summaryrefslogtreecommitdiff
path: root/thirdparty/embree/common/simd/arm/sse2neon.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/embree/common/simd/arm/sse2neon.h')
-rw-r--r--thirdparty/embree/common/simd/arm/sse2neon.h10961
1 files changed, 6354 insertions, 4607 deletions
diff --git a/thirdparty/embree/common/simd/arm/sse2neon.h b/thirdparty/embree/common/simd/arm/sse2neon.h
index 7eb25cf2c5..43416662d7 100644
--- a/thirdparty/embree/common/simd/arm/sse2neon.h
+++ b/thirdparty/embree/common/simd/arm/sse2neon.h
@@ -52,7 +52,7 @@
/* Enable precise implementation of math operations
* This would slow down the computation a bit, but gives consistent result with
- * x86 SSE2. (e.g. would solve a hole or NaN pixel in the rendering result)
+ * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result)
*/
/* _mm_min_ps and _mm_max_ps */
#ifndef SSE2NEON_PRECISE_MINMAX
@@ -66,36 +66,29 @@
#ifndef SSE2NEON_PRECISE_SQRT
#define SSE2NEON_PRECISE_SQRT (0)
#endif
-#ifndef SSE2NEON_PRECISE_RSQRT
-#define SSE2NEON_PRECISE_RSQRT (0)
+/* _mm_dp_pd */
+#ifndef SSE2NEON_PRECISE_DP
+#define SSE2NEON_PRECISE_DP (0)
#endif
+/* compiler specific definitions */
#if defined(__GNUC__) || defined(__clang__)
#pragma push_macro("FORCE_INLINE")
#pragma push_macro("ALIGN_STRUCT")
#define FORCE_INLINE static inline __attribute__((always_inline))
#define ALIGN_STRUCT(x) __attribute__((aligned(x)))
-#ifndef likely
-#define likely(x) __builtin_expect(!!(x), 1)
-#endif
-#ifndef unlikely
-#define unlikely(x) __builtin_expect(!!(x), 0)
-#endif
-#else
-#error "Macro name collisions may happen with unsupported compiler."
-#ifdef FORCE_INLINE
-#undef FORCE_INLINE
-#endif
+#define _sse2neon_likely(x) __builtin_expect(!!(x), 1)
+#define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0)
+#else /* non-GNU / non-clang compilers */
+#warning "Macro name collisions may happen with unsupported compiler."
+#ifndef FORCE_INLINE
#define FORCE_INLINE static inline
+#endif
#ifndef ALIGN_STRUCT
#define ALIGN_STRUCT(x) __declspec(align(x))
#endif
-#endif
-#ifndef likely
-#define likely(x) (x)
-#endif
-#ifndef unlikely
-#define unlikely(x) (x)
+#define _sse2neon_likely(x) (x)
+#define _sse2neon_unlikely(x) (x)
#endif
#include <stdint.h>
@@ -155,6 +148,14 @@
* argument "a" of mm_shuffle_ps that will be places in fp1 of result.
* fp0 is the same for fp0 of result.
*/
+#if defined(__aarch64__)
+#define _MN_SHUFFLE(fp3,fp2,fp1,fp0) ( (uint8x16_t){ (((fp3)*4)+0), (((fp3)*4)+1), (((fp3)*4)+2), (((fp3)*4)+3), (((fp2)*4)+0), (((fp2)*4)+1), (((fp2)*4)+\
+2), (((fp2)*4)+3), (((fp1)*4)+0), (((fp1)*4)+1), (((fp1)*4)+2), (((fp1)*4)+3), (((fp0)*4)+0), (((fp0)*4)+1), (((fp0)*4)+2), (((fp0)*4)+3) } )
+#define _MF_SHUFFLE(fp3,fp2,fp1,fp0) ( (uint8x16_t){ (((fp3)*4)+0), (((fp3)*4)+1), (((fp3)*4)+2), (((fp3)*4)+3), (((fp2)*4)+0), (((fp2)*4)+1), (((fp2)*4)+\
+2), (((fp2)*4)+3), (((fp1)*4)+16+0), (((fp1)*4)+16+1), (((fp1)*4)+16+2), (((fp1)*4)+16+3), (((fp0)*4)+16+0), (((fp0)*4)+16+1), (((fp0)*4)+16+2), (((fp0)*\
+4)+16+3) } )
+#endif
+
#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
(((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
@@ -169,6 +170,14 @@
#define _MM_ROUND_DOWN 0x2000
#define _MM_ROUND_UP 0x4000
#define _MM_ROUND_TOWARD_ZERO 0x6000
+/* Flush zero mode macros. */
+#define _MM_FLUSH_ZERO_MASK 0x8000
+#define _MM_FLUSH_ZERO_ON 0x8000
+#define _MM_FLUSH_ZERO_OFF 0x0000
+/* Denormals are zeros mode macros. */
+#define _MM_DENORMALS_ZERO_MASK 0x0040
+#define _MM_DENORMALS_ZERO_ON 0x0040
+#define _MM_DENORMALS_ZERO_OFF 0x0000
/* indicate immediate constant argument in a given range */
#define __constrange(a, b) const
@@ -189,7 +198,10 @@ typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
#else
typedef float32x4_t __m128d;
#endif
-typedef int64x2_t __m128i; /* 128-bit vector containing integers */
+// Note: upstream sse2neon declares __m128i as int64x2_t. However, there's
+// many places within embree that assume __m128i can be indexed as a
+// 4 element u32.
+typedef int32x4_t __m128i; /* 128-bit vector containing integers */
/* type-safe casting between types */
@@ -221,28 +233,28 @@ typedef int64x2_t __m128i; /* 128-bit vector containing integers */
#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)
-#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x)
-#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x)
-#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x)
-#define vreinterpretq_m128i_s64(x) (x)
+#define vreinterpretq_m128i_s8(x) vreinterpretq_s32_s8(x)
+#define vreinterpretq_m128i_s16(x) vreinterpretq_s32_s16(x)
+#define vreinterpretq_m128i_s32(x) (x)
+#define vreinterpretq_m128i_s64(x) vreinterpretq_s32_s64(x)
-#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x)
-#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x)
-#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x)
-#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x)
+#define vreinterpretq_m128i_u8(x) vreinterpretq_s32_u8(x)
+#define vreinterpretq_m128i_u16(x) vreinterpretq_s32_u16(x)
+#define vreinterpretq_m128i_u32(x) vreinterpretq_s32_u32(x)
+#define vreinterpretq_m128i_u64(x) vreinterpretq_s32_u64(x)
-#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x)
-#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x)
+#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s32(x)
+#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s32(x)
-#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x)
-#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x)
-#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x)
-#define vreinterpretq_s64_m128i(x) (x)
+#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s32(x)
+#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s32(x)
+#define vreinterpretq_s32_m128i(x) (x)
+#define vreinterpretq_s64_m128i(x) vreinterpretq_s64_s32(x)
-#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x)
-#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x)
-#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x)
-#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x)
+#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s32(x)
+#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s32(x)
+#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s32(x)
+#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s32(x)
#define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x)
#define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x)
@@ -281,6 +293,7 @@ typedef int64x2_t __m128i; /* 128-bit vector containing integers */
#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x)
+#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f64(x)
#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x)
#define vreinterpretq_f64_m128d(x) (x)
@@ -303,10 +316,10 @@ typedef int64x2_t __m128i; /* 128-bit vector containing integers */
#endif
// A struct is defined in this header file called 'SIMDVec' which can be used
-// by applications which attempt to access the contents of an _m128 struct
+// by applications which attempt to access the contents of an __m128 struct
// directly. It is important to note that accessing the __m128 struct directly
// is bad coding practice by Microsoft: @see:
-// https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx
+// https://docs.microsoft.com/en-us/cpp/cpp/m128
//
// However, some legacy source code may try to access the contents of an __m128
// struct directly so the developer can use the SIMDVec as an alias for it. Any
@@ -342,13 +355,48 @@ typedef union ALIGN_STRUCT(16) SIMDVec {
#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n])
#define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n])
+/* SSE macros */
+#define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode
+#define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode
+#define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode
+#define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode
+
+// Function declaration
+// SSE
+FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE();
+FORCE_INLINE __m128 _mm_move_ss(__m128, __m128);
+FORCE_INLINE __m128 _mm_or_ps(__m128, __m128);
+FORCE_INLINE __m128 _mm_set_ps1(float);
+FORCE_INLINE __m128 _mm_setzero_ps(void);
+// SSE2
+FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i);
+FORCE_INLINE __m128i _mm_castps_si128(__m128);
+FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i);
+FORCE_INLINE __m128i _mm_cvtps_epi32(__m128);
+FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d);
+FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i);
+FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int);
+FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t);
+FORCE_INLINE __m128d _mm_set_pd(double, double);
+FORCE_INLINE __m128i _mm_set1_epi32(int);
+FORCE_INLINE __m128i _mm_setzero_si128();
+// SSE4.1
+FORCE_INLINE __m128d _mm_ceil_pd(__m128d);
+FORCE_INLINE __m128 _mm_ceil_ps(__m128);
+FORCE_INLINE __m128d _mm_floor_pd(__m128d);
+FORCE_INLINE __m128 _mm_floor_ps(__m128);
+FORCE_INLINE __m128d _mm_round_pd(__m128d, int);
+FORCE_INLINE __m128 _mm_round_ps(__m128, int);
+// SSE4.2
+FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t);
+
/* Backwards compatibility for compilers with lack of specific type support */
// Older gcc does not define vld1q_u8_x4 type
-#if defined(__GNUC__) && !defined(__clang__) && \
- ((__GNUC__ == 10 && (__GNUC_MINOR__ <= 1)) || \
- (__GNUC__ == 9 && (__GNUC_MINOR__ <= 3)) || \
- (__GNUC__ == 8 && (__GNUC_MINOR__ <= 4)) || __GNUC__ <= 7)
+#if defined(__GNUC__) && !defined(__clang__) && \
+ ((__GNUC__ <= 10 && defined(__arm__)) || \
+ (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \
+ (__GNUC__ <= 9 && defined(__aarch64__)))
FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
{
uint8x16x4_t ret;
@@ -443,8 +491,6 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
+------+------+------+------+------+------+-------------+
*/
-/* Set/get methods */
-
/* Constants for use with _mm_prefetch. */
enum _mm_hint {
_MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
@@ -457,1098 +503,1568 @@ enum _mm_hint {
_MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */
};
-// Loads one cache line of data from address p to a location closer to the
-// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx
-FORCE_INLINE void _mm_prefetch(const void *p, int i)
+// The bit field mapping to the FPCR(floating-point control register)
+typedef struct {
+ uint16_t res0;
+ uint8_t res1 : 6;
+ uint8_t bit22 : 1;
+ uint8_t bit23 : 1;
+ uint8_t bit24 : 1;
+ uint8_t res2 : 7;
+#if defined(__aarch64__)
+ uint32_t res3;
+#endif
+} fpcr_bitfield;
+
+// Takes the upper 64 bits of a and places it in the low end of the result
+// Takes the lower 64 bits of b and places it into the high end of the result.
+FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
{
- (void) i;
- __builtin_prefetch(p);
+ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
+ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
+ return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
}
-// Pause the processor. This is typically used in spin-wait loops and depending
-// on the x86 processor typical values are in the 40-100 cycle range. The
-// 'yield' instruction isn't a good fit beacuse it's effectively a nop on most
-// Arm cores. Experience with several databases has shown has shown an 'isb' is
-// a reasonable approximation.
-FORCE_INLINE void _mm_pause()
+// takes the lower two 32-bit values from a and swaps them and places in high
+// end of result takes the higher two 32 bit values from b and swaps them and
+// places in low end of result.
+FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
{
- __asm__ __volatile__("isb\n");
+ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
+ float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
+ return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
}
-// Copy the lower single-precision (32-bit) floating-point element of a to dst.
-//
-// dst[31:0] := a[31:0]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32
-FORCE_INLINE float _mm_cvtss_f32(__m128 a)
+FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
{
- return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+ float32x2_t a21 = vget_high_f32(
+ vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
+ float32x2_t b03 = vget_low_f32(
+ vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
+ return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
}
-// Convert the lower single-precision (32-bit) floating-point element in b to a
-// double-precision (64-bit) floating-point element, store the result in the
-// lower element of dst, and copy the upper element from a to the upper element
-// of dst.
+FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
+{
+ float32x2_t a03 = vget_low_f32(
+ vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
+ float32x2_t b21 = vget_high_f32(
+ vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
+ return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
+{
+ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
+ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
+ return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
+{
+ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
+ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
+ return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
+{
+ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
+ float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
+ return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
+}
+
+// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
+// high
+FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
+{
+ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
+ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
+ return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
+{
+ float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
+ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
+ return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
+{
+ float32x2_t a22 =
+ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
+ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
+ return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
+{
+ float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
+ float32x2_t b22 =
+ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
+ return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
+{
+ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+ float32x2_t a22 =
+ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
+ float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
+ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
+ return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
+{
+ float32x2_t a33 =
+ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
+ float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
+ return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
+{
+ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
+ float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
+ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
+ float32x2_t b20 = vset_lane_f32(b2, b00, 1);
+ return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
+{
+ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
+ float32_t b2 = vgetq_lane_f32(b, 2);
+ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
+ float32x2_t b20 = vset_lane_f32(b2, b00, 1);
+ return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
+}
+
+FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
+{
+ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
+ float32_t b2 = vgetq_lane_f32(b, 2);
+ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
+ float32x2_t b20 = vset_lane_f32(b2, b00, 1);
+ return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
+}
+
+// Kahan summation for accurate summation of floating-point numbers.
+// http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html
+FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y)
+{
+ y -= *c;
+ float t = *sum + y;
+ *c = (t - *sum) - y;
+ *sum = t;
+}
+
+#if defined(__ARM_FEATURE_CRYPTO)
+// Wraps vmull_p64
+FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
+{
+ poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
+ poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
+ return vreinterpretq_u64_p128(vmull_p64(a, b));
+}
+#else // ARMv7 polyfill
+// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
//
-// dst[63:0] := Convert_FP32_To_FP64(b[31:0])
-// dst[127:64] := a[127:64]
+// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
+// 64-bit->128-bit polynomial multiply.
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd
-FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
+// It needs some work and is somewhat slow, but it is still faster than all
+// known scalar methods.
+//
+// Algorithm adapted to C from
+// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
+// from "Fast Software Polynomial Multiplication on ARM Processors Using the
+// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
+// (https://hal.inria.fr/hal-01506572)
+static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
{
- double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
+ poly8x8_t a = vreinterpret_p8_u64(_a);
+ poly8x8_t b = vreinterpret_p8_u64(_b);
+
+ // Masks
+ uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
+ vcreate_u8(0x00000000ffffffff));
+ uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
+ vcreate_u8(0x0000000000000000));
+
+ // Do the multiplies, rotating with vext to get all combinations
+ uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
+ uint8x16_t e =
+ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
+ uint8x16_t f =
+ vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
+ uint8x16_t g =
+ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
+ uint8x16_t h =
+ vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
+ uint8x16_t i =
+ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
+ uint8x16_t j =
+ vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
+ uint8x16_t k =
+ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
+
+ // Add cross products
+ uint8x16_t l = veorq_u8(e, f); // L = E + F
+ uint8x16_t m = veorq_u8(g, h); // M = G + H
+ uint8x16_t n = veorq_u8(i, j); // N = I + J
+
+ // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
+ // instructions.
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0));
+ uint8x16_t lm_p0 = vreinterpretq_u8_u64(
+ vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
+ uint8x16_t lm_p1 = vreinterpretq_u8_u64(
+ vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
+ uint8x16_t nk_p0 = vreinterpretq_u8_u64(
+ vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
+ uint8x16_t nk_p1 = vreinterpretq_u8_u64(
+ vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
#else
- return vreinterpretq_m128d_s64(
- vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0));
+ uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
+ uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
+ uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
+ uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
#endif
-}
+ // t0 = (L) (P0 + P1) << 8
+ // t1 = (M) (P2 + P3) << 16
+ uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
+ uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
+ uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
-// Convert the lower single-precision (32-bit) floating-point element in a to a
-// 32-bit integer, and store the result in dst.
-//
-// dst[31:0] := Convert_FP32_To_Int32(a[31:0])
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32
-#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a)
+ // t2 = (N) (P4 + P5) << 24
+ // t3 = (K) (P6 + P7) << 32
+ uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
+ uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
+ uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
-// Convert the lower single-precision (32-bit) floating-point element in a to a
-// 64-bit integer, and store the result in dst.
-//
-// dst[63:0] := Convert_FP32_To_Int64(a[31:0])
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64
-FORCE_INLINE int _mm_cvtss_si64(__m128 a)
-{
+ // De-interleave
#if defined(__aarch64__)
- return vgetq_lane_s64(
- vreinterpretq_s64_s32(vcvtnq_s32_f32(vreinterpretq_f32_m128(a))), 0);
+ uint8x16_t t0 = vreinterpretq_u8_u64(
+ vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
+ uint8x16_t t1 = vreinterpretq_u8_u64(
+ vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
+ uint8x16_t t2 = vreinterpretq_u8_u64(
+ vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
+ uint8x16_t t3 = vreinterpretq_u8_u64(
+ vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
#else
- float32_t data = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32_t diff = data - floor(data);
- if (diff > 0.5)
- return (int64_t) ceil(data);
- if (unlikely(diff == 0.5)) {
- int64_t f = (int64_t) floor(data);
- int64_t c = (int64_t) ceil(data);
- return c & 1 ? f : c;
- }
- return (int64_t) floor(data);
+ uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
+ uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
+ uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
+ uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
#endif
+ // Shift the cross products
+ uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
+ uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
+ uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
+ uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
+
+ // Accumulate the products
+ uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
+ uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
+ uint8x16_t mix = veorq_u8(d, cross1);
+ uint8x16_t r = veorq_u8(mix, cross2);
+ return vreinterpretq_u64_u8(r);
}
+#endif // ARMv7 polyfill
-// Convert packed single-precision (32-bit) floating-point elements in a to
-// packed 32-bit integers with truncation, and store the results in dst.
-//
-// FOR j := 0 to 1
-// i := 32*j
-// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi
-FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
+// C equivalent:
+// __m128i _mm_shuffle_epi32_default(__m128i a,
+// __constrange(0, 255) int imm) {
+// __m128i ret;
+// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
+// ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03];
+// return ret;
+// }
+#define _mm_shuffle_epi32_default(a, imm) \
+ __extension__({ \
+ int32x4_t ret; \
+ ret = vmovq_n_s32( \
+ vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3))); \
+ ret = vsetq_lane_s32( \
+ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \
+ ret, 1); \
+ ret = vsetq_lane_s32( \
+ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
+ ret, 2); \
+ ret = vsetq_lane_s32( \
+ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \
+ ret, 3); \
+ vreinterpretq_m128i_s32(ret); \
+ })
+
+// Takes the upper 64 bits of a and places it in the low end of the result
+// Takes the lower 64 bits of a and places it into the high end of the result.
+FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
{
- return vreinterpret_m64_s32(
- vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))));
+ int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
+ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
+ return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
}
-// Convert the lower single-precision (32-bit) floating-point element in a to a
-// 32-bit integer with truncation, and store the result in dst.
-//
-// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si
-FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
+// takes the lower two 32-bit values from a and swaps them and places in low end
+// of result takes the higher two 32 bit values from a and swaps them and places
+// in high end of result.
+FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
{
- return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0);
+ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
+ int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
+ return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
}
-// Convert packed single-precision (32-bit) floating-point elements in a to
-// packed 32-bit integers with truncation, and store the results in dst.
-//
-// FOR j := 0 to 1
-// i := 32*j
-// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32
-#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a)
+// rotates the least significant 32 bits into the most significant 32 bits, and
+// shifts the rest down
+FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
+{
+ return vreinterpretq_m128i_s32(
+ vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
+}
-// Convert the lower single-precision (32-bit) floating-point element in a to a
-// 32-bit integer with truncation, and store the result in dst.
-//
-// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32
-#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a)
+// rotates the most significant 32 bits into the least significant 32 bits, and
+// shifts the rest up
+FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
+{
+ return vreinterpretq_m128i_s32(
+ vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
+}
-// Convert the lower single-precision (32-bit) floating-point element in a to a
-// 64-bit integer with truncation, and store the result in dst.
