diff options
Diffstat (limited to 'thirdparty/embree/kernels/subdiv/bspline_curve.h')
-rw-r--r-- | thirdparty/embree/kernels/subdiv/bspline_curve.h | 320 |
1 files changed, 320 insertions, 0 deletions
diff --git a/thirdparty/embree/kernels/subdiv/bspline_curve.h b/thirdparty/embree/kernels/subdiv/bspline_curve.h new file mode 100644 index 0000000000..51489ef37c --- /dev/null +++ b/thirdparty/embree/kernels/subdiv/bspline_curve.h @@ -0,0 +1,320 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "../common/default.h" +#include "bezier_curve.h" + +namespace embree +{ + class BSplineBasis + { + public: + + template<typename T> + static __forceinline Vec4<T> eval(const T& u) + { + const T t = u; + const T s = T(1.0f) - u; + const T n0 = s*s*s; + const T n1 = (4.0f*(s*s*s)+(t*t*t)) + (12.0f*((s*t)*s) + 6.0f*((t*s)*t)); + const T n2 = (4.0f*(t*t*t)+(s*s*s)) + (12.0f*((t*s)*t) + 6.0f*((s*t)*s)); + const T n3 = t*t*t; + return T(1.0f/6.0f)*Vec4<T>(n0,n1,n2,n3); + } + + template<typename T> + static __forceinline Vec4<T> derivative(const T& u) + { + const T t = u; + const T s = 1.0f - u; + const T n0 = -s*s; + const T n1 = -t*t - 4.0f*(t*s); + const T n2 = s*s + 4.0f*(s*t); + const T n3 = t*t; + return T(0.5f)*Vec4<T>(n0,n1,n2,n3); + } + + template<typename T> + static __forceinline Vec4<T> derivative2(const T& u) + { + const T t = u; + const T s = 1.0f - u; + const T n0 = s; + const T n1 = t - 2.0f*s; + const T n2 = s - 2.0f*t; + const T n3 = t; + return Vec4<T>(n0,n1,n2,n3); + } + }; + + struct PrecomputedBSplineBasis + { + enum { N = 16 }; + public: + PrecomputedBSplineBasis() {} + PrecomputedBSplineBasis(int shift); + + /* basis for bspline evaluation */ + public: + float c0[N+1][N+1]; + float c1[N+1][N+1]; + float c2[N+1][N+1]; + float c3[N+1][N+1]; + + /* basis for bspline derivative evaluation */ + public: + float d0[N+1][N+1]; + float d1[N+1][N+1]; + float d2[N+1][N+1]; + float d3[N+1][N+1]; + }; + extern PrecomputedBSplineBasis bspline_basis0; + extern PrecomputedBSplineBasis bspline_basis1; + + template<typename Vertex> + struct BSplineCurveT + { + Vertex v0,v1,v2,v3; + + __forceinline BSplineCurveT() {} + + __forceinline BSplineCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3) + : v0(v0), v1(v1), v2(v2), v3(v3) {} + + __forceinline Vertex begin() const { + return madd(1.0f/6.0f,v0,madd(2.0f/3.0f,v1,1.0f/6.0f*v2)); + } + + __forceinline Vertex end() const { + return madd(1.0f/6.0f,v1,madd(2.0f/3.0f,v2,1.0f/6.0f*v3)); + } + + __forceinline Vertex center() const { + return 0.25f*(v0+v1+v2+v3); + } + + __forceinline BBox<Vertex> bounds() const { + return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3)); + } + + __forceinline friend BSplineCurveT operator -( const BSplineCurveT& a, const Vertex& b ) { + return BSplineCurveT(a.v0-b,a.v1-b,a.v2-b,a.v3-b); + } + + __forceinline BSplineCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const + { + const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w); + const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w); + const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w); + const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w); + return BSplineCurveT<Vec3ff>(q0,q1,q2,q3); + } + + __forceinline Vertex eval(const float t) const + { + const Vec4<float> b = BSplineBasis::eval(t); + return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); + } + + __forceinline Vertex eval_du(const float t) const + { + const Vec4<float> b = BSplineBasis::derivative(t); + return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); + } + + __forceinline Vertex eval_dudu(const float t) const + { + const Vec4<float> b = BSplineBasis::derivative2(t); + return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); + } + + __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const + { + p = eval(t); + dp = eval_du(t); + ddp = eval_dudu(t); + } + + template<int M> + __forceinline Vec4vf<M> veval(const vfloat<M>& t) const + { + const Vec4vf<M> b = BSplineBasis::eval(t); + return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); + } + + template<int M> + __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const + { + const Vec4vf<M> b = BSplineBasis::derivative(t); + return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); + } + + template<int M> + __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const + { + const Vec4vf<M> b = BSplineBasis::derivative2(t); + return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); + } + + template<int M> + __forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const + { + p = veval<M>(t); + dp = veval_du<M>(t); + } + + template<int M> + __forceinline Vec4vf<M> eval0(const int ofs, const int size) const + { + assert(size <= PrecomputedBSplineBasis::N); + assert(ofs <= size); + return madd(vfloat<M>::loadu(&bspline_basis0.c0[size][ofs]), Vec4vf<M>(v0), + madd(vfloat<M>::loadu(&bspline_basis0.c1[size][ofs]), Vec4vf<M>(v1), + madd(vfloat<M>::loadu(&bspline_basis0.c2[size][ofs]), Vec4vf<M>(v2), + vfloat<M>::loadu(&bspline_basis0.c3[size][ofs]) * Vec4vf<M>(v3)))); + } + + template<int M> + __forceinline Vec4vf<M> eval1(const int ofs, const int size) const + { + assert(size <= PrecomputedBSplineBasis::N); + assert(ofs <= size); + return