = a | ( a << 8 ) | ( a << 16 ); + src += width; + a = *src >> 24; + *ptr++ = a | ( a << 8 ) | ( a << 16 ); + src -= width * 3 - 1; + } +#endif + if( ++w == width/4 ) + { + src += width * 3; + w = 0; + } + *dst++ = ProcessRGB( (uint8_t*)buf ); + } + while( --blocks ); +} + +void CompressEtc2Alpha( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width ) +{ + int w = 0; + uint32_t buf[4*4]; + do + { +#ifdef __SSE4_1__ + __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); + __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); + __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); + __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); + + _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); + + __m128i c0 = _mm_castps_si128( px0 ); + __m128i c1 = _mm_castps_si128( px1 ); + __m128i c2 = _mm_castps_si128( px2 ); + __m128i c3 = _mm_castps_si128( px3 ); + + __m128i mask = _mm_setr_epi32( 0x03030303, 0x07070707, 0x0b0b0b0b, 0x0f0f0f0f ); + __m128i p0 = _mm_shuffle_epi8( c0, mask ); + __m128i p1 = _mm_shuffle_epi8( c1, mask ); + __m128i p2 = _mm_shuffle_epi8( c2, mask ); + __m128i p3 = _mm_shuffle_epi8( c3, mask ); + + _mm_store_si128( (__m128i*)(buf + 0), p0 ); + _mm_store_si128( (__m128i*)(buf + 4), p1 ); + _mm_store_si128( (__m128i*)(buf + 8), p2 ); + _mm_store_si128( (__m128i*)(buf + 12), p3 ); + + src += 4; +#else + auto ptr = buf; + for( int x=0; x<4; x++ ) + { + unsigned int a = *src >> 24; + *ptr++ = a | ( a << 8 ) | ( a << 16 ); + src += width; + a = *src >> 24; + *ptr++ = a | ( a << 8 ) | ( a << 16 ); + src += width; + a = *src >> 24; + *ptr++ = a | ( a << 8 ) | ( a << 16 ); + src += width; + a = *src >> 24; + *ptr++ = a | ( a << 8 ) | ( a << 16 ); + src -= width * 3 - 1; + } +#endif + if( ++w == width/4 ) + { + src += width * 3; + w = 0; + } + *dst++ = ProcessRGB_ETC2( (uint8_t*)buf ); + } + while( --blocks ); +} + +#include <chrono> +#include <thread> + +void CompressEtc1Rgb( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width ) +{ + int w = 0; + uint32_t buf[4*4]; + do + { +#ifdef __SSE4_1__ + __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); + __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); + __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); + __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); + + _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); + + _mm_store_si128( (__m128i*)(buf + 0), _mm_castps_si128( px0 ) ); + _mm_store_si128( (__m128i*)(buf + 4), _mm_castps_si128( px1 ) ); + _mm_store_si128( (__m128i*)(buf + 8), _mm_castps_si128( px2 ) ); + _mm_store_si128( (__m128i*)(buf + 12), _mm_castps_si128( px3 ) ); + + src += 4; +#else + auto ptr = buf; + for( int x=0; x<4; x++ ) + { + *ptr++ = *src; + src += width; + *ptr++ = *src; + src += width; + *ptr++ = *src; + src += width; + *ptr++ = *src; + src -= width * 3 - 1; + } +#endif + if( ++w == width/4 ) + { + src += width * 3; + w = 0; + } + *dst++ = ProcessRGB( (uint8_t*)buf ); + } + while( --blocks ); +} + +void CompressEtc1RgbDither( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width ) +{ + int w = 0; + uint32_t buf[4*4]; + do + { +#ifdef __SSE4_1__ + __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); + __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); + __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); + __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); + + _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); + +# ifdef __AVX2__ + DitherAvx2( (uint8_t*)buf, _mm_castps_si128( px0 ), _mm_castps_si128( px1 ), _mm_castps_si128( px2 ), _mm_castps_si128( px3 ) ); +# else + _mm_store_si128( (__m128i*)(buf + 0), _mm_castps_si128( px0 ) ); + _mm_store_si128( (__m128i*)(buf + 4), _mm_castps_si128( px1 ) ); + _mm_store_si128( (__m128i*)(buf + 8), _mm_castps_si128( px2 ) ); + _mm_store_si128( (__m128i*)(buf + 12), _mm_castps_si128( px3 ) ); + + Dither( (uint8_t*)buf ); +# endif + + src += 4; +#else + auto ptr = buf; + for( int x=0; x<4; x++ ) + { + *ptr++ = *src; + src += width; + *ptr++ = *src; + src += width; + *ptr++ = *src; + src += width; + *ptr++ = *src; + src -= width * 3 - 1; + } +#endif + if( ++w == width/4 ) + { + src += width * 3; + w = 0; + } + *dst++ = ProcessRGB( (uint8_t*)buf ); + } + while( --blocks ); +} + +void CompressEtc2Rgb( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width ) +{ + int w = 0; + uint32_t buf[4*4]; + do + { +#ifdef __SSE4_1__ + __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); + __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); + __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); + __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); + + _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); + + _mm_store_si128( (__m128i*)(buf + 0), _mm_castps_si128( px0 ) ); + _mm_store_si128( (__m128i*)(buf + 4), _mm_castps_si128( px1 ) ); + _mm_store_si128( (__m128i*)(buf + 8), _mm_castps_si128( px2 ) ); + _mm_store_si128( (__m128i*)(buf + 12), _mm_castps_si128( px3 ) ); + + src += 4; +#else + auto ptr = buf; + for( int x=0; x<4; x++ ) + { + *ptr++ = *src; + src += width; + *ptr++ = *src; + src += width; + *ptr++ = *src; + src += width; + *ptr++ = *src; + src -= width * 3 - 1; + } +#endif + if( ++w == width/4 ) + { + src += width * 3; + w = 0; + } + *dst++ = ProcessRGB_ETC2( (uint8_t*)buf ); + } + while( --blocks ); +} + +void CompressEtc2Rgba( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width ) +{ + int w = 0; + uint32_t rgba[4*4]; + uint8_t alpha[4*4]; + do + { +#ifdef __SSE4_1__ + __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); + __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); + __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); + __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); + + _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); + + __m128i c0 = _mm_castps_si128( px0 ); + __m128i c1 = _mm_castps_si128( px1 ); + __m128i c2 = _mm_castps_si128( px2 ); + __m128i c3 = _mm_castps_si128( px3 ); + + _mm_store_si128( (__m128i*)(rgba + 0), c0 ); + _mm_store_si128( (__m128i*)(rgba + 4), c1 ); + _mm_store_si128( (__m128i*)(rgba + 8), c2 ); + _mm_store_si128( (__m128i*)(rgba + 12), c3 ); + + __m128i mask = _mm_setr_epi32( 0x0f0b0703, -1, -1, -1 ); + + __m128i a0 = _mm_shuffle_epi8( c0, mask ); + __m128i a1 = _mm_shuffle_epi8( c1, _mm_shuffle_epi32( mask, _MM_SHUFFLE( 3, 3, 0, 3 ) ) ); + __m128i a2 = _mm_shuffle_epi8( c2, _mm_shuffle_epi32( mask, _MM_SHUFFLE( 3, 0, 3, 3 ) ) ); + __m128i a3 = _mm_shuffle_epi8( c3, _mm_shuffle_epi32( mask, _MM_SHUFFLE( 0, 3, 3, 3 ) ) ); + + __m128i s0 = _mm_or_si128( a0, a1 ); + __m128i s1 = _mm_or_si128( a2, a3 ); + __m128i s2 = _mm_or_si128( s0, s1 ); + + _mm_store_si128( (__m128i*)alpha, s2 ); + + src += 4; +#else + auto ptr = rgba; + auto ptr8 = alpha; + for( int x=0; x<4; x++ ) + { + auto v = *src; + *ptr++ = v; + *ptr8++ = v >> 24; + src += width; + v = *src; + *ptr++ = v; + *ptr8++ = v >> 24; + src += width; + v = *src; + *ptr++ = v; + *ptr8++ = v >> 24; + src += width; + v = *src; + *ptr++ = v; + *ptr8++ = v >> 24; + src -= width * 3 - 1; + } +#endif + if( ++w == width/4 ) + { + src += width * 3; + w = 0; + } + *dst++ = ProcessAlpha_ETC2( alpha ); + *dst++ = ProcessRGB_ETC2( (uint8_t*)rgba ); + } + while( --blocks ); +} |