-//
-// dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0])
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64
-FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a)
+// gets the lower 64 bits of a, and places it in the upper 64 bits
+// gets the lower 64 bits of a and places it in the lower 64 bits
+FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
{
- return vgetq_lane_s64(
- vmovl_s32(vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)))), 0);
+ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
+ return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
}
-// Sets the 128-bit value to zero
-// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_setzero_si128(void)
+// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
+// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
+FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
{
- return vreinterpretq_m128i_s32(vdupq_n_s32(0));
+ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
+ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
+ return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
}
-// Clears the four single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_setzero_ps(void)
+// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
+// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
+// places it in the lower 64 bits
+FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
{
- return vreinterpretq_m128_f32(vdupq_n_f32(0));
+ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
+ return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
}
-// Return vector of type __m128d with all elements set to zero.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd
-FORCE_INLINE __m128d _mm_setzero_pd(void)
+FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
{
+ int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
+ int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
+ return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
+}
+
+FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
+{
+ int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
+ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
+ return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
+}
+
+FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
+{
+ int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
+ int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
+ return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
+}
+
+// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255)
+// int imm)
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vdupq_n_f64(0));
+#define _mm_shuffle_epi32_splat(a, imm) \
+ __extension__({ \
+ vreinterpretq_m128i_s32( \
+ vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \
+ })
#else
- return vreinterpretq_m128d_f32(vdupq_n_f32(0));
+#define _mm_shuffle_epi32_splat(a, imm) \
+ __extension__({ \
+ vreinterpretq_m128i_s32( \
+ vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \
+ })
#endif
-}
-// Sets the four single-precision, floating-point values to w.
+// NEON does not support a general purpose permute intrinsic
+// Selects four specific single-precision, floating-point values from a and b,
+// based on the mask i.
//
-// r0 := r1 := r2 := r3 := w
+// C equivalent:
+// __m128 _mm_shuffle_ps_default(__m128 a, __m128 b,
+// __constrange(0, 255) int imm) {
+// __m128 ret;
+// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
+// ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03];
+// return ret;
+// }
//
-// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_set1_ps(float _w)
+// https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx
+#define _mm_shuffle_ps_default(a, b, imm) \
+ __extension__({ \
+ float32x4_t ret; \
+ ret = vmovq_n_f32( \
+ vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))); \
+ ret = vsetq_lane_f32( \
+ vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
+ ret, 1); \
+ ret = vsetq_lane_f32( \
+ vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \
+ ret, 2); \
+ ret = vsetq_lane_f32( \
+ vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \
+ ret, 3); \
+ vreinterpretq_m128_f32(ret); \
+ })
+
+// Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified
+// by imm.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100)
+// FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a,
+// __constrange(0,255) int
+// imm)
+#define _mm_shufflelo_epi16_function(a, imm) \
+ __extension__({ \
+ int16x8_t ret = vreinterpretq_s16_m128i(a); \
+ int16x4_t lowBits = vget_low_s16(ret); \
+ ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \
+ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
+ 1); \
+ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
+ 2); \
+ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
+ 3); \
+ vreinterpretq_m128i_s16(ret); \
+ })
+
+// Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified
+// by imm.
+// https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx
+// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a,
+// __constrange(0,255) int
+// imm)
+#define _mm_shufflehi_epi16_function(a, imm) \
+ __extension__({ \
+ int16x8_t ret = vreinterpretq_s16_m128i(a); \
+ int16x4_t highBits = vget_high_s16(ret); \
+ ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \
+ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
+ 5); \
+ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
+ 6); \
+ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
+ 7); \
+ vreinterpretq_m128i_s16(ret); \
+ })
+
+/* SSE */
+
+// Adds the four single-precision, floating-point values of a and b.
+//
+// r0 := a0 + b0
+// r1 := a1 + b1
+// r2 := a2 + b2
+// r3 := a3 + b3
+//
+// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
{
- return vreinterpretq_m128_f32(vdupq_n_f32(_w));
+ return vreinterpretq_m128_f32(
+ vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}
-// Sets the four single-precision, floating-point values to w.
-// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_set_ps1(float _w)
+// adds the scalar single-precision floating point values of a and b.
+// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
{
- return vreinterpretq_m128_f32(vdupq_n_f32(_w));
+ float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
+ float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
+ // the upper values in the result must be the remnants of <a>.
+ return vreinterpretq_m128_f32(vaddq_f32(a, value));
}
-// Sets the four single-precision, floating-point values to the four inputs.
-// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
+// Computes the bitwise AND of the four single-precision, floating-point values
+// of a and b.
+//
+// r0 := a0 & b0
+// r1 := a1 & b1
+// r2 := a2 & b2
+// r3 := a3 & b3
+//
+// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
{
- float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
- return vreinterpretq_m128_f32(vld1q_f32(data));
+ return vreinterpretq_m128_s32(
+ vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
}
-// Copy single-precision (32-bit) floating-point element a to the lower element
-// of dst, and zero the upper 3 elements.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss
-FORCE_INLINE __m128 _mm_set_ss(float a)
+// Computes the bitwise AND-NOT of the four single-precision, floating-point
+// values of a and b.
+//
+// r0 := ~a0 & b0
+// r1 := ~a1 & b1
+// r2 := ~a2 & b2
+// r3 := ~a3 & b3
+//
+// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
{
- float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0};
- return vreinterpretq_m128_f32(vld1q_f32(data));
+ return vreinterpretq_m128_s32(
+ vbicq_s32(vreinterpretq_s32_m128(b),
+ vreinterpretq_s32_m128(a))); // *NOTE* argument swap
}
-// Sets the four single-precision, floating-point values to the four inputs in
-// reverse order.
-// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
+// Average packed unsigned 16-bit integers in a and b, and store the results in
+// dst.
+//
+// FOR j := 0 to 3
+// i := j*16
+// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16
+FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
{
- float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
- return vreinterpretq_m128_f32(vld1q_f32(data));
+ return vreinterpret_m64_u16(
+ vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)));
}
-// Sets the 8 signed 16-bit integer values in reverse order.
+// Average packed unsigned 8-bit integers in a and b, and store the results in
+// dst.
//
-// Return Value
-// r0 := w0
-// r1 := w1
-// ...
-// r7 := w7
-FORCE_INLINE __m128i _mm_setr_epi16(short w0,
- short w1,
- short w2,
- short w3,
- short w4,
- short w5,
- short w6,
- short w7)
+// FOR j := 0 to 7
+// i := j*8
+// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8
+FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
{
- int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
- return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
+ return vreinterpret_m64_u8(
+ vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
}
-// Sets the 4 signed 32-bit integer values in reverse order
-// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
+// Compares for equality.
+// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
{
- int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
- return vreinterpretq_m128i_s32(vld1q_s32(data));
+ return vreinterpretq_m128_u32(
+ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}
-// Set packed 64-bit integers in dst with the supplied values in reverse order.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64
-FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
+// Compares for equality.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b)
{
- return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
+ return _mm_move_ss(a, _mm_cmpeq_ps(a, b));
}
-// Sets the 16 signed 8-bit integer values to b.
+// Compares for greater than or equal.
+// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
+{
+ return vreinterpretq_m128_u32(
+ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+}
+
+// Compares for greater than or equal.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b)
+{
+ return _mm_move_ss(a, _mm_cmpge_ps(a, b));
+}
+
+// Compares for greater than.
//
-// r0 := b
-// r1 := b
-// ...
-// r15 := b
+// r0 := (a0 > b0) ? 0xffffffff : 0x0
+// r1 := (a1 > b1) ? 0xffffffff : 0x0
+// r2 := (a2 > b2) ? 0xffffffff : 0x0
+// r3 := (a3 > b3) ? 0xffffffff : 0x0
//
-// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
+// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
{
- return vreinterpretq_m128i_s8(vdupq_n_s8(w));
+ return vreinterpretq_m128_u32(
+ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}
-// Broadcast double-precision (64-bit) floating-point value a to all elements of
-// dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd
-FORCE_INLINE __m128d _mm_set1_pd(double d)
+// Compares for greater than.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vdupq_n_f64(d));
-#else
- return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d));
-#endif
+ return _mm_move_ss(a, _mm_cmpgt_ps(a, b));
}
-// Sets the 8 signed 16-bit integer values to w.
+// Compares for less than or equal.
//
-// r0 := w
-// r1 := w
-// ...
-// r7 := w
+// r0 := (a0 <= b0) ? 0xffffffff : 0x0
+// r1 := (a1 <= b1) ? 0xffffffff : 0x0
+// r2 := (a2 <= b2) ? 0xffffffff : 0x0
+// r3 := (a3 <= b3) ? 0xffffffff : 0x0
//
-// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_set1_epi16(short w)
+// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
{
- return vreinterpretq_m128i_s16(vdupq_n_s16(w));
+ return vreinterpretq_m128_u32(
+ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}
-// Sets the 16 signed 8-bit integer values.
-// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
- signed char b14,
- signed char b13,
- signed char b12,
- signed char b11,
- signed char b10,
- signed char b9,
- signed char b8,
- signed char b7,
- signed char b6,
- signed char b5,
- signed char b4,
- signed char b3,
- signed char b2,
- signed char b1,
- signed char b0)
+// Compares for less than or equal.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100)
+FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b)
{
- int8_t ALIGN_STRUCT(16)
- data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
- (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
- (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
- (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
- return (__m128i) vld1q_s8(data);
+ return _mm_move_ss(a, _mm_cmple_ps(a, b));
}
-// Sets the 8 signed 16-bit integer values.
-// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_set_epi16(short i7,
- short i6,
- short i5,
- short i4,
- short i3,
- short i2,
- short i1,
- short i0)
+// Compares for less than
+// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
{
- int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
- return vreinterpretq_m128i_s16(vld1q_s16(data));
+ return vreinterpretq_m128_u32(
+ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}
-// Sets the 16 signed 8-bit integer values in reverse order.
-// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
- signed char b1,
- signed char b2,
- signed char b3,
- signed char b4,
- signed char b5,
- signed char b6,
- signed char b7,
- signed char b8,
- signed char b9,
- signed char b10,
- signed char b11,
- signed char b12,
- signed char b13,
- signed char b14,
- signed char b15)
+// Compares for less than
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100)
+FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b)
{
- int8_t ALIGN_STRUCT(16)
- data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
- (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
- (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
- (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
- return (__m128i) vld1q_s8(data);
+ return _mm_move_ss(a, _mm_cmplt_ps(a, b));
}
-// Sets the 4 signed 32-bit integer values to i.
-//
-// r0 := i
-// r1 := i
-// r2 := i
-// r3 := I
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_set1_epi32(int _i)
+// Compares for inequality.
+// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
{
- return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
+ return vreinterpretq_m128_u32(vmvnq_u32(
+ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
}
-// Sets the 2 signed 64-bit integer values to i.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100)
-FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
+// Compares for inequality.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b)
{
- return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i));
+ return _mm_move_ss(a, _mm_cmpneq_ps(a, b));
}
-// Sets the 2 signed 64-bit integer values to i.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x
-FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
+// Compares for not greater than or equal.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b)
{
- return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
+ return vreinterpretq_m128_u32(vmvnq_u32(
+ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
}
-// Sets the 4 signed 32-bit integer values.
-// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
+// Compares for not greater than or equal.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b)
{
- int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
- return vreinterpretq_m128i_s32(vld1q_s32(data));
+ return _mm_move_ss(a, _mm_cmpnge_ps(a, b));
}
-// Returns the __m128i structure with its two 64-bit integer values
-// initialized to the values of the two 64-bit integers passed in.
-// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
-FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
+// Compares for not greater than.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b)
{
- return vreinterpretq_m128i_s64(
- vcombine_s64(vcreate_s64(i2), vcreate_s64(i1)));
+ return vreinterpretq_m128_u32(vmvnq_u32(
+ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
}
-// Returns the __m128i structure with its two 64-bit integer values
-// initialized to the values of the two 64-bit integers passed in.
-// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
-FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2)
+// Compares for not greater than.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b)
{
- return _mm_set_epi64x((int64_t) i1, (int64_t) i2);
+ return _mm_move_ss(a, _mm_cmpngt_ps(a, b));
}
-// Set packed double-precision (64-bit) floating-point elements in dst with the
-// supplied values.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd
-FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
+// Compares for not less than or equal.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b)
{
- double ALIGN_STRUCT(16) data[2] = {e0, e1};
-#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data));
-#else
- return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data));
-#endif
+ return vreinterpretq_m128_u32(vmvnq_u32(
+ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
}
-// Set packed double-precision (64-bit) floating-point elements in dst with the
-// supplied values in reverse order.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd
-FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0)
+// Compares for not less than or equal.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b)
{
- return _mm_set_pd(e0, e1);
+ return _mm_move_ss(a, _mm_cmpnle_ps(a, b));
}
-// Copy double-precision (64-bit) floating-point element a to the lower element
-// of dst, and zero the upper element.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd
-FORCE_INLINE __m128d _mm_set_sd(double a)
+// Compares for not less than.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
{
- return _mm_set_pd(0, a);
+ return vreinterpretq_m128_u32(vmvnq_u32(
+ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
}
-// Broadcast double-precision (64-bit) floating-point value a to all elements of
-// dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1
-#define _mm_set_pd1 _mm_set1_pd
+// Compares for not less than.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
+{
+ return _mm_move_ss(a, _mm_cmpnlt_ps(a, b));
+}
-// Stores four single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx
-FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
+// Compares the four 32-bit floats in a and b to check if any values are NaN.
+// Ordered compare between each value returns true for "orderable" and false for
+// "not orderable" (NaN).
+// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see
+// also:
+// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
+// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
+FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
{
- vst1q_f32(p, vreinterpretq_f32_m128(a));
+ // Note: NEON does not have ordered compare builtin
+ // Need to compare a eq a and b eq b to check for NaN
+ // Do AND of results to get final
+ uint32x4_t ceqaa =
+ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
+ uint32x4_t ceqbb =
+ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
+ return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
}
-// Store the lower single-precision (32-bit) floating-point element from a into
-// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
-// boundary or a general-protection exception may be generated.
-//
-// MEM[mem_addr+31:mem_addr] := a[31:0]
-// MEM[mem_addr+63:mem_addr+32] := a[31:0]
-// MEM[mem_addr+95:mem_addr+64] := a[31:0]
-// MEM[mem_addr+127:mem_addr+96] := a[31:0]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1
-FORCE_INLINE void _mm_store_ps1(float *p, __m128 a)
+// Compares for ordered.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b)
{
- float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- vst1q_f32(p, vdupq_n_f32(a0));
+ return _mm_move_ss(a, _mm_cmpord_ps(a, b));
}
-// Store the lower single-precision (32-bit) floating-point element from a into
-// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
-// boundary or a general-protection exception may be generated.
-//
-// MEM[mem_addr+31:mem_addr] := a[31:0]
-// MEM[mem_addr+63:mem_addr+32] := a[31:0]
-// MEM[mem_addr+95:mem_addr+64] := a[31:0]
-// MEM[mem_addr+127:mem_addr+96] := a[31:0]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps
-#define _mm_store1_ps _mm_store_ps1
+// Compares for unordered.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b)
+{
+ uint32x4_t f32a =
+ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
+ uint32x4_t f32b =
+ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
+ return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b)));
+}
-// Store 4 single-precision (32-bit) floating-point elements from a into memory
-// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
-// general-protection exception may be generated.
-//
-// MEM[mem_addr+31:mem_addr] := a[127:96]
-// MEM[mem_addr+63:mem_addr+32] := a[95:64]
-// MEM[mem_addr+95:mem_addr+64] := a[63:32]
-// MEM[mem_addr+127:mem_addr+96] := a[31:0]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps
-FORCE_INLINE void _mm_storer_ps(float *p, __m128 a)
+// Compares for unordered.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100)
+FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b)
{
- float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a));
- float32x4_t rev = vextq_f32(tmp, tmp, 2);
- vst1q_f32(p, rev);
+ return _mm_move_ss(a, _mm_cmpunord_ps(a, b));
}
-// Stores four single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx
-FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
+// Compares the lower single-precision floating point scalar values of a and b
+// using an equality operation. :
+// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx
+FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
{
- vst1q_f32(p, vreinterpretq_f32_m128(a));
+ uint32x4_t a_eq_b =
+ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
+ return vgetq_lane_u32(a_eq_b, 0) & 0x1;
}
-// Stores four 32-bit integer values as (as a __m128i value) at the address p.
-// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
-FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
+// Compares the lower single-precision floating point scalar values of a and b
+// using a greater than or equal operation. :
+// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx
+FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
{
- vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
+ uint32x4_t a_ge_b =
+ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
+ return vgetq_lane_u32(a_ge_b, 0) & 0x1;
}
-// Stores four 32-bit integer values as (as a __m128i value) at the address p.
-// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
-FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
+// Compares the lower single-precision floating point scalar values of a and b
+// using a greater than operation. :
+// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx
+FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
{
- vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
+ uint32x4_t a_gt_b =
+ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
+ return vgetq_lane_u32(a_gt_b, 0) & 0x1;
}
-// Stores the lower single - precision, floating - point value.
-// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx
-FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
+// Compares the lower single-precision floating point scalar values of a and b
+// using a less than or equal operation. :
+// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx
+FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
{
- vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
+ uint32x4_t a_le_b =
+ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
+ return vgetq_lane_u32(a_le_b, 0) & 0x1;
}
-// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
-// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
-// or a general-protection exception may be generated.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd
-FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
+// Compares the lower single-precision floating point scalar values of a and b
+// using a less than operation. :
+// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important
+// note!! The documentation on MSDN is incorrect! If either of the values is a
+// NAN the docs say you will get a one, but in fact, it will return a zero!!
+FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
{
-#if defined(__aarch64__)
- vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a));
-#else
- vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a));
-#endif
+ uint32x4_t a_lt_b =
+ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
+ return vgetq_lane_u32(a_lt_b, 0) & 0x1;
}
-// Store the upper double-precision (64-bit) floating-point element from a into
-// memory.
+// Compares the lower single-precision floating point scalar values of a and b
+// using an inequality operation. :
+// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx
+FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
+{
+ return !_mm_comieq_ss(a, b);
+}
+
+// Convert packed signed 32-bit integers in b to packed single-precision
+// (32-bit) floating-point elements, store the results in the lower 2 elements
+// of dst, and copy the upper 2 packed elements from a to the upper elements of
+// dst.
//
-// MEM[mem_addr+63:mem_addr] := a[127:64]
+// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
+// dst[63:32] := Convert_Int32_To_FP32(b[63:32])
+// dst[95:64] := a[95:64]
+// dst[127:96] := a[127:96]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd
-FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps
+FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
{
-#if defined(__aarch64__)
- vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a)));
-#else
- vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a)));
-#endif
+ return vreinterpretq_m128_f32(
+ vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
+ vget_high_f32(vreinterpretq_f32_m128(a))));
}
-// Store the lower double-precision (64-bit) floating-point element from a into
-// memory.
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 32-bit integers, and store the results in dst.
//
-// MEM[mem_addr+63:mem_addr] := a[63:0]
+// FOR j := 0 to 1
+// i := 32*j
+// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
+// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd
-FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi
+FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
{
#if defined(__aarch64__)
- vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
+ return vreinterpret_m64_s32(
+ vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a)))));
#else
- vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a)));
+ return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32(
+ vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)))));
#endif
}
-// Store 2 double-precision (64-bit) floating-point elements from a into memory
-// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
-// general-protection exception may be generated.
+// Convert the signed 32-bit integer b to a single-precision (32-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper 3 packed elements from a to the upper elements of dst.
//
-// MEM[mem_addr+63:mem_addr] := a[127:64]
-// MEM[mem_addr+127:mem_addr+64] := a[63:0]
+// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
+// dst[127:32] := a[127:32]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd
-FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss
+FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
{
- float32x4_t f = vreinterpretq_f32_m128d(a);
- _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2)));
+ return vreinterpretq_m128_f32(
+ vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
}
-// Store the lower double-precision (64-bit) floating-point element from a into
-// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
-// boundary or a general-protection exception may be generated.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1
-FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 32-bit integer, and store the result in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si
+FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
{
#if defined(__aarch64__)
- float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a));
- vst1q_f64((float64_t *) mem_addr,
- vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low)));
+ return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))),
+ 0);
#else
- float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a));
- vst1q_f32((float32_t *) mem_addr,
- vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low)));
+ float32_t data = vgetq_lane_f32(
+ vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
+ return (int32_t) data;
#endif
}
-// Store the lower double-precision (64-bit) floating-point element from a into
-// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
-// boundary or a general-protection exception may be generated.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd
-#define _mm_store1_pd _mm_store_pd1
-
-// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
-// elements) from a into memory. mem_addr does not need to be aligned on any
-// particular boundary.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd
-FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
+// Convert packed 16-bit integers in a to packed single-precision (32-bit)
+// floating-point elements, and store the results in dst.