madd(vfloat<M>::loadu(&bspline_basis1.c0[size][ofs]), Vec4vf<M>(v0), + madd(vfloat<M>::loadu(&bspline_basis1.c1[size][ofs]), Vec4vf<M>(v1), + madd(vfloat<M>::loadu(&bspline_basis1.c2[size][ofs]), Vec4vf<M>(v2), + vfloat<M>::loadu(&bspline_basis1.c3[size][ofs]) * Vec4vf<M>(v3)))); + } + + template<int M> + __forceinline Vec4vf<M> derivative0(const int ofs, const int size) const + { + assert(size <= PrecomputedBSplineBasis::N); + assert(ofs <= size); + return madd(vfloat<M>::loadu(&bspline_basis0.d0[size][ofs]), Vec4vf<M>(v0), + madd(vfloat<M>::loadu(&bspline_basis0.d1[size][ofs]), Vec4vf<M>(v1), + madd(vfloat<M>::loadu(&bspline_basis0.d2[size][ofs]), Vec4vf<M>(v2), + vfloat<M>::loadu(&bspline_basis0.d3[size][ofs]) * Vec4vf<M>(v3)))); + } + + template<int M> + __forceinline Vec4vf<M> derivative1(const int ofs, const int size) const + { + assert(size <= PrecomputedBSplineBasis::N); + assert(ofs <= size); + return madd(vfloat<M>::loadu(&bspline_basis1.d0[size][ofs]), Vec4vf<M>(v0), + madd(vfloat<M>::loadu(&bspline_basis1.d1[size][ofs]), Vec4vf<M>(v1), + madd(vfloat<M>::loadu(&bspline_basis1.d2[size][ofs]), Vec4vf<M>(v2), + vfloat<M>::loadu(&bspline_basis1.d3[size][ofs]) * Vec4vf<M>(v3)))); + } + + /* calculates bounds of bspline curve geometry */ + __forceinline BBox3fa accurateRoundBounds() const + { + const int N = 7; + const float scale = 1.0f/(3.0f*(N-1)); + Vec4vfx pl(pos_inf), pu(neg_inf); + for (int i=0; i<=N; i+=VSIZEX) + { + vintx vi = vintx(i)+vintx(step); + vboolx valid = vi <= vintx(N); + const Vec4vfx p = eval0<VSIZEX>(i,N); + const Vec4vfx dp = derivative0<VSIZEX>(i,N); + const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero)); + const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero)); + pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min + pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min + } + const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); + const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); + const float r_min = reduce_min(pl.w); + const float r_max = reduce_max(pu.w); + const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max))); + return enlarge(BBox3fa(lower,upper),upper_r); + } + + /* calculates bounds when tessellated into N line segments */ + __forceinline BBox3fa accurateFlatBounds(int N) const + { + if (likely(N == 4)) + { + const Vec4vf4 pi = eval0<4>(0,4); + const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z)); + const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z)); + const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w))); + const Vec3ff pe = end(); + return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w)))); + } + else + { + Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f); + for (int i=0; i<=N; i+=VSIZEX) + { + vboolx valid = vintx(i)+vintx(step) <= vintx(N); + const Vec4vfx pi = eval0<VSIZEX>(i,N); + + pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min + pl.y = select(valid,min(pl.y,pi.y),pl.y); + pl.z = select(valid,min(pl.z,pi.z),pl.z); + + pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min + pu.y = select(valid,max(pu.y,pi.y),pu.y); + pu.z = select(valid,max(pu.z,pi.z),pu.z); + + ru = select(valid,max(ru,abs(pi.w)),ru); + } + const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); + const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); + const Vec3fa upper_r(reduce_max(ru)); + return enlarge(BBox3fa(lower,upper),upper_r); + } + } + + friend __forceinline embree_ostream operator<<(embree_ostream cout, const BSplineCurveT& curve) { + return cout << "BSplineCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }"; + } + }; + + template<typename Vertex> + __forceinline void convert(const BezierCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve) { + ocurve = icurve; + } + + template<typename Vertex> + __forceinline void convert(const BSplineCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve) { + ocurve = icurve; + } + + template<typename Vertex> + __forceinline void convert(const BezierCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve) + { + const Vertex v0 = madd(6.0f,icurve.v0,madd(-7.0f,icurve.v1,2.0f*icurve.v2)); + const Vertex v1 = msub(2.0f,icurve.v1,icurve.v2); + const Vertex v2 = msub(2.0f,icurve.v2,icurve.v1); + const Vertex v3 = madd(2.0f,icurve.v1,madd(-7.0f,icurve.v2,6.0f*icurve.v3)); + ocurve = BSplineCurveT<Vertex>(v0,v1,v2,v3); + } + + template<typename Vertex> + __forceinline void convert(const BSplineCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve) + { + const Vertex v0 = madd(1.0f/6.0f,icurve.v0,madd(2.0f/3.0f,icurve.v1,1.0f/6.0f*icurve.v2)); + const Vertex v1 = madd(2.0f/3.0f,icurve.v1,1.0f/3.0f*icurve.v2); + const Vertex v2 = madd(1.0f/3.0f,icurve.v1,2.0f/3.0f*icurve.v2); + const Vertex v3 = madd(1.0f/6.0f,icurve.v1,madd(2.0f/3.0f,icurve.v2,1.0f/6.0f*icurve.v3)); + ocurve = BezierCurveT<Vertex>(v0,v1,v2,v3); + } + + template<typename CurveGeometry> + __forceinline BSplineCurveT<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const BSplineCurveT<Vec3ff>& curve) + { + return BSplineCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0), + enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1), + enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2), + enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3)); + } + + typedef BSplineCurveT<Vec3fa> BSplineCurve3fa; +} + |