+//
+// FOR j := 0 to 3
+// i := j*16
+// m := j*32
+// dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i])
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps
+FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
{
- _mm_store_pd(mem_addr, a);
+ return vreinterpretq_m128_f32(
+ vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a))));
}
-// Reads the lower 64 bits of b and stores them into the lower 64 bits of a.
-// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx
-FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
+// Convert packed 32-bit integers in b to packed single-precision (32-bit)
+// floating-point elements, store the results in the lower 2 elements of dst,
+// and copy the upper 2 packed elements from a to the upper elements of dst.
+//
+// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
+// dst[63:32] := Convert_Int32_To_FP32(b[63:32])
+// dst[95:64] := a[95:64]
+// dst[127:96] := a[127:96]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps
+FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
{
- uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a));
- uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b));
- *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi));
+ return vreinterpretq_m128_f32(
+ vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
+ vget_high_f32(vreinterpretq_f32_m128(a))));
}
-// Stores the lower two single-precision floating point values of a to the
-// address p.
+// Convert packed signed 32-bit integers in a to packed single-precision
+// (32-bit) floating-point elements, store the results in the lower 2 elements
+// of dst, then covert the packed signed 32-bit integers in b to
+// single-precision (32-bit) floating-point element, and store the results in
+// the upper 2 elements of dst.
//
-// *p0 := a0
-// *p1 := a1
+// dst[31:0] := Convert_Int32_To_FP32(a[31:0])
+// dst[63:32] := Convert_Int32_To_FP32(a[63:32])
+// dst[95:64] := Convert_Int32_To_FP32(b[31:0])
+// dst[127:96] := Convert_Int32_To_FP32(b[63:32])
//
-// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx
-FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps
+FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
{
- *p = vreinterpret_m64_f32(vget_low_f32(a));
+ return vreinterpretq_m128_f32(vcvtq_f32_s32(
+ vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))));
}
-// Stores the upper two single-precision, floating-point values of a to the
-// address p.
+// Convert the lower packed 8-bit integers in a to packed single-precision
+// (32-bit) floating-point elements, and store the results in dst.
//
-// *p0 := a2
-// *p1 := a3
+// FOR j := 0 to 3
+// i := j*8
+// m := j*32
+// dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i])
+// ENDFOR
//
-// https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx
-FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps
+FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
{
- *p = vreinterpret_m64_f32(vget_high_f32(a));
+ return vreinterpretq_m128_f32(vcvtq_f32_s32(
+ vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a))))));
}
-// Loads a single single-precision, floating-point value, copying it into all
-// four words
-// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_load1_ps(const float *p)
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 16-bit integers, and store the results in dst. Note: this intrinsic
+// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and
+// 0x7FFFFFFF.
+//
+// FOR j := 0 to 3
+// i := 16*j
+// k := 32*j
+// IF a[k+31:k] >= FP32(0x7FFF) && a[k+31:k] <= FP32(0x7FFFFFFF)
+// dst[i+15:i] := 0x7FFF
+// ELSE
+// dst[i+15:i] := Convert_FP32_To_Int16(a[k+31:k])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16
+FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
{
- return vreinterpretq_m128_f32(vld1q_dup_f32(p));
+ const __m128 i16Min = _mm_set_ps1((float) INT16_MIN);
+ const __m128 i16Max = _mm_set_ps1((float) INT16_MAX);
+ const __m128 i32Max = _mm_set_ps1((float) INT32_MAX);
+ const __m128i maxMask = _mm_castps_si128(
+ _mm_and_ps(_mm_cmpge_ps(a, i16Max), _mm_cmple_ps(a, i32Max)));
+ const __m128i betweenMask = _mm_castps_si128(
+ _mm_and_ps(_mm_cmpgt_ps(a, i16Min), _mm_cmplt_ps(a, i16Max)));
+ const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask),
+ _mm_setzero_si128());
+ __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT16_MAX));
+ __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT16_MIN));
+ __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a));
+ __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt);
+ return vreinterpret_m64_s16(vmovn_s32(vreinterpretq_s32_m128i(res32)));
}
-// Load a single-precision (32-bit) floating-point element from memory into all
-// elements of dst.
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 32-bit integers, and store the results in dst.
//
-// dst[31:0] := MEM[mem_addr+31:mem_addr]
-// dst[63:32] := MEM[mem_addr+31:mem_addr]
-// dst[95:64] := MEM[mem_addr+31:mem_addr]
-// dst[127:96] := MEM[mem_addr+31:mem_addr]
+// FOR j := 0 to 1
+// i := 32*j
+// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
+// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1
-#define _mm_load_ps1 _mm_load1_ps
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32
+#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a)
-// Sets the lower two single-precision, floating-point values with 64
-// bits of data loaded from the address p; the upper two values are passed
-// through from a.
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 8-bit integers, and store the results in lower 4 elements of dst.
+// Note: this intrinsic will generate 0x7F, rather than 0x80, for input values
+// between 0x7F and 0x7FFFFFFF.
//
-// Return Value
-// r0 := *p0
-// r1 := *p1
-// r2 := a2
-// r3 := a3
+// FOR j := 0 to 3
+// i := 8*j
+// k := 32*j
+// IF a[k+31:k] >= FP32(0x7F) && a[k+31:k] <= FP32(0x7FFFFFFF)
+// dst[i+7:i] := 0x7F
+// ELSE
+// dst[i+7:i] := Convert_FP32_To_Int8(a[k+31:k])
+// FI
+// ENDFOR
//
-// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi8
+FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a)
+{
+ const __m128 i8Min = _mm_set_ps1((float) INT8_MIN);
+ const __m128 i8Max = _mm_set_ps1((float) INT8_MAX);
+ const __m128 i32Max = _mm_set_ps1((float) INT32_MAX);
+ const __m128i maxMask = _mm_castps_si128(
+ _mm_and_ps(_mm_cmpge_ps(a, i8Max), _mm_cmple_ps(a, i32Max)));
+ const __m128i betweenMask = _mm_castps_si128(
+ _mm_and_ps(_mm_cmpgt_ps(a, i8Min), _mm_cmplt_ps(a, i8Max)));
+ const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask),
+ _mm_setzero_si128());
+ __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT8_MAX));
+ __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT8_MIN));
+ __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a));
+ __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt);
+ int16x4_t res16 = vmovn_s32(vreinterpretq_s32_m128i(res32));
+ int8x8_t res8 = vmovn_s16(vcombine_s16(res16, res16));
+ uint32_t bitMask[2] = {0xFFFFFFFF, 0};
+ int8x8_t mask = vreinterpret_s8_u32(vld1_u32(bitMask));
+
+ return vreinterpret_m64_s8(vorr_s8(vand_s8(mask, res8), vdup_n_s8(0)));
+}
+
+// Convert packed unsigned 16-bit integers in a to packed single-precision
+// (32-bit) floating-point elements, and store the results in dst.
+//
+// FOR j := 0 to 3
+// i := j*16
+// m := j*32
+// dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i])
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps
+FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
{
return vreinterpretq_m128_f32(
- vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a)));
+ vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a))));
}
-// Load 4 single-precision (32-bit) floating-point elements from memory into dst
-// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
-// general-protection exception may be generated.
+// Convert the lower packed unsigned 8-bit integers in a to packed
+// single-precision (32-bit) floating-point elements, and store the results in
+// dst.
//
-// dst[31:0] := MEM[mem_addr+127:mem_addr+96]
-// dst[63:32] := MEM[mem_addr+95:mem_addr+64]
-// dst[95:64] := MEM[mem_addr+63:mem_addr+32]
-// dst[127:96] := MEM[mem_addr+31:mem_addr]
+// FOR j := 0 to 3
+// i := j*8
+// m := j*32
+// dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i])
+// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps
-FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps
+FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
{
- float32x4_t v = vrev64q_f32(vld1q_f32(p));
- return vreinterpretq_m128_f32(vextq_f32(v, v, 2));
+ return vreinterpretq_m128_f32(vcvtq_f32_u32(
+ vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a))))));
}
-// Sets the upper two single-precision, floating-point values with 64
-// bits of data loaded from the address p; the lower two values are passed
-// through from a.
+// Convert the signed 32-bit integer b to a single-precision (32-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper 3 packed elements from a to the upper elements of dst.
//
-// r0 := a0
-// r1 := a1
-// r2 := *p0
-// r3 := *p1
+// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
+// dst[127:32] := a[127:32]
//
-// https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx
-FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss
+#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b)
+
+// Convert the signed 64-bit integer b to a single-precision (32-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper 3 packed elements from a to the upper elements of dst.
+//
+// dst[31:0] := Convert_Int64_To_FP32(b[63:0])
+// dst[127:32] := a[127:32]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss
+FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
{
return vreinterpretq_m128_f32(
- vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p)));
+ vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
}
-// Loads four single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_load_ps(const float *p)
+// Copy the lower single-precision (32-bit) floating-point element of a to dst.
+//
+// dst[31:0] := a[31:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32
+FORCE_INLINE float _mm_cvtss_f32(__m128 a)
{
- return vreinterpretq_m128_f32(vld1q_f32(p));
+ return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
}
-// Loads four single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx
-FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 32-bit integer, and store the result in dst.
+//
+// dst[31:0] := Convert_FP32_To_Int32(a[31:0])
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32
+#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a)
+
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 64-bit integer, and store the result in dst.
+//
+// dst[63:0] := Convert_FP32_To_Int64(a[31:0])
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64
+FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a)
{
- // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
- // equivalent for neon
- return vreinterpretq_m128_f32(vld1q_f32(p));
+#if defined(__aarch64__)
+ return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0);
+#else
+ float32_t data = vgetq_lane_f32(
+ vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
+ return (int64_t) data;
+#endif
}
-// Load unaligned 16-bit integer from memory into the first element of dst.
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 32-bit integers with truncation, and store the results in dst.
//
-// dst[15:0] := MEM[mem_addr+15:mem_addr]
-// dst[MAX:16] := 0
+// FOR j := 0 to 1
+// i := 32*j
+// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
+// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16
-FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi
+FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
{
- return vreinterpretq_m128i_s16(
- vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0));
+ return vreinterpret_m64_s32(
+ vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))));
}
-// Load unaligned 64-bit integer from memory into the first element of dst.
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 32-bit integer with truncation, and store the result in dst.
//
-// dst[63:0] := MEM[mem_addr+63:mem_addr]
-// dst[MAX:64] := 0
+// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64
-FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si
+FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
{
- return vreinterpretq_m128i_s64(
- vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0)));
+ return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0);
}
-// Load a double-precision (64-bit) floating-point element from memory into the
-// lower of dst, and zero the upper element. mem_addr does not need to be
-// aligned on any particular boundary.
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 32-bit integers with truncation, and store the results in dst.
//
-// dst[63:0] := MEM[mem_addr+63:mem_addr]
-// dst[127:64] := 0
+// FOR j := 0 to 1
+// i := 32*j
+// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
+// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd
-FORCE_INLINE __m128d _mm_load_sd(const double *p)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32
+#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a)
+
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 32-bit integer with truncation, and store the result in dst.
+//
+// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32
+#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a)
+
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 64-bit integer with truncation, and store the result in dst.
+//
+// dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0])
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64
+FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0));
-#else
- const float *fp = (const float *) p;
- float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
- return vreinterpretq_m128d_f32(vld1q_f32(data));
-#endif
+ return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
}
-// Loads two double-precision from 16-byte aligned memory, floating-point
-// values.
+// Divides the four single-precision, floating-point values of a and b.
//
-// dst[127:0] := MEM[mem_addr+127:mem_addr]
+// r0 := a0 / b0
+// r1 := a1 / b1
+// r2 := a2 / b2
+// r3 := a3 / b3
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd
-FORCE_INLINE __m128d _mm_load_pd(const double *p)
+// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vld1q_f64(p));
+#if defined(__aarch64__) && !SSE2NEON_PRECISE_DIV
+ return vreinterpretq_m128_f32(
+ vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
#else
- const float *fp = (const float *) p;
- float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]};
- return vreinterpretq_m128d_f32(vld1q_f32(data));
+ float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b));
+ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
+#if SSE2NEON_PRECISE_DIV
+ // Additional Netwon-Raphson iteration for accuracy
+ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
+#endif
+ return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip));
#endif
}
-// Loads two double-precision from unaligned memory, floating-point values.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd
-FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
+// Divides the scalar single-precision floating point value of a by b.
+// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
{
- return _mm_load_pd(p);
+ float32_t value =
+ vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
+ return vreinterpretq_m128_f32(
+ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
}
-// Loads an single - precision, floating - point value into the low word and
-// clears the upper three words.
-// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx
-FORCE_INLINE __m128 _mm_load_ss(const float *p)
-{
- return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
-}
+// Extract a 16-bit integer from a, selected with imm8, and store the result in
+// the lower element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_pi16
+#define _mm_extract_pi16(a, imm) \
+ (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm))
-// Load 64-bit integer from memory into the first element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64
-FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
+// Free aligned memory that was allocated with _mm_malloc.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free
+FORCE_INLINE void _mm_free(void *addr)
{
- /* Load the lower 64 bits of the value pointed to by p into the
- * lower 64 bits of the result, zeroing the upper 64 bits of the result.
- */
- return vreinterpretq_m128i_s32(
- vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)));
+ free(addr);
}
-// Load a double-precision (64-bit) floating-point element from memory into the
-// lower element of dst, and copy the upper element from a to dst. mem_addr does
-// not need to be aligned on any particular boundary.
-//
-// dst[63:0] := MEM[mem_addr+63:mem_addr]
-// dst[127:64] := a[127:64]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd
-FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
+// Macro: Get the flush zero bits from the MXCSR control and status register.
+// The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or
+// _MM_FLUSH_ZERO_OFF
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_FLUSH_ZERO_MODE
+FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode()
{
+ union {
+ fpcr_bitfield field;
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a))));
+ uint64_t value;
#else
- return vreinterpretq_m128d_f32(
- vcombine_f32(vld1_f32((const float *) p),
- vget_high_f32(vreinterpretq_f32_m128d(a))));
+ uint32_t value;
#endif
-}
+ } r;
-// Load 2 double-precision (64-bit) floating-point elements from memory into dst
-// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
-// general-protection exception may be generated.
-//
-// dst[63:0] := MEM[mem_addr+127:mem_addr+64]
-// dst[127:64] := MEM[mem_addr+63:mem_addr]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd
-FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
-{
#if defined(__aarch64__)
- float64x2_t v = vld1q_f64(p);
- return vreinterpretq_m128d_f64(vextq_f64(v, v, 1));
+ asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
#else
- int64x2_t v = vld1q_s64((const int64_t *) p);
- return vreinterpretq_m128d_s64(vextq_s64(v, v, 1));
+ asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
#endif
+
+ return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF;
}
-// Sets the low word to the single-precision, floating-point value of b
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100)
-FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b)
+// Macro: Get the rounding mode bits from the MXCSR control and status register.
+// The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST,
+// _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_ROUNDING_MODE
+FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE()
{
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0),
- vreinterpretq_f32_m128(a), 0));
+ union {
+ fpcr_bitfield field;
+#if defined(__aarch64__)
+ uint64_t value;
+#else
+ uint32_t value;
+#endif
+ } r;
+
+#if defined(__aarch64__)
+ asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
+#else
+ asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+#endif
+
+ if (r.field.bit22) {
+ return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP;
+ } else {
+ return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST;
+ }
}
-// Move the lower double-precision (64-bit) floating-point element from b to the
-// lower element of dst, and copy the upper element from a to the upper element
-// of dst.
-//
-// dst[63:0] := b[63:0]
-// dst[127:64] := a[127:64]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd
-FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b)
+// Copy a to dst, and insert the 16-bit integer i into dst at the location
+// specified by imm8.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16
+#define _mm_insert_pi16(a, b, imm) \
+ __extension__({ \
+ vreinterpret_m64_s16( \
+ vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \
+ })
+
+// Loads four single-precision, floating-point values.
+// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_load_ps(const float *p)
{
- return vreinterpretq_m128d_f32(
- vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)),
- vget_high_f32(vreinterpretq_f32_m128d(a))));
+ return vreinterpretq_m128_f32(vld1q_f32(p));
}
-// Copy the lower 64-bit integer in a to the lower element of dst, and zero the
-// upper element.
+// Load a single-precision (32-bit) floating-point element from memory into all
+// elements of dst.
//
-// dst[63:0] := a[63:0]
-// dst[127:64] := 0
+// dst[31:0] := MEM[mem_addr+31:mem_addr]
+// dst[63:32] := MEM[mem_addr+31:mem_addr]
+// dst[95:64] := MEM[mem_addr+31:mem_addr]
+// dst[127:96] := MEM[mem_addr+31:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64
-FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1
+#define _mm_load_ps1 _mm_load1_ps
+
+// Loads an single - precision, floating - point value into the low word and
+// clears the upper three words.
+// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx
+FORCE_INLINE __m128 _mm_load_ss(const float *p)
{
- return vreinterpretq_m128i_s64(
- vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1));
+ return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
}
-// Return vector of type __m128 with undefined elements.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps
-FORCE_INLINE __m128 _mm_undefined_ps(void)
+// Loads a single single-precision, floating-point value, copying it into all
+// four words
+// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_load1_ps(const float *p)
{
-#if defined(__GNUC__) || defined(__clang__)
-#pragma GCC diagnostic push
-#pragma GCC diagnostic ignored "-Wuninitialized"
-#endif
- __m128 a;
- return a;
-#if defined(__GNUC__) || defined(__clang__)
-#pragma GCC diagnostic pop
-#endif
+ return vreinterpretq_m128_f32(vld1q_dup_f32(p));
}
-/* Logic/Binary operations */
-
-// Computes the bitwise AND-NOT of the four single-precision, floating-point
-// values of a and b.
+// Sets the upper two single-precision, floating-point values with 64
+// bits of data loaded from the address p; the lower two values are passed
+// through from a.
//
-// r0 := ~a0 & b0
-// r1 := ~a1 & b1
-// r2 := ~a2 & b2
-// r3 := ~a3 & b3
+// r0 := a0
+// r1 := a1
+// r2 := *p0
+// r3 := *p1
//
-// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
+// https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx
+FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
{
- return vreinterpretq_m128_s32(
- vbicq_s32(vreinterpretq_s32_m128(b),
- vreinterpretq_s32_m128(a))); // *NOTE* argument swap
+ return vreinterpretq_m128_f32(
+ vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p)));
}
-// Compute the bitwise NOT of packed double-precision (64-bit) floating-point
-// elements in a and then AND with b, and store the results in dst.
+// Sets the lower two single-precision, floating-point values with 64
+// bits of data loaded from the address p; the upper two values are passed
+// through from a.
//
-// FOR j := 0 to 1
-// i := j*64
-// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i])
-// ENDFOR
+// Return Value
+// r0 := *p0
+// r1 := *p1
+// r2 := a2
+// r3 := a3
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd
-FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
+// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
{
- // *NOTE* argument swap
- return vreinterpretq_m128d_s64(
- vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a)));
+ return vreinterpretq_m128_f32(
+ vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a)));
}
-// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
-// 128-bit value in a.
+// Load 4 single-precision (32-bit) floating-point elements from memory into dst
+// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
+// general-protection exception may be generated.
//
-// r := (~a) & b
+// dst[31:0] := MEM[mem_addr+127:mem_addr+96]
+// dst[63:32] := MEM[mem_addr+95:mem_addr+64]
+// dst[95:64] := MEM[mem_addr+63:mem_addr+32]
+// dst[127:96] := MEM[mem_addr+31:mem_addr]
//
-// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps
+FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
{
- return vreinterpretq_m128i_s32(
- vbicq_s32(vreinterpretq_s32_m128i(b),
- vreinterpretq_s32_m128i(a))); // *NOTE* argument swap
+ float32x4_t v = vrev64q_f32(vld1q_f32(p));
+ return vreinterpretq_m128_f32(vextq_f32(v, v, 2));
}
-// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in
-// b.
-//
-// r := a & b
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
+// Loads four single-precision, floating-point values.
+// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx
+FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
{
- return vreinterpretq_m128i_s32(
- vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+ // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
+ // equivalent for neon
+ return vreinterpretq_m128_f32(vld1q_f32(p));
}
-// Computes the bitwise AND of the four single-precision, floating-point values
-// of a and b.
+// Load unaligned 16-bit integer from memory into the first element of dst.
//
-// r0 := a0 & b0
-// r1 := a1 & b1
-// r2 := a2 & b2
-// r3 := a3 & b3
+// dst[15:0] := MEM[mem_addr+15:mem_addr]
+// dst[MAX:16] := 0
//
-// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16
+FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
{
- return vreinterpretq_m128_s32(
- vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
+ return vreinterpretq_m128i_s16(
+ vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0));
}
-// Compute the bitwise AND of packed double-precision (64-bit) floating-point
-// elements in a and b, and store the results in dst.
+// Load unaligned 64-bit integer from memory into the first element of dst.
//
-// FOR j := 0 to 1
-// i := j*64
-// dst[i+63:i] := a[i+63:i] AND b[i+63:i]
-// ENDFOR
+// dst[63:0] := MEM[mem_addr+63:mem_addr]
+// dst[MAX:64] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd
-FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64
+FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
{
- return vreinterpretq_m128d_s64(
- vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
+ return vreinterpretq_m128i_s64(
+ vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0)));
}
-// Computes the bitwise OR of the four single-precision, floating-point values
-// of a and b.
-// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
+// Allocate aligned blocks of memory.
+// https://software.intel.com/en-us/
+// cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks
+FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
{
- return vreinterpretq_m128_s32(
- vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
+ void *ptr;
+ if (align == 1)
+ return malloc(size);
+ if (align == 2 || (sizeof(void *) == 8 && align == 4))
+ align = sizeof(void *);
+ if (!posix_memalign(&ptr, align, size))
+ return ptr;
+ return NULL;
}
-// Computes bitwise EXOR (exclusive-or) of the four single-precision,
-// floating-point values of a and b.
-// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
+// Conditionally store 8-bit integer elements from a into memory using mask
+// (elements are not stored when the highest bit is not set in the corresponding
+// element) and a non-temporal memory hint.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmove_si64
+FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr)
{
- return vreinterpretq_m128_s32(
- veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
+ int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7);
+ __m128 b = _mm_load_ps((const float *) mem_addr);
+ int8x8_t masked =
+ vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a),
+ vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b))));
+ vst1_s8((int8_t *) mem_addr, masked);
}
-// Compute the bitwise XOR of packed double-precision (64-bit) floating-point
-// elements in a and b, and store the results in dst.
+// Conditionally store 8-bit integer elements from a into memory using mask
+// (elements are not stored when the highest bit is not set in the corresponding
+// element) and a non-temporal memory hint.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_maskmovq
+#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr)
+
+// Compare packed signed 16-bit integers in a and b, and store packed maximum
+// values in dst.
//
-// FOR j := 0 to 1
-// i := j*64
-// dst[i+63:i] := a[i+63:i] XOR b[i+63:i]
+// FOR j := 0 to 3
+// i := j*16
+// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd
-FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16
+FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
{
- return vreinterpretq_m128d_s64(
- veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
+ return vreinterpret_m64_s16(
+ vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
}
-// Compute the bitwise OR of packed double-precision (64-bit) floating-point
-// elements in a and b, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd
-FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b)
+// Computes the maximums of the four single-precision, floating-point values of
+// a and b.
+// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
{
- return vreinterpretq_m128d_s64(
- vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
+#if SSE2NEON_PRECISE_MINMAX
+ float32x4_t _a = vreinterpretq_f32_m128(a);
+ float32x4_t _b = vreinterpretq_f32_m128(b);
+ return vbslq_f32(vcltq_f32(_b, _a), _a, _b);
+#else
+ return vreinterpretq_m128_f32(
+ vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#endif
}
-// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
+// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
+// values in dst.
//
-// r := a | b
+// FOR j := 0 to 7
+// i := j*8
+// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i])
+// ENDFOR
//
-// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8
+FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
{
- return vreinterpretq_m128i_s32(
- vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+ return vreinterpret_m64_u8(
+ vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
}
-// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in
-// b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
+// Computes the maximum of the two lower scalar single-precision floating point
+// values of a and b.
+// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
{
- return vreinterpretq_m128i_s32(
- veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+ float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0);
+ return vreinterpretq_m128_f32(
+ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
}
-// Duplicate the low double-precision (64-bit) floating-point element from a,
-// and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd
-FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
+// Compare packed signed 16-bit integers in a and b, and store packed minimum
+// values in dst.
+//
+// FOR j := 0 to 3
+// i := j*16
+// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i])
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16
+FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
{
-#if (__aarch64__)
- return vreinterpretq_m128d_f64(
- vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0));
-#else
- return vreinterpretq_m128d_u64(
- vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)));
-#endif
+ return vreinterpret_m64_s16(
+ vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
}
-// Duplicate odd-indexed single-precision (32-bit) floating-point elements
-// from a, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps
-FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
+// Computes the minima of the four single-precision, floating-point values of a
+// and b.
+// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
{
-#if __has_builtin(__builtin_shufflevector)
- return vreinterpretq_m128_f32(__builtin_shufflevector(
- vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
+#if SSE2NEON_PRECISE_MINMAX
+ float32x4_t _a = vreinterpretq_f32_m128(a);
+ float32x4_t _b = vreinterpretq_f32_m128(b);
+ return vbslq_f32(vcltq_f32(_a, _b), _a, _b);
#else
- float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
- float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3);
- float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3};
- return vreinterpretq_m128_f32(vld1q_f32(data));
+ return vreinterpretq_m128_f32(
+ vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
#endif
}
-// Duplicate even-indexed single-precision (32-bit) floating-point elements
-// from a, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps
-FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
+// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
+// values in dst.
+//
+// FOR j := 0 to 7
+// i := j*8
+// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i])
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8
+FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
{
-#if __has_builtin(__builtin_shufflevector)
- return vreinterpretq_m128_f32(__builtin_shufflevector(
- vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
-#else
- float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2);
- float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2};
- return vreinterpretq_m128_f32(vld1q_f32(data));
-#endif
+ return vreinterpret_m64_u8(
+ vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
+}
+
+// Computes the minimum of the two lower scalar single-precision floating point
+// values of a and b.
+// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
+{
+ float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0);
+ return vreinterpretq_m128_f32(
+ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
+}
+
+// Sets the low word to the single-precision, floating-point value of b
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100)
+FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b)
+{
+ return vreinterpretq_m128_f32(
+ vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0),
+ vreinterpretq_f32_m128(a), 0));
}
// Moves the upper two values of B into the lower two values of A.
@@ -1577,315 +2093,419 @@ FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
}
-// Compute the absolute value of packed signed 32-bit integers in a, and store
-// the unsigned results in dst.
-//
-// FOR j := 0 to 3
-// i := j*32
-// dst[i+31:i] := ABS(a[i+31:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32
-FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
+// Create mask from the most significant bit of each 8-bit element in a, and
+// store the result in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pi8
+FORCE_INLINE int _mm_movemask_pi8(__m64 a)
{
- return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
+ uint8x8_t input = vreinterpret_u8_m64(a);
+#if defined(__aarch64__)
+ static const int8x8_t shift = {0, 1, 2, 3, 4, 5, 6, 7};
+ uint8x8_t tmp = vshr_n_u8(input, 7);
+ return vaddv_u8(vshl_u8(tmp, shift));
+#else
+ // Refer the implementation of `_mm_movemask_epi8`
+ uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7));
+ uint32x2_t paired16 =
+ vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7));
+ uint8x8_t paired32 =
+ vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14));
+ return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4);
+#endif
}
-// Compute the absolute value of packed signed 16-bit integers in a, and store
-// the unsigned results in dst.
-//
-// FOR j := 0 to 7
-// i := j*16
-// dst[i+15:i] := ABS(a[i+15:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16
-FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
+// NEON does not provide this method
+// Creates a 4-bit mask from the most significant bits of the four
+// single-precision, floating-point values.
+// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx
+FORCE_INLINE int _mm_movemask_ps(__m128 a)
{
- return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
+ uint32x4_t input = vreinterpretq_u32_m128(a);
+#if defined(__aarch64__)
+ static const int32x4_t shift = {0, 1, 2, 3};
+ uint32x4_t tmp = vshrq_n_u32(input, 31);
+ return vaddvq_u32(vshlq_u32(tmp, shift));
+#else
+ // Uses the exact same method as _mm_movemask_epi8, see that for details.
+ // Shift out everything but the sign bits with a 32-bit unsigned shift
+ // right.
+ uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
+ // Merge the two pairs together with a 64-bit unsigned shift right + add.
+ uint8x16_t paired =
+ vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
+ // Extract the result.
+ return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
+#endif
}
-// Compute the absolute value of packed signed 8-bit integers in a, and store
-// the unsigned results in dst.
+// Multiplies the four single-precision, floating-point values of a and b.
//
-// FOR j := 0 to 15
-// i := j*8
-// dst[i+7:i] := ABS(a[i+7:i])
-// ENDFOR
+// r0 := a0 * b0
+// r1 := a1 * b1
+// r2 := a2 * b2
+// r3 := a3 * b3
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8
-FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
+// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
{
- return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
+ return vreinterpretq_m128_f32(
+ vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}
-// Compute the absolute value of packed signed 32-bit integers in a, and store
-// the unsigned results in dst.
+// Multiply the lower single-precision (32-bit) floating-point element in a and
+// b, store the result in the lower element of dst, and copy the upper 3 packed
+// elements from a to the upper elements of dst.
//
-// FOR j := 0 to 1
-// i := j*32
-// dst[i+31:i] := ABS(a[i+31:i])
-// ENDFOR
+// dst[31:0] := a[31:0] * b[31:0]
+// dst[127:32] := a[127:32]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32
-FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss
+FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
{
- return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
+ return _mm_move_ss(a, _mm_mul_ps(a, b));
}
-// Compute the absolute value of packed signed 16-bit integers in a, and store
-// the unsigned results in dst.
-//
-// FOR j := 0 to 3
-// i := j*16
-// dst[i+15:i] := ABS(a[i+15:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16
-FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
+// Multiply the packed unsigned 16-bit integers in a and b, producing
+// intermediate 32-bit integers, and store the high 16 bits of the intermediate
+// integers in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16
+FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
{
- return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
+ return vreinterpret_m64_u16(vshrn_n_u32(
+ vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16));
}
-// Compute the absolute value of packed signed 8-bit integers in a, and store
-// the unsigned results in dst.
+// Computes the bitwise OR of the four single-precision, floating-point values
+// of a and b.
+// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
+{
+ return vreinterpretq_m128_s32(
+ vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
+}
+
+// Average packed unsigned 8-bit integers in a and b, and store the results in
+// dst.
//
// FOR j := 0 to 7
// i := j*8
-// dst[i+7:i] := ABS(a[i+7:i])
+// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8
-FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
-{
- return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
-}
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb
+#define _m_pavgb(a, b) _mm_avg_pu8(a, b)
-// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift
-// the result right by imm8 bytes, and store the low 16 bytes in dst.
+// Average packed unsigned 16-bit integers in a and b, and store the results in
+// dst.
//
-// tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8)
-// dst[127:0] := tmp[127:0]
+// FOR j := 0 to 3
+// i := j*16
+// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
+// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8
-#define _mm_alignr_epi8(a, b, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) >= 32)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- uint8x16_t tmp_low, tmp_high; \
- if (imm >= 16) { \
- const int idx = imm - 16; \
- tmp_low = vreinterpretq_u8_m128i(a); \
- tmp_high = vdupq_n_u8(0); \
- ret = \
- vreinterpretq_m128i_u8(vextq_u8(tmp_low, tmp_high, idx)); \
- } else { \
- const int idx = imm; \
- tmp_low = vreinterpretq_u8_m128i(b); \
- tmp_high = vreinterpretq_u8_m128i(a); \
- ret = \
- vreinterpretq_m128i_u8(vextq_u8(tmp_low, tmp_high, idx)); \
- } \
- } \
- ret; \
- })
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw
+#define _m_pavgw(a, b) _mm_avg_pu16(a, b)
-// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift
-// the result right by imm8 bytes, and store the low 8 bytes in dst.
-//
-// tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8)
-// dst[63:0] := tmp[63:0]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8
-#define _mm_alignr_pi8(a, b, imm) \
- __extension__({ \
- __m64 ret; \
- if (unlikely((imm) >= 16)) { \
- ret = vreinterpret_m64_s8(vdup_n_s8(0)); \
- } else { \
- uint8x8_t tmp_low, tmp_high; \
- if (imm >= 8) { \
- const int idx = imm - 8; \
- tmp_low = vreinterpret_u8_m64(a); \
- tmp_high = vdup_n_u8(0); \
- ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
- } else { \
- const int idx = imm; \
- tmp_low = vreinterpret_u8_m64(b); \
- tmp_high = vreinterpret_u8_m64(a); \
- ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
- } \
- } \
- ret; \
- })
+// Extract a 16-bit integer from a, selected with imm8, and store the result in
+// the lower element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw
+#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm)
-// Takes the upper 64 bits of a and places it in the low end of the result
-// Takes the lower 64 bits of b and places it into the high end of the result.
-FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
-{
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
-}
+// Copy a to dst, and insert the 16-bit integer i into dst at the location
+// specified by imm8.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw
+#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm)
-// takes the lower two 32-bit values from a and swaps them and places in high
-// end of result takes the higher two 32 bit values from b and swaps them and
-// places in low end of result.
-FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
+// Compare packed signed 16-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw
+#define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
+
+// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub
+#define _m_pmaxub(a, b) _mm_max_pu8(a, b)
+
+// Compare packed signed 16-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw
+#define _m_pminsw(a, b) _mm_min_pi16(a, b)
+
+// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub
+#define _m_pminub(a, b) _mm_min_pu8(a, b)
+
+// Create mask from the most significant bit of each 8-bit element in a, and
+// store the result in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmovmskb
+#define _m_pmovmskb(a) _mm_movemask_pi8(a)
+
+// Multiply the packed unsigned 16-bit integers in a and b, producing
+// intermediate 32-bit integers, and store the high 16 bits of the intermediate
+// integers in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw
+#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)
+
+// Loads one cache line of data from address p to a location closer to the
+// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx
+FORCE_INLINE void _mm_prefetch(const void *p, int i)
{
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
+ (void) i;
+ __builtin_prefetch(p);
}
-FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
+// Compute the absolute differences of packed unsigned 8-bit integers in a and
+// b, then horizontally sum each consecutive 8 differences to produce four
+// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
+// 16 bits of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_psadbw
+#define _m_psadbw(a, b) _mm_sad_pu8(a, b)
+
+// Shuffle 16-bit integers in a using the control in imm8, and store the results
+// in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pshufw
+#define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm)
+
+// Compute the approximate reciprocal of packed single-precision (32-bit)
+// floating-point elements in a, and store the results in dst. The maximum
+// relative error for this approximation is less than 1.5*2^-12.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps
+FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
{
- float32x2_t a21 = vget_high_f32(
- vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
- float32x2_t b03 = vget_low_f32(
- vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
- return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
+ float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
+ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
+#if SSE2NEON_PRECISE_DIV
+ // Additional Netwon-Raphson iteration for accuracy
+ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
+#endif
+ return vreinterpretq_m128_f32(recip);
}
-FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
+// Compute the approximate reciprocal of the lower single-precision (32-bit)
+// floating-point element in a, store the result in the lower element of dst,
+// and copy the upper 3 packed elements from a to the upper elements of dst. The
+// maximum relative error for this approximation is less than 1.5*2^-12.
+//
+// dst[31:0] := (1.0 / a[31:0])
+// dst[127:32] := a[127:32]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss
+FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
{
- float32x2_t a03 = vget_low_f32(
- vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
- float32x2_t b21 = vget_high_f32(
- vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
- return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
+ return _mm_move_ss(a, _mm_rcp_ps(a));
}
-FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
+// Computes the approximations of the reciprocal square roots of the four
+// single-precision floating point values of in.
+// The current precision is 1% error.
+// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
{
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
+ float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in));
+#if SSE2NEON_PRECISE_SQRT
+ // Additional Netwon-Raphson iteration for accuracy
+ out = vmulq_f32(
+ out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
+ out = vmulq_f32(
+ out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
+#endif
+ return vreinterpretq_m128_f32(out);
}
-FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
+// Compute the approximate reciprocal square root of the lower single-precision
+// (32-bit) floating-point element in a, store the result in the lower element
+// of dst, and copy the upper 3 packed elements from a to the upper elements of
+// dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss
+FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
{
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
+ return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
}
-FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
+// Compute the absolute differences of packed unsigned 8-bit integers in a and
+// b, then horizontally sum each consecutive 8 differences to produce four
+// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
+// 16 bits of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8
+FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
{
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
+ uint64x1_t t = vpaddl_u32(vpaddl_u16(
+ vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)))));
+ return vreinterpret_m64_u16(
+ vset_lane_u16(vget_lane_u64(t, 0), vdup_n_u16(0), 0));
}
-// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
-// high
-FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
+// Macro: Set the flush zero bits of the MXCSR control and status register to
+// the value in unsigned 32-bit integer a. The flush zero may contain any of the
+// following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_FLUSH_ZERO_MODE
+FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag)
{
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
+ // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
+ // regardless of the value of the FZ bit.
+ union {
+ fpcr_bitfield field;
+#if defined(__aarch64__)
+ uint64_t value;
+#else
+ uint32_t value;
+#endif
+ } r;
+
+#if defined(__aarch64__)
+ asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
+#else
+ asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+#endif
+
+ r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON;
+
+#if defined(__aarch64__)
+ asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
+#else
+ asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
+#endif
}
-FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
+// Sets the four single-precision, floating-point values to the four inputs.
+// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
{
- float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
+ float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
+ return vreinterpretq_m128_f32(vld1q_f32(data));
}
-FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
+// Sets the four single-precision, floating-point values to w.
+// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_set_ps1(float _w)
{
- float32x2_t a22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
+ return vreinterpretq_m128_f32(vdupq_n_f32(_w));
}
-FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
+// Macro: Set the rounding mode bits of the MXCSR control and status register to
+// the value in unsigned 32-bit integer a. The rounding mode may contain any of
+// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP,
+// _MM_ROUND_TOWARD_ZERO
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE
+FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
{
- float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t b22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
+ union {
+ fpcr_bitfield field;
+#if defined(__aarch64__)
+ uint64_t value;
+#else
+ uint32_t value;
+#endif
+ } r;
+
+#if defined(__aarch64__)
+ asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
+#else
+ asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+#endif
+
+ switch (rounding) {
+ case _MM_ROUND_TOWARD_ZERO:
+ r.field.bit22 = 1;
+ r.field.bit23 = 1;
+ break;
+ case _MM_ROUND_DOWN:
+ r.field.bit22 = 0;
+ r.field.bit23 = 1;
+ break;
+ case _MM_ROUND_UP:
+ r.field.bit22 = 1;
+ r.field.bit23 = 0;
+ break;
+ default: //_MM_ROUND_NEAREST
+ r.field.bit22 = 0;
+ r.field.bit23 = 0;
+ }
+
+#if defined(__aarch64__)
+ asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
+#else
+ asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
+#endif
}
-FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
+// Copy single-precision (32-bit) floating-point element a to the lower element
+// of dst, and zero the upper 3 elements.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss
+FORCE_INLINE __m128 _mm_set_ss(float a)
{
- float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32x2_t a22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
+ float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0};
+ return vreinterpretq_m128_f32(vld1q_f32(data));
}
-FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
+// Sets the four single-precision, floating-point values to w.
+//
+// r0 := r1 := r2 := r3 := w
+//
+// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_set1_ps(float _w)
{
- float32x2_t a33 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
- float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
- return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
+ return vreinterpretq_m128_f32(vdupq_n_f32(_w));
}
-FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
+FORCE_INLINE void _mm_setcsr(unsigned int a)
{
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
+ _MM_SET_ROUNDING_MODE(a);
}
-FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
+// Sets the four single-precision, floating-point values to the four inputs in
+// reverse order.
+// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
{
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32_t b2 = vgetq_lane_f32(b, 2);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
+ float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
+ return vreinterpretq_m128_f32(vld1q_f32(data));
}
-FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
+// Clears the four single-precision, floating-point values.
+// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_setzero_ps(void)
{
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32_t b2 = vgetq_lane_f32(b, 2);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
+ return vreinterpretq_m128_f32(vdupq_n_f32(0));
}
-// NEON does not support a general purpose permute intrinsic
-// Selects four specific single-precision, floating-point values from a and b,
-// based on the mask i.
-//
-// C equivalent:
-// __m128 _mm_shuffle_ps_default(__m128 a, __m128 b,
-// __constrange(0, 255) int imm) {
-// __m128 ret;
-// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
-// ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03];
-// return ret;
-// }
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx
-#define _mm_shuffle_ps_default(a, b, imm) \
+// Shuffle 16-bit integers in a using the control in imm8, and store the results
+// in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi16
+#if __has_builtin(__builtin_shufflevector)
+#define _mm_shuffle_pi16(a, imm) \
__extension__({ \
- float32x4_t ret; \
- ret = vmovq_n_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))); \
- ret = vsetq_lane_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
- ret, 1); \
- ret = vsetq_lane_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \
- ret, 2); \
- ret = vsetq_lane_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \
- ret, 3); \
- vreinterpretq_m128_f32(ret); \
+ vreinterpret_m64_s16(__builtin_shufflevector( \
+ vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \
+ ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))); \
})
+#else
+#define _mm_shuffle_pi16(a, imm) \
+ __extension__({ \
+ int16x4_t ret; \
+ ret = \
+ vmov_n_s16(vget_lane_s16(vreinterpret_s16_m64(a), (imm) & (0x3))); \
+ ret = vset_lane_s16( \
+ vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 2) & 0x3), ret, \
+ 1); \
+ ret = vset_lane_s16( \
+ vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 4) & 0x3), ret, \
+ 2); \
+ ret = vset_lane_s16( \
+ vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 6) & 0x3), ret, \
+ 3); \
+ vreinterpret_m64_s16(ret); \
+ })
+#endif
+
+// Guarantees that every preceding store is globally visible before any
+// subsequent store.
+// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx
+FORCE_INLINE void _mm_sfence(void)
+{
+ __sync_synchronize();
+}
// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
// int imm)
@@ -1963,1876 +2583,1721 @@ FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
})
#endif
-// Takes the upper 64 bits of a and places it in the low end of the result
-// Takes the lower 64 bits of a and places it into the high end of the result.
-FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
+// Computes the approximations of square roots of the four single-precision,
+// floating-point values of a. First computes reciprocal square roots and then
+// reciprocals of the four values.
+//
+// r0 := sqrt(a0)
+// r1 := sqrt(a1)
+// r2 := sqrt(a2)
+// r3 := sqrt(a3)
+//
+// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
{
- int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
+#if SSE2NEON_PRECISE_SQRT
+ float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in));
+
+ // Test for vrsqrteq_f32(0) -> positive infinity case.
+ // Change to zero, so that s * 1/sqrt(s) result is zero too.
+ const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
+ const uint32x4_t div_by_zero =
+ vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip));
+ recip = vreinterpretq_f32_u32(
+ vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip)));
+
+ // Additional Netwon-Raphson iteration for accuracy
+ recip = vmulq_f32(
+ vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
+ recip);
+ recip = vmulq_f32(
+ vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
+ recip);
+
+ // sqrt(s) = s * 1/sqrt(s)
+ return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip));
+#elif defined(__aarch64__)
+ return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
+#else
+ float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in));
+ float32x4_t sq = vrecpeq_f32(recipsq);
+ return vreinterpretq_m128_f32(sq);
+#endif
}
-// takes the lower two 32-bit values from a and swaps them and places in low end
-// of result takes the higher two 32 bit values from a and swaps them and places
-// in high end of result.
-FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
+// Computes the approximation of the square root of the scalar single-precision
+// floating point value of in.
+// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
{
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
+ float32_t value =
+ vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
+ return vreinterpretq_m128_f32(
+ vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
}
-// rotates the least significant 32 bits into the most signficant 32 bits, and
-// shifts the rest down
-FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
+// Stores four single-precision, floating-point values.
+// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx
+FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
{
- return vreinterpretq_m128i_s32(
- vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
+ vst1q_f32(p, vreinterpretq_f32_m128(a));
}
-// rotates the most significant 32 bits into the least signficant 32 bits, and
-// shifts the rest up
-FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
+// Store the lower single-precision (32-bit) floating-point element from a into
+// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
+// boundary or a general-protection exception may be generated.
+//
+// MEM[mem_addr+31:mem_addr] := a[31:0]
+// MEM[mem_addr+63:mem_addr+32] := a[31:0]
+// MEM[mem_addr+95:mem_addr+64] := a[31:0]
+// MEM[mem_addr+127:mem_addr+96] := a[31:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1
+FORCE_INLINE void _mm_store_ps1(float *p, __m128 a)
{
- return vreinterpretq_m128i_s32(
- vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
+ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+ vst1q_f32(p, vdupq_n_f32(a0));
}
-// gets the lower 64 bits of a, and places it in the upper 64 bits
-// gets the lower 64 bits of a and places it in the lower 64 bits
-FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
+// Stores the lower single - precision, floating - point value.
+// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx
+FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
{
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
+ vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
}
-// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
-// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
-FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
+// Store the lower single-precision (32-bit) floating-point element from a into
+// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
+// boundary or a general-protection exception may be generated.
+//
+// MEM[mem_addr+31:mem_addr] := a[31:0]
+// MEM[mem_addr+63:mem_addr+32] := a[31:0]
+// MEM[mem_addr+95:mem_addr+64] := a[31:0]
+// MEM[mem_addr+127:mem_addr+96] := a[31:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps
+#define _mm_store1_ps _mm_store_ps1
+
+// Stores the upper two single-precision, floating-point values of a to the
+// address p.
+//
+// *p0 := a2
+// *p1 := a3
+//
+// https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx
+FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
{
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
+ *p = vreinterpret_m64_f32(vget_high_f32(a));
}
-// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
-// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
-// places it in the lower 64 bits
-FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
+// Stores the lower two single-precision floating point values of a to the
+// address p.
+//
+// *p0 := a0
+// *p1 := a1
+//
+// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx
+FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
{
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
+ *p = vreinterpret_m64_f32(vget_low_f32(a));
}
-FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
+// Store 4 single-precision (32-bit) floating-point elements from a into memory
+// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
+// general-protection exception may be generated.
+//
+// MEM[mem_addr+31:mem_addr] := a[127:96]
+// MEM[mem_addr+63:mem_addr+32] := a[95:64]
+// MEM[mem_addr+95:mem_addr+64] := a[63:32]
+// MEM[mem_addr+127:mem_addr+96] := a[31:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps
+FORCE_INLINE void _mm_storer_ps(float *p, __m128 a)
{
- int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
- int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
- return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
+ float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a));
+ float32x4_t rev = vextq_f32(tmp, tmp, 2);
+ vst1q_f32(p, rev);
}
-FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
+// Stores four single-precision, floating-point values.
+// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx
+FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
{
- int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
+ vst1q_f32(p, vreinterpretq_f32_m128(a));
}
-FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
+// Stores 16-bits of integer data a at the address p.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si16
+FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a)
{
- int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
- return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
+ vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0);
}
-// Shuffle packed 8-bit integers in a according to shuffle control mask in the
-// corresponding 8-bit element of b, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8
-FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
+// Stores 64-bits of integer data a at the address p.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si64
+FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a)
{
- int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a
- uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b
- uint8x16_t idx_masked =
- vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
-#if defined(__aarch64__)
- return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
-#elif defined(__GNUC__)
- int8x16_t ret;
- // %e and %f represent the even and odd D registers
- // respectively.
- __asm__ __volatile__(
- "vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
- "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
- : [ret] "=&w"(ret)
- : [tbl] "w"(tbl), [idx] "w"(idx_masked));
- return vreinterpretq_m128i_s8(ret);
-#else
- // use this line if testing on aarch64
- int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
- return vreinterpretq_m128i_s8(
- vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
- vtbl2_s8(a_split, vget_high_u8(idx_masked))));
-#endif
+ vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0);
}
-// C equivalent:
-// __m128i _mm_shuffle_epi32_default(__m128i a,
-// __constrange(0, 255) int imm) {
-// __m128i ret;
-// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
-// ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03];
-// return ret;
-// }
-#define _mm_shuffle_epi32_default(a, imm) \
- __extension__({ \
- int32x4_t ret; \
- ret = vmovq_n_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3))); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \
- ret, 1); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
- ret, 2); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \
- ret, 3); \
- vreinterpretq_m128i_s32(ret); \
- })
+// Store 64-bits of integer data from a into memory using a non-temporal memory
+// hint.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pi
+FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a)
+{
+ vst1_s64((int64_t *) p, vreinterpret_s64_m64(a));
+}
-// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255)
-// int imm)
-#if defined(__aarch64__)
-#define _mm_shuffle_epi32_splat(a, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32( \
- vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \
- })
+// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
+// point elements) from a into memory using a non-temporal memory hint.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps
+FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
+{
+#if __has_builtin(__builtin_nontemporal_store)
+ __builtin_nontemporal_store(a, (float32x4_t *) p);
#else
-#define _mm_shuffle_epi32_splat(a, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32( \
- vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \
- })
+ vst1q_f32(p, vreinterpretq_f32_m128(a));
#endif
+}
-// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm.
-// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx
-// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
-// __constrange(0,255) int imm)
-#if __has_builtin(__builtin_shufflevector)
-#define _mm_shuffle_epi32(a, imm) \
- __extension__({ \
- int32x4_t _input = vreinterpretq_s32_m128i(a); \
- int32x4_t _shuf = __builtin_shufflevector( \
- _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
- ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \
- vreinterpretq_m128i_s32(_shuf); \
- })
-#else // generic
-#define _mm_shuffle_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- switch (imm) { \
- case _MM_SHUFFLE(1, 0, 3, 2): \
- ret = _mm_shuffle_epi_1032((a)); \
- break; \
- case _MM_SHUFFLE(2, 3, 0, 1): \
- ret = _mm_shuffle_epi_2301((a)); \
- break; \
- case _MM_SHUFFLE(0, 3, 2, 1): \
- ret = _mm_shuffle_epi_0321((a)); \
- break; \
- case _MM_SHUFFLE(2, 1, 0, 3): \
- ret = _mm_shuffle_epi_2103((a)); \
- break; \
- case _MM_SHUFFLE(1, 0, 1, 0): \
- ret = _mm_shuffle_epi_1010((a)); \
- break; \
- case _MM_SHUFFLE(1, 0, 0, 1): \
- ret = _mm_shuffle_epi_1001((a)); \
- break; \
- case _MM_SHUFFLE(0, 1, 0, 1): \
- ret = _mm_shuffle_epi_0101((a)); \
- break; \
- case _MM_SHUFFLE(2, 2, 1, 1): \
- ret = _mm_shuffle_epi_2211((a)); \
- break; \
- case _MM_SHUFFLE(0, 1, 2, 2): \
- ret = _mm_shuffle_epi_0122((a)); \
- break; \
- case _MM_SHUFFLE(3, 3, 3, 2): \
- ret = _mm_shuffle_epi_3332((a)); \
- break; \
- case _MM_SHUFFLE(0, 0, 0, 0): \
- ret = _mm_shuffle_epi32_splat((a), 0); \
- break; \
- case _MM_SHUFFLE(1, 1, 1, 1): \
- ret = _mm_shuffle_epi32_splat((a), 1); \
- break; \
- case _MM_SHUFFLE(2, 2, 2, 2): \
- ret = _mm_shuffle_epi32_splat((a), 2); \
- break; \
- case _MM_SHUFFLE(3, 3, 3, 3): \
- ret = _mm_shuffle_epi32_splat((a), 3); \
- break; \
- default: \
- ret = _mm_shuffle_epi32_default((a), (imm)); \
- break; \
- } \
- ret; \
- })
-#endif
+// Subtracts the four single-precision, floating-point values of a and b.
+//
+// r0 := a0 - b0
+// r1 := a1 - b1
+// r2 := a2 - b2
+// r3 := a3 - b3
+//
+// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
+{
+ return vreinterpretq_m128_f32(
+ vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+}
-// Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified
-// by imm.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100)
-// FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a,
-// __constrange(0,255) int
-// imm)
-#define _mm_shufflelo_epi16_function(a, imm) \
- __extension__({ \
- int16x8_t ret = vreinterpretq_s16_m128i(a); \
- int16x4_t lowBits = vget_low_s16(ret); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
- 1); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
- 2); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
- 3); \
- vreinterpretq_m128i_s16(ret); \
- })
+// Subtract the lower single-precision (32-bit) floating-point element in b from
+// the lower single-precision (32-bit) floating-point element in a, store the
+// result in the lower element of dst, and copy the upper 3 packed elements from
+// a to the upper elements of dst.
+//
+// dst[31:0] := a[31:0] - b[31:0]
+// dst[127:32] := a[127:32]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss
+FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
+{
+ return _mm_move_ss(a, _mm_sub_ps(a, b));
+}
-// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
-// __constrange(0,255) int imm)
-#if __has_builtin(__builtin_shufflevector)
-#define _mm_shufflelo_epi16(a, imm) \
- __extension__({ \
- int16x8_t _input = vreinterpretq_s16_m128i(a); \
- int16x8_t _shuf = __builtin_shufflevector( \
- _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \
- (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
- vreinterpretq_m128i_s16(_shuf); \
- })
-#else // generic
-#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
-#endif
+// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
+// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
+// transposed matrix in these vectors (row0 now contains column 0, etc.).
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS
+#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
+ do { \
+ float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \
+ float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \
+ row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \
+ vget_low_f32(ROW23.val[0])); \
+ row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \
+ vget_low_f32(ROW23.val[1])); \
+ row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \
+ vget_high_f32(ROW23.val[0])); \
+ row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \
+ vget_high_f32(ROW23.val[1])); \
+ } while (0)
-// Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified
-// by imm.
-// https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx
-// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a,
-// __constrange(0,255) int
-// imm)
-#define _mm_shufflehi_epi16_function(a, imm) \
- __extension__({ \
- int16x8_t ret = vreinterpretq_s16_m128i(a); \
- int16x4_t highBits = vget_high_s16(ret); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
- 5); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
- 6); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
- 7); \
- vreinterpretq_m128i_s16(ret); \
- })
+// according to the documentation, these intrinsics behave the same as the
+// non-'u' versions. We'll just alias them here.
+#define _mm_ucomieq_ss _mm_comieq_ss
+#define _mm_ucomige_ss _mm_comige_ss
+#define _mm_ucomigt_ss _mm_comigt_ss
+#define _mm_ucomile_ss _mm_comile_ss
+#define _mm_ucomilt_ss _mm_comilt_ss
+#define _mm_ucomineq_ss _mm_comineq_ss
-// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
-// __constrange(0,255) int imm)
-#if __has_builtin(__builtin_shufflevector)
-#define _mm_shufflehi_epi16(a, imm) \
- __extension__({ \
- int16x8_t _input = vreinterpretq_s16_m128i(a); \
- int16x8_t _shuf = __builtin_shufflevector( \
- _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \
- (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
- (((imm) >> 6) & 0x3) + 4); \
- vreinterpretq_m128i_s16(_shuf); \
- })
-#else // generic
-#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
+// Return vector of type __m128i with undefined elements.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_undefined_si128
+FORCE_INLINE __m128i _mm_undefined_si128(void)
+{
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
#endif
+ __m128i a;
+ return a;
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+}
-// Shuffle double-precision (64-bit) floating-point elements using the control
-// in imm8, and store the results in dst.
+// Return vector of type __m128 with undefined elements.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps
+FORCE_INLINE __m128 _mm_undefined_ps(void)
+{
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#endif
+ __m128 a;
+ return a;
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+}
+
+// Selects and interleaves the upper two single-precision, floating-point values
+// from a and b.
//
-// dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64]
-// dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64]
+// r0 := a2
+// r1 := b2
+// r2 := a3
+// r3 := b3
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd
-#if __has_builtin(__builtin_shufflevector)
-#define _mm_shuffle_pd(a, b, imm8) \
- vreinterpretq_m128d_s64(__builtin_shufflevector( \
- vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), imm8 & 0x1, \
- ((imm8 & 0x2) >> 1) + 2))
+// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx
+FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
+{
+#if defined(__aarch64__)
+ return vreinterpretq_m128_f32(
+ vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
#else
-#define _mm_shuffle_pd(a, b, imm8) \
- _mm_castsi128_pd(_mm_set_epi64x( \
- vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \
- vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1)))
+ float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
+ float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
+ float32x2x2_t result = vzip_f32(a1, b1);
+ return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
#endif
+}
-// Blend packed 16-bit integers from a and b using control mask imm8, and store
-// the results in dst.
+// Selects and interleaves the lower two single-precision, floating-point values
+// from a and b.
//
-// FOR j := 0 to 7
-// i := j*16
-// IF imm8[j]
-// dst[i+15:i] := b[i+15:i]
-// ELSE
-// dst[i+15:i] := a[i+15:i]
-// FI
-// ENDFOR
-// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
-// __constrange(0,255) int imm)
-#define _mm_blend_epi16(a, b, imm) \
- __extension__({ \
- const uint16_t _mask[8] = {((imm) & (1 << 0)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 1)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 2)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 3)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 4)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 5)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 6)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 7)) ? 0xFFFF : 0x0000}; \
- uint16x8_t _mask_vec = vld1q_u16(_mask); \
- uint16x8_t _a = vreinterpretq_u16_m128i(a); \
- uint16x8_t _b = vreinterpretq_u16_m128i(b); \
- vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a)); \
- })
-
-// Blend packed 8-bit integers from a and b using mask, and store the results in
-// dst.
+// r0 := a0
+// r1 := b0
+// r2 := a1
+// r3 := b1
//
-// FOR j := 0 to 15
-// i := j*8
-// IF mask[i+7]
-// dst[i+7:i] := b[i+7:i]
-// ELSE
-// dst[i+7:i] := a[i+7:i]
-// FI
-// ENDFOR
-FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
+// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx
+FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
{
- // Use a signed shift right to create a mask with the sign bit
- uint8x16_t mask =
- vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
- uint8x16_t a = vreinterpretq_u8_m128i(_a);
- uint8x16_t b = vreinterpretq_u8_m128i(_b);
- return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
+#if defined(__aarch64__)
+ return vreinterpretq_m128_f32(
+ vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#else
+ float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
+ float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
+ float32x2x2_t result = vzip_f32(a1, b1);
+ return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
+#endif
}
-/* Shifts */
+// Computes bitwise EXOR (exclusive-or) of the four single-precision,
+// floating-point values of a and b.
+// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
+{
+ return vreinterpretq_m128_s32(
+ veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
+}
+/* SSE2 */
-// Shift packed 16-bit integers in a right by imm while shifting in sign
-// bits, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16
-FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
+// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or
+// unsigned 16-bit integers in b.
+// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
{
- const int count = (imm & ~15) ? 15 : imm;
- return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
+ return vreinterpretq_m128i_s16(
+ vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}
-// Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
-// shifting in zeros.
+// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or
+// unsigned 32-bit integers in b.
//
-// r0 := a0 << count
-// r1 := a1 << count
-// ...
-// r7 := a7 << count
+// r0 := a0 + b0
+// r1 := a1 + b1
+// r2 := a2 + b2
+// r3 := a3 + b3
//
-// https://msdn.microsoft.com/en-us/library/es73bcsy(v=vs.90).aspx
-#define _mm_slli_epi16(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm)) <= 0) { \
- ret = a; \
- } \
- if (unlikely((imm) > 15)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s16( \
- vshlq_n_s16(vreinterpretq_s16_m128i(a), (imm))); \
- } \
- ret; \
- })
-
-// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
-// shifting in zeros. :
-// https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx
-// FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm)
-FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
+// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
{
- if (unlikely(imm <= 0)) /* TODO: add constant range macro: [0, 255] */
- return a;
- if (unlikely(imm > 31))
- return _mm_setzero_si128();
return vreinterpretq_m128i_s32(
- vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm)));
+ vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}
-// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
-// store the results in dst.
-FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
+// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or
+// unsigned 32-bit integers in b.
+// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
{
- if (unlikely(imm <= 0)) /* TODO: add constant range macro: [0, 255] */
- return a;
- if (unlikely(imm > 63))
- return _mm_setzero_si128();
return vreinterpretq_m128i_s64(
- vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm)));
+ vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
}
-// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and
+// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or
+// unsigned 8-bit integers in b.
+// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90)
+FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_s8(
+ vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Add packed double-precision (64-bit) floating-point elements in a and b, and
// store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd
+FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ double *da = (double *) &a;
+ double *db = (double *) &b;
+ double c[2];
+ c[0] = da[0] + db[0];
+ c[1] = da[1] + db[1];
+ return vld1q_f32((float32_t *) c);
+#endif
+}
+
+// Add the lower double-precision (64-bit) floating-point element in a and b,
+// store the result in the lower element of dst, and copy the upper element from
+// a to the upper element of dst.
//
-// FOR j := 0 to 7
-// i := j*16
-// IF imm8[7:0] > 15
-// dst[i+15:i] := 0
-// ELSE
-// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0])
-// FI
-// ENDFOR
+// dst[63:0] := a[63:0] + b[63:0]
+// dst[127:64] := a[127:64]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16
-#define _mm_srli_epi16(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely(imm) == 0) { \
- ret = a; \
- } \
- if (likely(0 < (imm) && (imm) < 16)) { \
- ret = vreinterpretq_m128i_u16( \
- vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-imm))); \
- } else { \
- ret = _mm_setzero_si128(); \
- } \
- ret; \
- })
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd
+FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+ return _mm_move_sd(a, _mm_add_pd(a, b));
+#else
+ double *da = (double *) &a;
+ double *db = (double *) &b;
+ double c[2];
+ c[0] = da[0] + db[0];
+ c[1] = da[1];
+ return vld1q_f32((float32_t *) c);
+#endif
+}
-// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
-// store the results in dst.
+// Add 64-bit integers a and b, and store the result in dst.
//
-// FOR j := 0 to 3
-// i := j*32
-// IF imm8[7:0] > 31
-// dst[i+31:i] := 0
-// ELSE
-// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0])
-// FI
-// ENDFOR
+// dst[63:0] := a[63:0] + b[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32
-// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
-#define _mm_srli_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) == 0)) { \
- ret = a; \
- } \
- if (likely(0 < (imm) && (imm) < 32)) { \
- ret = vreinterpretq_m128i_u32( \
- vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-imm))); \
- } else { \
- ret = _mm_setzero_si128(); \
- } \
- ret; \
- })
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64
+FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
+{
+ return vreinterpret_m64_s64(
+ vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
+}
-// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
-// store the results in dst.
+// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b
+// and saturates.
//
-// FOR j := 0 to 1
-// i := j*64
-// IF imm8[7:0] > 63
-// dst[i+63:i] := 0
-// ELSE
-// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0])
-// FI
-// ENDFOR
+// r0 := SignedSaturate(a0 + b0)
+// r1 := SignedSaturate(a1 + b1)
+// ...
+// r7 := SignedSaturate(a7 + b7)
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64
-#define _mm_srli_epi64(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) == 0)) { \
- ret = a; \
- } \
- if (likely(0 < (imm) && (imm) < 64)) { \
- ret = vreinterpretq_m128i_u64( \
- vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-imm))); \
- } else { \
- ret = _mm_setzero_si128(); \
- } \
- ret; \
- })
+// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_s16(
+ vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
-// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits,
-// and store the results in dst.
+// Add packed signed 8-bit integers in a and b using saturation, and store the
+// results in dst.
//
-// FOR j := 0 to 3
-// i := j*32
-// IF imm8[7:0] > 31
-// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0)
-// ELSE
-// dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0])
-// FI
+// FOR j := 0 to 15
+// i := j*8
+// dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] )
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32
-// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
-#define _mm_srai_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) == 0)) { \
- ret = a; \
- } \
- if (likely(0 < (imm) && (imm) < 32)) { \
- ret = vreinterpretq_m128i_s32( \
- vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-imm))); \
- } else { \
- ret = vreinterpretq_m128i_s32( \
- vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \
- } \
- ret; \
- })
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8
+FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_s8(
+ vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
-// Shifts the 128 - bit value in a right by imm bytes while shifting in
-// zeros.imm must be an immediate.
-//
-// r := srl(a, imm*8)
-//
-// https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx
-// FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm)
-#define _mm_srli_si128(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) <= 0)) { \
- ret = a; \
- } \
- if (unlikely((imm) > 15)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s8( \
- vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), (imm))); \
- } \
- ret; \
- })
+// Add packed unsigned 16-bit integers in a and b using saturation, and store
+// the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16
+FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_u16(
+ vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+}
-// Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm
-// must be an immediate.
-//
-// r := a << (imm * 8)
-//
-// https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx
-// FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm)
-#define _mm_slli_si128(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) <= 0)) { \
- ret = a; \
- } \
- if (unlikely((imm) > 15)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s8(vextq_s8( \
- vdupq_n_s8(0), vreinterpretq_s8_m128i(a), 16 - (imm))); \
- } \
- ret; \
- })
+// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in
+// b and saturates..
+// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_u8(
+ vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
+}
-// Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
-// shifting in zeros.
+// Compute the bitwise AND of packed double-precision (64-bit) floating-point
+// elements in a and b, and store the results in dst.
//
-// r0 := a0 << count
-// r1 := a1 << count
-// ...
-// r7 := a7 << count
+// FOR j := 0 to 1
+// i := j*64
+// dst[i+63:i] := a[i+63:i] AND b[i+63:i]
+// ENDFOR
//
-// https://msdn.microsoft.com/en-us/library/c79w388h(v%3dvs.90).aspx
-FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd
+FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
{
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 15))
- return _mm_setzero_si128();
-
- int16x8_t vc = vdupq_n_s16((int16_t) c);
- return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc));
+ return vreinterpretq_m128d_s64(
+ vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
}
-// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
-// shifting in zeros.
+// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in
+// b.
//
-// r0 := a0 << count
-// r1 := a1 << count
-// r2 := a2 << count
-// r3 := a3 << count
+// r := a & b
//
-// https://msdn.microsoft.com/en-us/library/6fe5a6s9(v%3dvs.90).aspx
-FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
+// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
{
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 31))
- return _mm_setzero_si128();
-
- int32x4_t vc = vdupq_n_s32((int32_t) c);
- return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc));
+ return vreinterpretq_m128i_s32(
+ vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}
-// Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while
-// shifting in zeros.
+// Compute the bitwise NOT of packed double-precision (64-bit) floating-point
+// elements in a and then AND with b, and store the results in dst.
//
-// r0 := a0 << count
-// r1 := a1 << count
+// FOR j := 0 to 1
+// i := j*64
+// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i])
+// ENDFOR
//
-// https://msdn.microsoft.com/en-us/library/6ta9dffd(v%3dvs.90).aspx
-FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd
+FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
{
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 63))
- return _mm_setzero_si128();
-
- int64x2_t vc = vdupq_n_s64((int64_t) c);
- return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc));
+ // *NOTE* argument swap
+ return vreinterpretq_m128d_s64(
+ vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a)));
}
-// Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
-// while shifting in zeros.
+// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
+// 128-bit value in a.
//
-// r0 := srl(a0, count)
-// r1 := srl(a1, count)
-// ...
-// r7 := srl(a7, count)
+// r := (~a) & b
//
-// https://msdn.microsoft.com/en-us/library/wd5ax830(v%3dvs.90).aspx
-FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
+// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
{
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 15))
- return _mm_setzero_si128();
-
- int16x8_t vc = vdupq_n_s16(-(int16_t) c);
- return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc));
+ return vreinterpretq_m128i_s32(
+ vbicq_s32(vreinterpretq_s32_m128i(b),
+ vreinterpretq_s32_m128i(a))); // *NOTE* argument swap
}
-// Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
-// while shifting in zeros.
+// Computes the average of the 8 unsigned 16-bit integers in a and the 8
+// unsigned 16-bit integers in b and rounds.
//
-// r0 := srl(a0, count)
-// r1 := srl(a1, count)
-// r2 := srl(a2, count)
-// r3 := srl(a3, count)
+// r0 := (a0 + b0) / 2
+// r1 := (a1 + b1) / 2
+// ...
+// r7 := (a7 + b7) / 2
//
-// https://msdn.microsoft.com/en-us/library/a9cbttf4(v%3dvs.90).aspx
-FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
+// https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
{
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 31))
- return _mm_setzero_si128();
-
- int32x4_t vc = vdupq_n_s32(-(int32_t) c);
- return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc));
+ return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a),
+ vreinterpretq_u16_m128i(b));
}
-// Shifts the 2 signed or unsigned 64-bit integers in a right by count bits
-// while shifting in zeros.
+// Computes the average of the 16 unsigned 8-bit integers in a and the 16
+// unsigned 8-bit integers in b and rounds.
//
-// r0 := srl(a0, count)
-// r1 := srl(a1, count)
+// r0 := (a0 + b0) / 2
+// r1 := (a1 + b1) / 2
+// ...
+// r15 := (a15 + b15) / 2
//
-// https://msdn.microsoft.com/en-us/library/yf6cf9k8(v%3dvs.90).aspx
-FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
+// https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx
+FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
{
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 63))
- return _mm_setzero_si128();
-
- int64x2_t vc = vdupq_n_s64(-(int64_t) c);
- return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc));
+ return vreinterpretq_m128i_u8(
+ vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
}
-// NEON does not provide a version of this function.
-// Creates a 16-bit mask from the most significant bits of the 16 signed or
-// unsigned 8-bit integers in a and zero extends the upper bits.
-// https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx
-FORCE_INLINE int _mm_movemask_epi8(__m128i a)
-{
- // Use increasingly wide shifts+adds to collect the sign bits
- // together.
- // Since the widening shifts would be rather confusing to follow in little
- // endian, everything will be illustrated in big endian order instead. This
- // has a different result - the bits would actually be reversed on a big
- // endian machine.
-
- // Starting input (only half the elements are shown):
- // 89 ff 1d c0 00 10 99 33
- uint8x16_t input = vreinterpretq_u8_m128i(a);
-
- // Shift out everything but the sign bits with an unsigned shift right.
- //
- // Bytes of the vector::
- // 89 ff 1d c0 00 10 99 33
- // \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7)
- // | | | | | | | |
- // 01 01 00 01 00 00 01 00
- //
- // Bits of first important lane(s):
- // 10001001 (89)
- // \______
- // |
- // 00000001 (01)
- uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
-
- // Merge the even lanes together with a 16-bit unsigned shift right + add.
- // 'xx' represents garbage data which will be ignored in the final result.
- // In the important bytes, the add functions like a binary OR.
- //
- // 01 01 00 01 00 00 01 00
- // \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7))
- // \| \| \| \|
- // xx 03 xx 01 xx 00 xx 02
- //
- // 00000001 00000001 (01 01)
- // \_______ |
- // \|
- // xxxxxxxx xxxxxx11 (xx 03)
- uint32x4_t paired16 =
- vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
+// Shift a left by imm8 bytes while shifting in zeros, and store the results in
+// dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bslli_si128
+#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm)
- // Repeat with a wider 32-bit shift + add.
- // xx 03 xx 01 xx 00 xx 02
- // \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >>
- // 14))
- // \| \|
- // xx xx xx 0d xx xx xx 02
- //
- // 00000011 00000001 (03 01)
- // \\_____ ||
- // '----.\||
- // xxxxxxxx xxxx1101 (xx 0d)
- uint64x2_t paired32 =
- vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
+// Shift a right by imm8 bytes while shifting in zeros, and store the results in
+// dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bsrli_si128
+#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm)
- // Last, an even wider 64-bit shift + add to get our result in the low 8 bit
- // lanes. xx xx xx 0d xx xx xx 02
- // \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >>
- // 28))
- // \|
- // xx xx xx xx xx xx xx d2
- //
- // 00001101 00000010 (0d 02)
- // \ \___ | |
- // '---. \| |
- // xxxxxxxx 11010010 (xx d2)
- uint8x16_t paired64 =
- vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
+// Cast vector of type __m128d to type __m128. This intrinsic is only used for
+// compilation and does not generate any instructions, thus it has zero latency.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps
+FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
+{
+ return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a));
+}
- // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
- // xx xx xx xx xx xx xx d2
- // || return paired64[0]
- // d2
- // Note: Little endian would return the correct value 4b (01001011) instead.
- return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8);
+// Cast vector of type __m128d to type __m128i. This intrinsic is only used for
+// compilation and does not generate any instructions, thus it has zero latency.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128
+FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
+{
+ return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
}
-// Copy the lower 64-bit integer in a to dst.
-//
-// dst[63:0] := a[63:0]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64
-FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
+// Cast vector of type __m128 to type __m128d. This intrinsic is only used for
+// compilation and does not generate any instructions, thus it has zero latency.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd
+FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
{
- return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
+ return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
}
-// Copy the 64-bit integer a to the lower element of dst, and zero the upper
-// element.
-//
-// dst[63:0] := a[63:0]
-// dst[127:64] := 0
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64
-FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
+// Applies a type cast to reinterpret four 32-bit floating point values passed
+// in as a 128-bit parameter as packed 32-bit integers.
+// https://msdn.microsoft.com/en-us/library/bb514099.aspx
+FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
{
- return vreinterpretq_m128i_s64(
- vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0)));
+ return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
}
-// NEON does not provide this method
-// Creates a 4-bit mask from the most significant bits of the four
-// single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx
-FORCE_INLINE int _mm_movemask_ps(__m128 a)
+// Cast vector of type __m128i to type __m128d. This intrinsic is only used for
+// compilation and does not generate any instructions, thus it has zero latency.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd
+FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a)
{
- uint32x4_t input = vreinterpretq_u32_m128(a);
#if defined(__aarch64__)
- static const int32x4_t shift = {0, 1, 2, 3};
- uint32x4_t tmp = vshrq_n_u32(input, 31);
- return vaddvq_u32(vshlq_u32(tmp, shift));
+ return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a));
#else
- // Uses the exact same method as _mm_movemask_epi8, see that for details.
- // Shift out everything but the sign bits with a 32-bit unsigned shift
- // right.
- uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
- // Merge the two pairs together with a 64-bit unsigned shift right + add.
- uint8x16_t paired =
- vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
- // Extract the result.
- return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
+ return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a));
#endif
}
-// Compute the bitwise NOT of a and then AND with a 128-bit vector containing
-// all 1's, and return 1 if the result is zero, otherwise return 0.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones
-FORCE_INLINE int _mm_test_all_ones(__m128i a)
+// Applies a type cast to reinterpret four 32-bit integers passed in as a
+// 128-bit parameter as packed 32-bit floating point values.
+// https://msdn.microsoft.com/en-us/library/bb514029.aspx
+FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
{
- return (uint64_t)(vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
- ~(uint64_t) 0;
+ return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
}
-// Compute the bitwise AND of 128 bits (representing integer data) in a and
-// mask, and return 1 if the result is zero, otherwise return 0.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros
-FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
+// Cache line containing p is flushed and invalidated from all caches in the
+// coherency domain. :
+// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx
+FORCE_INLINE void _mm_clflush(void const *p)
{
- int64x2_t a_and_mask =
- vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
- return (vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)) ? 0
- : 1;
+ (void) p;
+ // no corollary for Neon?
}
-/* Math operations */
+// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
+// unsigned 16-bit integers in b for equality.
+// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_u16(
+ vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
-// Subtracts the four single-precision, floating-point values of a and b.
-//
-// r0 := a0 - b0
-// r1 := a1 - b1
-// r2 := a2 - b2
-// r3 := a3 - b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
+// Compare packed 32-bit integers in a and b for equality, and store the results
+// in dst
+FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
{
- return vreinterpretq_m128_f32(
- vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+ return vreinterpretq_m128i_u32(
+ vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}
-// Subtract the lower single-precision (32-bit) floating-point element in b from
-// the lower single-precision (32-bit) floating-point element in a, store the
-// result in the lower element of dst, and copy the upper 3 packed elements from
-// a to the upper elements of dst.
-//
-// dst[31:0] := a[31:0] - b[31:0]
-// dst[127:32] := a[127:32]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss
-FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
+// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
+// unsigned 8-bit integers in b for equality.
+// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
{
- return _mm_move_ss(a, _mm_sub_ps(a, b));
+ return vreinterpretq_m128i_u8(
+ vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}
-// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a,
-// and store the results in dst.
-// r0 := a0 - b0
-// r1 := a1 - b1
-FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for equality, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd
+FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s64(
- vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_u64(
+ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
+ uint32x4_t cmp =
+ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
+ uint32x4_t swapped = vrev64q_u32(cmp);
+ return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped));
+#endif
}
-// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
-// unsigned 32-bit integers of a.
-//
-// r0 := a0 - b0
-// r1 := a1 - b1
-// r2 := a2 - b2
-// r3 := a3 - b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for equality, store the result in the lower element of dst, and copy the
+// upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_sd
+FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s32(
- vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+ return _mm_move_sd(a, _mm_cmpeq_pd(a, b));
}
-// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and
-// store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16
-FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for greater-than-or-equal, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_pd
+FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s16(
- vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_u64(
+ vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
}
-// Subtract packed 8-bit integers in b from packed 8-bit integers in a, and
-// store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi8
-FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for greater-than-or-equal, store the result in the lower element of dst,
+// and copy the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_sd
+FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s8(
- vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+#if defined(__aarch64__)
+ return _mm_move_sd(a, _mm_cmpge_pd(a, b));
+#else
+ // expand "_mm_cmpge_pd()" to reduce unnecessary operations
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] = a1;
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
}
-// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst.
+// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
+// in b for greater than.
//
-// dst[63:0] := a[63:0] - b[63:0]
+// r0 := (a0 > b0) ? 0xffff : 0x0
+// r1 := (a1 > b1) ? 0xffff : 0x0
+// ...
+// r7 := (a7 > b7) ? 0xffff : 0x0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64
-FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
+// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
{
- return vreinterpret_m64_s64(
- vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
+ return vreinterpretq_m128i_u16(
+ vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}
-// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit
-// integers of a and saturates..
-// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
+// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
+// in b for greater than.
+// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
{
- return vreinterpretq_m128i_u16(
- vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+ return vreinterpretq_m128i_u32(
+ vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}
-// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit
-// integers of a and saturates.
+// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
+// in b for greater than.
//
-// r0 := UnsignedSaturate(a0 - b0)
-// r1 := UnsignedSaturate(a1 - b1)
+// r0 := (a0 > b0) ? 0xff : 0x0
+// r1 := (a1 > b1) ? 0xff : 0x0
// ...
-// r15 := UnsignedSaturate(a15 - b15)
+// r15 := (a15 > b15) ? 0xff : 0x0
//
-// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90)
-FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
+// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
{
return vreinterpretq_m128i_u8(
- vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
+ vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}
-// Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers
-// of a and saturates.
-//
-// r0 := SignedSaturate(a0 - b0)
-// r1 := SignedSaturate(a1 - b1)
-// ...
-// r15 := SignedSaturate(a15 - b15)
-//
-// https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90)
-FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for greater-than, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_pd
+FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s8(
- vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_u64(
+ vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
}
-// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers
-// of a and saturates.
-//
-// r0 := SignedSaturate(a0 - b0)
-// r1 := SignedSaturate(a1 - b1)
-// ...
-// r7 := SignedSaturate(a7 - b7)
-//
-// https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90)
-FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for greater-than, store the result in the lower element of dst, and copy
+// the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_sd
+FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s16(
- vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+#if defined(__aarch64__)
+ return _mm_move_sd(a, _mm_cmpgt_pd(a, b));
+#else
+ // expand "_mm_cmpge_pd()" to reduce unnecessary operations
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] = a1;
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
}
-// Subtract packed double-precision (64-bit) floating-point elements in b from
-// packed double-precision (64-bit) floating-point elements in a, and store the
-// results in dst.
-//
-// FOR j := 0 to 1
-// i := j*64
-// dst[i+63:i] := a[i+63:i] - b[i+63:i]
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_sub_pd
-FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for less-than-or-equal, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_pd
+FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+ return vreinterpretq_m128d_u64(
+ vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
#else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] - db[0];
- c[1] = da[1] - db[1];
- return vld1q_f32((float32_t *) c);
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
#endif
}
-// Subtract the lower double-precision (64-bit) floating-point element in b from
-// the lower double-precision (64-bit) floating-point element in a, store the
-// result in the lower element of dst, and copy the upper element from a to the
-// upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sd
-FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for less-than-or-equal, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_sd
+FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b)
{
- return _mm_move_sd(a, _mm_sub_pd(a, b));
+#if defined(__aarch64__)
+ return _mm_move_sd(a, _mm_cmple_pd(a, b));
+#else
+ // expand "_mm_cmpge_pd()" to reduce unnecessary operations
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] = a1;
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
}
-// Add packed unsigned 16-bit integers in a and b using saturation, and store
-// the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16
-FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
+// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
+// in b for less than.
+//
+// r0 := (a0 < b0) ? 0xffff : 0x0
+// r1 := (a1 < b1) ? 0xffff : 0x0
+// ...
+// r7 := (a7 < b7) ? 0xffff : 0x0
+//
+// https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
{
return vreinterpretq_m128i_u16(
- vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+ vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}
-// Negate packed 8-bit integers in a when the corresponding signed
-// 8-bit integer in b is negative, and store the results in dst.
-// Element in dst are zeroed out when the corresponding element
-// in b is zero.
-//
-// for i in 0..15
-// if b[i] < 0
-// r[i] := -a[i]
-// else if b[i] == 0
-// r[i] := 0
-// else
-// r[i] := a[i]
-// fi
-// done
-FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
+
+// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
+// in b for less than.
+// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
{
- int8x16_t a = vreinterpretq_s8_m128i(_a);
- int8x16_t b = vreinterpretq_s8_m128i(_b);
+ return vreinterpretq_m128i_u32(
+ vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFF : 0
- uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
+// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
+// in b for lesser than.
+// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_u8(
+ vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
- // (b == 0) ? 0xFF : 0
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for less-than, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_pd
+FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b)
+{
#if defined(__aarch64__)
- int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b));
+ return vreinterpretq_m128d_u64(
+ vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
#else
- int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
#endif
-
- // bitwise select either a or nagative 'a' (vnegq_s8(a) return nagative 'a')
- // based on ltMask
- int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
- // res = masked & (~zeroMask)
- int8x16_t res = vbicq_s8(masked, zeroMask);
-
- return vreinterpretq_m128i_s8(res);
}
-// Negate packed 16-bit integers in a when the corresponding signed
-// 16-bit integer in b is negative, and store the results in dst.
-// Element in dst are zeroed out when the corresponding element
-// in b is zero.
-//
-// for i in 0..7
-// if b[i] < 0
-// r[i] := -a[i]
-// else if b[i] == 0
-// r[i] := 0
-// else
-// r[i] := a[i]
-// fi
-// done
-FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for less-than, store the result in the lower element of dst, and copy the
+// upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_sd
+FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b)
{
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
-
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFF : 0
- uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
- // (b == 0) ? 0xFFFF : 0
#if defined(__aarch64__)
- int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b));
+ return _mm_move_sd(a, _mm_cmplt_pd(a, b));
#else
- int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0)));
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] = a1;
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
#endif
-
- // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative
- // 'a') based on ltMask
- int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a);
- // res = masked & (~zeroMask)
- int16x8_t res = vbicq_s16(masked, zeroMask);
- return vreinterpretq_m128i_s16(res);
}
-// Negate packed 32-bit integers in a when the corresponding signed
-// 32-bit integer in b is negative, and store the results in dst.
-// Element in dst are zeroed out when the corresponding element
-// in b is zero.
-//
-// for i in 0..3
-// if b[i] < 0
-// r[i] := -a[i]
-// else if b[i] == 0
-// r[i] := 0
-// else
-// r[i] := a[i]
-// fi
-// done
-FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for not-equal, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_pd
+FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b)
{
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
-
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFFFFFF : 0
- uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
-
- // (b == 0) ? 0xFFFFFFFF : 0
#if defined(__aarch64__)
- int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b));
+ return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64(
+ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)))));
#else
- int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0)));
+ // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
+ uint32x4_t cmp =
+ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
+ uint32x4_t swapped = vrev64q_u32(cmp);
+ return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped)));
#endif
-
- // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative
- // 'a') based on ltMask
- int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a);
- // res = masked & (~zeroMask)
- int32x4_t res = vbicq_s32(masked, zeroMask);
- return vreinterpretq_m128i_s32(res);
}
-// Negate packed 16-bit integers in a when the corresponding signed 16-bit
-// integer in b is negative, and store the results in dst. Element in dst are
-// zeroed out when the corresponding element in b is zero.
-//
-// FOR j := 0 to 3
-// i := j*16
-// IF b[i+15:i] < 0
-// dst[i+15:i] := -(a[i+15:i])
-// ELSE IF b[i+15:i] == 0
-// dst[i+15:i] := 0
-// ELSE
-// dst[i+15:i] := a[i+15:i]
-// FI
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16
-FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for not-equal, store the result in the lower element of dst, and copy the
+// upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_sd
+FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b)
{
- int16x4_t a = vreinterpret_s16_m64(_a);
- int16x4_t b = vreinterpret_s16_m64(_b);
-
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFF : 0
- uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15));
+ return _mm_move_sd(a, _mm_cmpneq_pd(a, b));
+}
- // (b == 0) ? 0xFFFF : 0
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for not-greater-than-or-equal, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_pd
+FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b)
+{
#if defined(__aarch64__)
- int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b));
+ return vreinterpretq_m128d_u64(veorq_u64(
+ vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
+ vdupq_n_u64(UINT64_MAX)));
#else
- int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] =
+ !((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] =
+ !((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
#endif
-
- // bitwise select either a or nagative 'a' (vneg_s16(a) return nagative 'a')
- // based on ltMask
- int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
- // res = masked & (~zeroMask)
- int16x4_t res = vbic_s16(masked, zeroMask);
-
- return vreinterpret_m64_s16(res);
}
-// Negate packed 32-bit integers in a when the corresponding signed 32-bit
-// integer in b is negative, and store the results in dst. Element in dst are
-// zeroed out when the corresponding element in b is zero.
-//
-// FOR j := 0 to 1
-// i := j*32
-// IF b[i+31:i] < 0
-// dst[i+31:i] := -(a[i+31:i])
-// ELSE IF b[i+31:i] == 0
-// dst[i+31:i] := 0
-// ELSE
-// dst[i+31:i] := a[i+31:i]
-// FI
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32
-FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for not-greater-than-or-equal, store the result in the lower element of
+// dst, and copy the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_sd
+FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b)
{
- int32x2_t a = vreinterpret_s32_m64(_a);
- int32x2_t b = vreinterpret_s32_m64(_b);
-
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFFFFFF : 0
- uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31));
+ return _mm_move_sd(a, _mm_cmpnge_pd(a, b));
+}
- // (b == 0) ? 0xFFFFFFFF : 0
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for not-greater-than, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_cmpngt_pd
+FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b)
+{
#if defined(__aarch64__)
- int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b));
+ return vreinterpretq_m128d_u64(veorq_u64(
+ vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
+ vdupq_n_u64(UINT64_MAX)));
#else
- int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] =
+ !((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] =
+ !((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
#endif
-
- // bitwise select either a or nagative 'a' (vneg_s32(a) return nagative 'a')
- // based on ltMask
- int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
- // res = masked & (~zeroMask)
- int32x2_t res = vbic_s32(masked, zeroMask);
-
- return vreinterpret_m64_s32(res);
}
-// Negate packed 8-bit integers in a when the corresponding signed 8-bit integer
-// in b is negative, and store the results in dst. Element in dst are zeroed out
-// when the corresponding element in b is zero.
-//
-// FOR j := 0 to 7
-// i := j*8
-// IF b[i+7:i] < 0
-// dst[i+7:i] := -(a[i+7:i])
-// ELSE IF b[i+7:i] == 0
-// dst[i+7:i] := 0
-// ELSE
-// dst[i+7:i] := a[i+7:i]
-// FI
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8
-FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for not-greater-than, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpngt_sd
+FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b)
{
- int8x8_t a = vreinterpret_s8_m64(_a);
- int8x8_t b = vreinterpret_s8_m64(_b);
-
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFF : 0
- uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7));
+ return _mm_move_sd(a, _mm_cmpngt_pd(a, b));
+}
- // (b == 0) ? 0xFF : 0
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for not-less-than-or-equal, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_pd
+FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b)
+{
#if defined(__aarch64__)
- int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b));
+ return vreinterpretq_m128d_u64(veorq_u64(
+ vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
+ vdupq_n_u64(UINT64_MAX)));
#else
- int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] =
+ !((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] =
+ !((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
#endif
-
- // bitwise select either a or nagative 'a' (vneg_s8(a) return nagative 'a')
- // based on ltMask
- int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
- // res = masked & (~zeroMask)
- int8x8_t res = vbic_s8(masked, zeroMask);
-
- return vreinterpret_m64_s8(res);
}
-// Average packed unsigned 16-bit integers in a and b, and store the results in
-// dst.
-//
-// FOR j := 0 to 3
-// i := j*16
-// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16
-FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for not-less-than-or-equal, store the result in the lower element of dst,
+// and copy the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_sd
+FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b)
{
- return vreinterpret_m64_u16(
- vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)));
+ return _mm_move_sd(a, _mm_cmpnle_pd(a, b));
}
-// Average packed unsigned 8-bit integers in a and b, and store the results in
-// dst.
-//
-// FOR j := 0 to 7
-// i := j*8
-// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8
-FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for not-less-than, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_pd
+FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
{
- return vreinterpret_m64_u8(
- vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_u64(veorq_u64(
+ vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
+ vdupq_n_u64(UINT64_MAX)));
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] =
+ !((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
+ d[1] =
+ !((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
}
-// Average packed unsigned 8-bit integers in a and b, and store the results in
-// dst.
-//
-// FOR j := 0 to 7
-// i := j*8
-// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb
-#define _m_pavgb(a, b) _mm_avg_pu8(a, b)
-
-// Average packed unsigned 16-bit integers in a and b, and store the results in
-// dst.
-//
-// FOR j := 0 to 3
-// i := j*16
-// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw
-#define _m_pavgw(a, b) _mm_avg_pu16(a, b)
-
-// Extract a 16-bit integer from a, selected with imm8, and store the result in
-// the lower element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw
-#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm)
-
-// Copy a to dst, and insert the 16-bit integer i into dst at the location
-// specified by imm8.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw
-#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm)
-
-// Compare packed signed 16-bit integers in a and b, and store packed maximum
-// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw
-#define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
-
-// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
-// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub
-#define _m_pmaxub(a, b) _mm_max_pu8(a, b)
-
-// Compare packed signed 16-bit integers in a and b, and store packed minimum
-// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw
-#define _m_pminsw(a, b) _mm_min_pi16(a, b)
-
-// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
-// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub
-#define _m_pminub(a, b) _mm_min_pu8(a, b)
-
-// Computes the average of the 16 unsigned 8-bit integers in a and the 16
-// unsigned 8-bit integers in b and rounds.
-//
-// r0 := (a0 + b0) / 2
-// r1 := (a1 + b1) / 2
-// ...
-// r15 := (a15 + b15) / 2
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx
-FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for not-less-than, store the result in the lower element of dst, and copy
+// the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_sd
+FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_u8(
- vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
+ return _mm_move_sd(a, _mm_cmpnlt_pd(a, b));
}
-// Computes the average of the 8 unsigned 16-bit integers in a and the 8
-// unsigned 16-bit integers in b and rounds.
-//
-// r0 := (a0 + b0) / 2
-// r1 := (a1 + b1) / 2
-// ...
-// r7 := (a7 + b7) / 2
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// to see if neither is NaN, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_pd
+FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b)
{
- return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a),
- vreinterpretq_u16_m128i(b));
+#if defined(__aarch64__)
+ // Excluding NaNs, any two floating point numbers can be compared.
+ uint64x2_t not_nan_a =
+ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
+ uint64x2_t not_nan_b =
+ vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
+ return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b));
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
+ (*(double *) &b0) == (*(double *) &b0))
+ ? ~UINT64_C(0)
+ : UINT64_C(0);
+ d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
+ (*(double *) &b1) == (*(double *) &b1))
+ ? ~UINT64_C(0)
+ : UINT64_C(0);
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
}
-// Adds the four single-precision, floating-point values of a and b.
-//
-// r0 := a0 + b0
-// r1 := a1 + b1
-// r2 := a2 + b2
-// r3 := a3 + b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b to see if neither is NaN, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_sd
+FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128_f32(
- vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#if defined(__aarch64__)
+ return _mm_move_sd(a, _mm_cmpord_pd(a, b));
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t d[2];
+ d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
+ (*(double *) &b0) == (*(double *) &b0))
+ ? ~UINT64_C(0)
+ : UINT64_C(0);
+ d[1] = a1;
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
}
-// Add packed double-precision (64-bit) floating-point elements in a and b, and
-// store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd
-FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// to see if either is NaN, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_pd
+FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+ // Two NaNs are not equal in comparison operation.
+ uint64x2_t not_nan_a =
+ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
+ uint64x2_t not_nan_b =
+ vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
+ return vreinterpretq_m128d_s32(
+ vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b))));
#else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] + db[0];
- c[1] = da[1] + db[1];
- return vld1q_f32((float32_t *) c);
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
+ (*(double *) &b0) == (*(double *) &b0))
+ ? UINT64_C(0)
+ : ~UINT64_C(0);
+ d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
+ (*(double *) &b1) == (*(double *) &b1))
+ ? UINT64_C(0)
+ : ~UINT64_C(0);
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
#endif
}
-// Add the lower double-precision (64-bit) floating-point element in a and b,
-// store the result in the lower element of dst, and copy the upper element from
-// a to the upper element of dst.
-//
-// dst[63:0] := a[63:0] + b[63:0]
-// dst[127:64] := a[127:64]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd
-FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b to see if either is NaN, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_sd
+FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
- return _mm_move_sd(a, _mm_add_pd(a, b));
+ return _mm_move_sd(a, _mm_cmpunord_pd(a, b));
#else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] + db[0];
- c[1] = da[1];
- return vld1q_f32((float32_t *) c);
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t d[2];
+ d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
+ (*(double *) &b0) == (*(double *) &b0))
+ ? UINT64_C(0)
+ : ~UINT64_C(0);
+ d[1] = a1;
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
#endif
}
-// Add 64-bit integers a and b, and store the result in dst.
-//
-// dst[63:0] := a[63:0] + b[63:0]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64
-FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for greater-than-or-equal, and return the boolean result (0 or 1).
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comige_sd
+FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b)
{
- return vreinterpret_m64_s64(
- vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
-}
+#if defined(__aarch64__)
+ return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1;
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
-// adds the scalar single-precision floating point values of a and b.
-// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
-{
- float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
- float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
- // the upper values in the result must be the remnants of <a>.
- return vreinterpretq_m128_f32(vaddq_f32(a, value));
+ return (*(double *) &a0 >= *(double *) &b0);
+#endif
}
-// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or
-// unsigned 32-bit integers in b.
-// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for greater-than, and return the boolean result (0 or 1).
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comigt_sd
+FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s64(
- vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
+#if defined(__aarch64__)
+ return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1;
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+
+ return (*(double *) &a0 > *(double *) &b0);
+#endif
}
-// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or
-// unsigned 32-bit integers in b.
-//
-// r0 := a0 + b0
-// r1 := a1 + b1
-// r2 := a2 + b2
-// r3 := a3 + b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for less-than-or-equal, and return the boolean result (0 or 1).
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comile_sd
+FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s32(
- vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+#if defined(__aarch64__)
+ return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1;
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+
+ return (*(double *) &a0 <= *(double *) &b0);
+#endif
}
-// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or
-// unsigned 16-bit integers in b.
-// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for less-than, and return the boolean result (0 or 1).
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comilt_sd
+FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s16(
- vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+#if defined(__aarch64__)
+ return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1;
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+
+ return (*(double *) &a0 < *(double *) &b0);
+#endif
}
-// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or
-// unsigned 8-bit integers in b.
-// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90)
-FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for equality, and return the boolean result (0 or 1).
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sd
+FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s8(
- vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+#if defined(__aarch64__)
+ return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1;
+#else
+ uint32x4_t a_not_nan =
+ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a));
+ uint32x4_t b_not_nan =
+ vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b));
+ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
+ uint32x4_t a_eq_b =
+ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
+ uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan),
+ vreinterpretq_u64_u32(a_eq_b));
+ return vgetq_lane_u64(and_results, 0) & 0x1;
+#endif
}
-// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b
-// and saturates.
-//
-// r0 := SignedSaturate(a0 + b0)
-// r1 := SignedSaturate(a1 + b1)
-// ...
-// r7 := SignedSaturate(a7 + b7)
-//
-// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for not-equal, and return the boolean result (0 or 1).
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comineq_sd
+FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s16(
- vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+ return !_mm_comieq_sd(a, b);
}
-// Add packed signed 8-bit integers in a and b using saturation, and store the
-// results in dst.
+// Convert packed signed 32-bit integers in a to packed double-precision
+// (64-bit) floating-point elements, and store the results in dst.
//
-// FOR j := 0 to 15
-// i := j*8
-// dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] )
+// FOR j := 0 to 1
+// i := j*32
+// m := j*64
+// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8
-FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_pd
+FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a)
{
- return vreinterpretq_m128i_s8(
- vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))));
+#else
+ double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
+ double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1);
+ return _mm_set_pd(a1, a0);
+#endif
}
-// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in
-// b and saturates..
-// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
+// Converts the four signed 32-bit integer values of a to single-precision,
+// floating-point values
+// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx
+FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
{
- return vreinterpretq_m128i_u8(
- vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
+ return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
}
-// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
-// unsigned 16-bit integers from b.
+// Convert packed double-precision (64-bit) floating-point elements in a to
+// packed 32-bit integers, and store the results in dst.
//
-// r0 := (a0 * b0)[15:0]
-// r1 := (a1 * b1)[15:0]
-// ...
-// r7 := (a7 * b7)[15:0]
+// FOR j := 0 to 1
+// i := 32*j
+// k := 64*j
+// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k])
+// ENDFOR
//
-// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_epi32
+FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a)
{
- return vreinterpretq_m128i_s16(
- vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
+ double d0 = ((double *) &rnd)[0];
+ double d1 = ((double *) &rnd)[1];
+ return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0);
}
-// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or
-// unsigned 32-bit integers from b.
-// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
+// Convert packed double-precision (64-bit) floating-point elements in a to
+// packed 32-bit integers, and store the results in dst.
+//
+// FOR j := 0 to 1
+// i := 32*j
+// k := 64*j
+// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k])
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_pi32
+FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a)
{
- return vreinterpretq_m128i_s32(
- vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
+ double d0 = ((double *) &rnd)[0];
+ double d1 = ((double *) &rnd)[1];
+ int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1};
+ return vreinterpret_m64_s32(vld1_s32(data));
}
-// Multiply the packed unsigned 16-bit integers in a and b, producing
-// intermediate 32-bit integers, and store the high 16 bits of the intermediate
-// integers in dst.
+// Convert packed double-precision (64-bit) floating-point elements in a to
+// packed single-precision (32-bit) floating-point elements, and store the
+// results in dst.
//
-// FOR j := 0 to 3
-// i := j*16
-// tmp[31:0] := a[i+15:i] * b[i+15:i]
-// dst[i+15:i] := tmp[31:16]
+// FOR j := 0 to 1
+// i := 32*j
+// k := 64*j
+// dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k])
// ENDFOR
+// dst[127:64] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw
-#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps
+FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
+{
+#if defined(__aarch64__)
+ float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a));
+ return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0)));
+#else
+ float a0 = (float) ((double *) &a)[0];
+ float a1 = (float) ((double *) &a)[1];
+ return _mm_set_ps(0, 0, a1, a0);
+#endif
+}
-// Multiplies the four single-precision, floating-point values of a and b.
+// Convert packed signed 32-bit integers in a to packed double-precision
+// (64-bit) floating-point elements, and store the results in dst.
//
-// r0 := a0 * b0
-// r1 := a1 * b1
-// r2 := a2 * b2
-// r3 := a3 * b3
+// FOR j := 0 to 1
+// i := j*32
+// m := j*64
+// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i])
+// ENDFOR
//
-// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_pd
+FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a)
{
- return vreinterpretq_m128_f32(
- vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a))));
+#else
+ double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0);
+ double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1);
+ return _mm_set_pd(a1, a0);
+#endif
}
-// Multiply packed double-precision (64-bit) floating-point elements in a and b,
-// and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd
-FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
+// Converts the four single-precision, floating-point values of a to signed
+// 32-bit integer values.
+//
+// r0 := (int) a0
+// r1 := (int) a1
+// r2 := (int) a2
+// r3 := (int) a3
+//
+// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx
+// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
+// does not support! It is supported on ARMv8-A however.
+FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
{
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+ switch (_MM_GET_ROUNDING_MODE()) {
+ case _MM_ROUND_NEAREST:
+ return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
+ case _MM_ROUND_DOWN:
+ return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a));
+ case _MM_ROUND_UP:
+ return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a));
+ default: // _MM_ROUND_TOWARD_ZERO
+ return vreinterpretq_m128i_s32(vcvtq_s32_f32(a));
+ }
#else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] * db[0];
- c[1] = da[1] * db[1];
- return vld1q_f32((float32_t *) c);
+ float *f = (float *) &a;
+ switch (_MM_GET_ROUNDING_MODE()) {
+ case _MM_ROUND_NEAREST: {
+ uint32x4_t signmask = vdupq_n_u32(0x80000000);
+ float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
+ vdupq_n_f32(0.5f)); /* +/- 0.5 */
+ int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
+ vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
+ int32x4_t r_trunc = vcvtq_s32_f32(
+ vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
+ int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
+ vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
+ int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
+ vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
+ float32x4_t delta = vsubq_f32(
+ vreinterpretq_f32_m128(a),
+ vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
+ uint32x4_t is_delta_half =
+ vceqq_f32(delta, half); /* delta == +/- 0.5 */
+ return vreinterpretq_m128i_s32(
+ vbslq_s32(is_delta_half, r_even, r_normal));
+ }
+ case _MM_ROUND_DOWN:
+ return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]),
+ floorf(f[0]));
+ case _MM_ROUND_UP:
+ return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]),
+ ceilf(f[0]));
+ default: // _MM_ROUND_TOWARD_ZERO
+ return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1],
+ (int32_t) f[0]);
+ }
#endif
}
-// Multiply the lower double-precision (64-bit) floating-point element in a and
-// b, store the result in the lower element of dst, and copy the upper element
-// from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd
-FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed double-precision (64-bit) floating-point elements, and store the
+// results in dst.
+//
+// FOR j := 0 to 1
+// i := 64*j
+// k := 32*j
+// dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k])
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd
+FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
{
- return _mm_move_sd(a, _mm_mul_pd(a, b));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a))));
+#else
+ double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+ double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
+ return _mm_set_pd(a1, a0);
+#endif
}
-// Multiply the lower single-precision (32-bit) floating-point element in a and
-// b, store the result in the lower element of dst, and copy the upper 3 packed
-// elements from a to the upper elements of dst.
+// Copy the lower double-precision (64-bit) floating-point element of a to dst.
//
-// dst[31:0] := a[31:0] * b[31:0]
-// dst[127:32] := a[127:32]
+// dst[63:0] := a[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss
-FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64
+FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
{
- return _mm_move_ss(a, _mm_mul_ps(a, b));
+#if defined(__aarch64__)
+ return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0);
+#else
+ return ((double *) &a)[0];
+#endif
}
-// Multiply the low unsigned 32-bit integers from each packed 64-bit element in
-// a and b, and store the unsigned 64-bit results in dst.
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 32-bit integer, and store the result in dst.
//
-// r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF)
-// r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF)
-FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
+// dst[31:0] := Convert_FP64_To_Int32(a[63:0])
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si32
+FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a)
{
- // vmull_u32 upcasts instead of masking, so we downcast.
- uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
- uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
- return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
+#if defined(__aarch64__)
+ return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
+#else
+ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
+ double ret = ((double *) &rnd)[0];
+ return (int32_t) ret;
+#endif
}
-// Multiply the low unsigned 32-bit integers from a and b, and store the
-// unsigned 64-bit result in dst.
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 64-bit integer, and store the result in dst.
//
-// dst[63:0] := a[31:0] * b[31:0]
+// dst[63:0] := Convert_FP64_To_Int64(a[63:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32
-FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64
+FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a)
{
- return vreinterpret_m64_u64(vget_low_u64(
- vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b))));
+#if defined(__aarch64__)
+ return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
+#else
+ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
+ double ret = ((double *) &rnd)[0];
+ return (int64_t) ret;
+#endif
}
-// Multiply the low signed 32-bit integers from each packed 64-bit element in
-// a and b, and store the signed 64-bit results in dst.
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 64-bit integer, and store the result in dst.
//
-// r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0
-// r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2
-FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
+// dst[63:0] := Convert_FP64_To_Int64(a[63:0])
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64x
+#define _mm_cvtsd_si64x _mm_cvtsd_si64
+
+// Convert the lower double-precision (64-bit) floating-point element in b to a
+// single-precision (32-bit) floating-point element, store the result in the
+// lower element of dst, and copy the upper 3 packed elements from a to the
+// upper elements of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_ss
+FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b)
{
- // vmull_s32 upcasts instead of masking, so we downcast.
- int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
- int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
+#if defined(__aarch64__)
+ return vreinterpretq_m128_f32(vsetq_lane_f32(
+ vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0),
+ vreinterpretq_f32_m128(a), 0));
+#else
+ return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0],
+ vreinterpretq_f32_m128(a), 0));
+#endif
}
-// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
-// integers from b.
+// Copy the lower 32-bit integer in a to dst.
//
-// r0 := (a0 * b0) + (a1 * b1)
-// r1 := (a2 * b2) + (a3 * b3)
-// r2 := (a4 * b4) + (a5 * b5)
-// r3 := (a6 * b6) + (a7 * b7)
-// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
+// dst[31:0] := a[31:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32
+FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
{
- int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
- vget_low_s16(vreinterpretq_s16_m128i(b)));
- int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
- vget_high_s16(vreinterpretq_s16_m128i(b)));
-
- int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
- int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
-
- return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
+ return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
}
-// Multiply packed signed 16-bit integers in a and b, producing intermediate
-// signed 32-bit integers. Shift right by 15 bits while rounding up, and store
-// the packed 16-bit integers in dst.
+// Copy the lower 64-bit integer in a to dst.
//
-// r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15)
-// r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15)
-// r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15)
-// ...
-// r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15)
-FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
+// dst[63:0] := a[63:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64
+FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
{
- // Has issues due to saturation
- // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
-
- // Multiply
- int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
- vget_low_s16(vreinterpretq_s16_m128i(b)));
- int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
- vget_high_s16(vreinterpretq_s16_m128i(b)));
-
- // Rounding narrowing shift right
- // narrow = (int16_t)((mul + 16384) >> 15);
- int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
- int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
-
- // Join together
- return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
+ return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
}
-// Vertically multiply each unsigned 8-bit integer from a with the corresponding
-// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
-// Horizontally add adjacent pairs of intermediate signed 16-bit integers,
-// and pack the saturated results in dst.
-//
-// FOR j := 0 to 7
-// i := j*16
-// dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] +
-// a[i+7:i]*b[i+7:i] )
-// ENDFOR
-FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
+// Copy the lower 64-bit integer in a to dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
+#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
+
+// Convert the signed 32-bit integer b to a double-precision (64-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_sd
+FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b)
{
#if defined(__aarch64__)
- uint8x16_t a = vreinterpretq_u8_m128i(_a);
- int8x16_t b = vreinterpretq_s8_m128i(_b);
- int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))),
- vmovl_s8(vget_low_s8(b)));
- int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))),
- vmovl_s8(vget_high_s8(b)));
- return vreinterpretq_m128i_s16(
- vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)));
+ return vreinterpretq_m128d_f64(
+ vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
#else
- // This would be much simpler if x86 would choose to zero extend OR sign
- // extend, not both. This could probably be optimized better.
- uint16x8_t a = vreinterpretq_u16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
-
- // Zero extend a
- int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
- int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
-
- // Sign extend by shifting left then shifting right.
- int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
- int16x8_t b_odd = vshrq_n_s16(b, 8);
-
- // multiply
- int16x8_t prod1 = vmulq_s16(a_even, b_even);
- int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
-
- // saturated add
- return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
+ double bf = (double) b;
+ return vreinterpretq_m128d_s64(
+ vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
#endif
}
-// Computes the fused multiple add product of 32-bit floating point numbers.
+// Copy the lower 64-bit integer in a to dst.
//
-// Return Value
-// Multiplies A and B, and adds C to the temporary result before returning it.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd
-FORCE_INLINE __m128 _mm_fmadd_ps(__m128 a, __m128 b, __m128 c)
+// dst[63:0] := a[63:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
+#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
+
+// Moves 32-bit integer a to the least significant 32 bits of an __m128 object,
+// zero extending the upper bits.
+//
+// r0 := a
+// r1 := 0x0
+// r2 := 0x0
+// r3 := 0x0
+//
+// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx
+FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
+{
+ return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
+}
+
+// Convert the signed 64-bit integer b to a double-precision (64-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_sd
+FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b)
{
#if defined(__aarch64__)
- return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(c),
- vreinterpretq_f32_m128(b),
- vreinterpretq_f32_m128(a)));
+ return vreinterpretq_m128d_f64(
+ vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
#else
- return _mm_add_ps(_mm_mul_ps(a, b), c);
+ double bf = (double) b;
+ return vreinterpretq_m128d_s64(
+ vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
#endif
}
-// Alternatively add and subtract packed single-precision (32-bit)
-// floating-point elements in a to/from packed elements in b, and store the
-// results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps
-FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
+// Moves 64-bit integer a to the least significant 64 bits of an __m128 object,
+// zero extending the upper bits.
+//
+// r0 := a
+// r1 := 0x0
+FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
{
- __m128 mask = {-1.0f, 1.0f, -1.0f, 1.0f};
- return _mm_fmadd_ps(b, mask, a);
+ return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
}
-// Horizontally add adjacent pairs of double-precision (64-bit) floating-point
-// elements in a and b, and pack the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd
-FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b)
+// Copy 64-bit integer a to the lower element of dst, and zero the upper
+// element.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_si128
+#define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a)
+
+// Convert the signed 64-bit integer b to a double-precision (64-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_sd
+#define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b)
+
+// Convert the lower single-precision (32-bit) floating-point element in b to a
+// double-precision (64-bit) floating-point element, store the result in the
+// lower element of dst, and copy the upper element from a to the upper element
+// of dst.
+//
+// dst[63:0] := Convert_FP32_To_FP64(b[31:0])
+// dst[127:64] := a[127:64]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd
+FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
{
+ double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
#if defined(__aarch64__)
return vreinterpretq_m128d_f64(
- vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+ vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0));
#else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[] = {da[0] + da[1], db[0] + db[1]};
- return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
+ return vreinterpretq_m128d_s64(
+ vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0));
#endif
}
-// Compute the absolute differences of packed unsigned 8-bit integers in a and
-// b, then horizontally sum each consecutive 8 differences to produce two
-// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
-// 16 bits of 64-bit elements in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8
-FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
+// Convert packed double-precision (64-bit) floating-point elements in a to
+// packed 32-bit integers with truncation, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_epi32
+FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a)
{
- uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
- uint16_t r0 = t[0] + t[1] + t[2] + t[3];
- uint16_t r4 = t[4] + t[5] + t[6] + t[7];
- uint16x8_t r = vsetq_lane_u16(r0, vdupq_n_u16(0), 0);
- return (__m128i) vsetq_lane_u16(r4, r, 4);
+ double a0 = ((double *) &a)[0];
+ double a1 = ((double *) &a)[1];
+ return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0);
}
-// Compute the absolute differences of packed unsigned 8-bit integers in a and
-// b, then horizontally sum each consecutive 8 differences to produce four
-// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
-// 16 bits of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8
-FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
+// Convert packed double-precision (64-bit) floating-point elements in a to
+// packed 32-bit integers with truncation, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_pi32
+FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a)
{
- uint16x4_t t =
- vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
- uint16_t r0 = t[0] + t[1] + t[2] + t[3];
- return vreinterpret_m64_u16(vset_lane_u16(r0, vdup_n_u16(0), 0));
+ double a0 = ((double *) &a)[0];
+ double a1 = ((double *) &a)[1];
+ int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1};
+ return vreinterpret_m64_s32(vld1_s32(data));
}
-// Compute the absolute differences of packed unsigned 8-bit integers in a and
-// b, then horizontally sum each consecutive 8 differences to produce four
-// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
-// 16 bits of dst.
+// Converts the four single-precision, floating-point values of a to signed
+// 32-bit integer values using truncate.
+// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
+{
+ return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
+}
+
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 32-bit integer with truncation, and store the result in dst.
//
-// FOR j := 0 to 7
-// i := j*8
-// tmp[i+7:i] := ABS(a[i+7:i] - b[i+7:i])
-// ENDFOR
-// dst[15:0] := tmp[7:0] + tmp[15:8] + tmp[23:16] + tmp[31:24] + tmp[39:32] +
-// tmp[47:40] + tmp[55:48] + tmp[63:56] dst[63:16] := 0
+// dst[63:0] := Convert_FP64_To_Int32_Truncate(a[63:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_psadbw
-#define _m_psadbw(a, b) _mm_sad_pu8(a, b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si32
+FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a)
+{
+ double ret = *((double *) &a);
+ return (int32_t) ret;
+}
-// Divides the four single-precision, floating-point values of a and b.
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 64-bit integer with truncation, and store the result in dst.
//
-// r0 := a0 / b0
-// r1 := a1 / b1
-// r2 := a2 / b2
-// r3 := a3 / b3
+// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
//
-// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64
+FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
{
-#if defined(__aarch64__) && !SSE2NEON_PRECISE_DIV
- return vreinterpretq_m128_f32(
- vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#if defined(__aarch64__)
+ return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0);
#else
- float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b));
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
-#if SSE2NEON_PRECISE_DIV
- // Additional Netwon-Raphson iteration for accuracy
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
-#endif
- return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip));
+ double ret = *((double *) &a);
+ return (int64_t) ret;
#endif
}
-// Divides the scalar single-precision floating point value of a by b.
-// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
-{
- float32_t value =
- vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
-}
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 64-bit integer with truncation, and store the result in dst.
+//
+// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x
+#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a)
// Divide packed double-precision (64-bit) floating-point elements in a by
// packed elements in b, and store the results in dst.
@@ -3875,266 +4340,230 @@ FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b)
#endif
}
-// Compute the approximate reciprocal of packed single-precision (32-bit)
-// floating-point elements in a, and store the results in dst. The maximum
-// relative error for this approximation is less than 1.5*2^-12.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps
-FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
+// Extracts the selected signed or unsigned 16-bit integer from a and zero
+// extends.
+// https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx
+// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
+#define _mm_extract_epi16(a, imm) \
+ vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
+
+// Inserts the least significant 16 bits of b into the selected 16-bit integer
+// of a.
+// https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx
+// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
+// __constrange(0,8) int imm)
+#define _mm_insert_epi16(a, b, imm) \
+ __extension__({ \
+ vreinterpretq_m128i_s16( \
+ vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \
+ })
+
+// Loads two double-precision from 16-byte aligned memory, floating-point
+// values.
+//
+// dst[127:0] := MEM[mem_addr+127:mem_addr]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd
+FORCE_INLINE __m128d _mm_load_pd(const double *p)
{
- float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
-#if SSE2NEON_PRECISE_DIV
- // Additional Netwon-Raphson iteration for accuracy
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(vld1q_f64(p));
+#else
+ const float *fp = (const float *) p;
+ float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]};
+ return vreinterpretq_m128d_f32(vld1q_f32(data));
#endif
- return vreinterpretq_m128_f32(recip);
}
-// Compute the approximate reciprocal of the lower single-precision (32-bit)
-// floating-point element in a, store the result in the lower element of dst,
-// and copy the upper 3 packed elements from a to the upper elements of dst. The
-// maximum relative error for this approximation is less than 1.5*2^-12.
+// Load a double-precision (64-bit) floating-point element from memory into both
+// elements of dst.
//
-// dst[31:0] := (1.0 / a[31:0])
-// dst[127:32] := a[127:32]
+// dst[63:0] := MEM[mem_addr+63:mem_addr]
+// dst[127:64] := MEM[mem_addr+63:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss
-FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
-{
- return _mm_move_ss(a, _mm_rcp_ps(a));
-}
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1
+#define _mm_load_pd1 _mm_load1_pd
-// Computes the approximations of square roots of the four single-precision,
-// floating-point values of a. First computes reciprocal square roots and then
-// reciprocals of the four values.
+// Load a double-precision (64-bit) floating-point element from memory into the
+// lower of dst, and zero the upper element. mem_addr does not need to be
+// aligned on any particular boundary.
//
-// r0 := sqrt(a0)
-// r1 := sqrt(a1)
-// r2 := sqrt(a2)
-// r3 := sqrt(a3)
+// dst[63:0] := MEM[mem_addr+63:mem_addr]
+// dst[127:64] := 0
//
-// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd
+FORCE_INLINE __m128d _mm_load_sd(const double *p)
{
-#if SSE2NEON_PRECISE_SQRT
- float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in));
-
- // Test for vrsqrteq_f32(0) -> positive infinity case.
- // Change to zero, so that s * 1/sqrt(s) result is zero too.
- const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
- const uint32x4_t div_by_zero =
- vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip));
- recip = vreinterpretq_f32_u32(
- vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip)));
-
- // Additional Netwon-Raphson iteration for accuracy
- recip = vmulq_f32(
- vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
- recip);
- recip = vmulq_f32(
- vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
- recip);
-
- // sqrt(s) = s * 1/sqrt(s)
- return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip));
-#elif defined(__aarch64__)
- return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0));
#else
- float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in));
- float32x4_t sq = vrecpeq_f32(recipsq);
- return vreinterpretq_m128_f32(sq);
+ const float *fp = (const float *) p;
+ float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
+ return vreinterpretq_m128d_f32(vld1q_f32(data));
#endif
}
-// Computes the approximation of the square root of the scalar single-precision
-// floating point value of in.
-// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
+// Loads 128-bit value. :
+// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx
+FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
{
- float32_t value =
- vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
+ return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
}
-// Computes the approximations of the reciprocal square roots of the four
-// single-precision floating point values of in.
-// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
+// Load a double-precision (64-bit) floating-point element from memory into both
+// elements of dst.
+//
+// dst[63:0] := MEM[mem_addr+63:mem_addr]
+// dst[127:64] := MEM[mem_addr+63:mem_addr]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd
+FORCE_INLINE __m128d _mm_load1_pd(const double *p)
{
- float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in));
-#if SSE2NEON_PRECISE_RSQRT
- // Additional Netwon-Raphson iteration for accuracy
- out = vmulq_f32(
- out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
- out = vmulq_f32(
- out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(vld1q_dup_f64(p));
+#else
+ return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p));
#endif
- return vreinterpretq_m128_f32(out);
}
-// Compute the approximate reciprocal square root of the lower single-precision
-// (32-bit) floating-point element in a, store the result in the lower element
-// of dst, and copy the upper 3 packed elements from a to the upper elements of
-// dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss
-FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
+// Load a double-precision (64-bit) floating-point element from memory into the
+// upper element of dst, and copy the lower element from a to dst. mem_addr does
+// not need to be aligned on any particular boundary.
+//
+// dst[63:0] := a[63:0]
+// dst[127:64] := MEM[mem_addr+63:mem_addr]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd
+FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
{
- return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p)));
+#else
+ return vreinterpretq_m128d_f32(vcombine_f32(
+ vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p)));
+#endif
}
-// Compare packed signed 16-bit integers in a and b, and store packed maximum
-// values in dst.
-//
-// FOR j := 0 to 3
-// i := j*16
-// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16
-FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
+// Load 64-bit integer from memory into the first element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64
+FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
{
- return vreinterpret_m64_s16(
- vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
+ /* Load the lower 64 bits of the value pointed to by p into the
+ * lower 64 bits of the result, zeroing the upper 64 bits of the result.
+ */
+ return vreinterpretq_m128i_s32(
+ vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)));
}
-// Compare packed signed 16-bit integers in a and b, and store packed maximum
-// values in dst.
+// Load a double-precision (64-bit) floating-point element from memory into the
+// lower element of dst, and copy the upper element from a to dst. mem_addr does
+// not need to be aligned on any particular boundary.
//
-// FOR j := 0 to 3
-// i := j*16
-// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i])
-// ENDFOR
+// dst[63:0] := MEM[mem_addr+63:mem_addr]
+// dst[127:64] := a[127:64]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16
-#define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
-
-// Computes the maximums of the four single-precision, floating-point values of
-// a and b.
-// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd
+FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
{
-#if SSE2NEON_PRECISE_MINMAX
- float32x4_t _a = vreinterpretq_f32_m128(a);
- float32x4_t _b = vreinterpretq_f32_m128(b);
- return vbslq_f32(vcltq_f32(_b, _a), _a, _b);
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a))));
#else
- return vreinterpretq_m128_f32(
- vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+ return vreinterpretq_m128d_f32(
+ vcombine_f32(vld1_f32((const float *) p),
+ vget_high_f32(vreinterpretq_f32_m128d(a))));
#endif
}
-// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
-// values in dst.
+// Load 2 double-precision (64-bit) floating-point elements from memory into dst
+// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
+// general-protection exception may be generated.
//
-// FOR j := 0 to 7
-// i := j*8
-// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i])
-// ENDFOR
+// dst[63:0] := MEM[mem_addr+127:mem_addr+64]
+// dst[127:64] := MEM[mem_addr+63:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8
-FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd
+FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
{
- return vreinterpret_m64_u8(
- vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
+#if defined(__aarch64__)
+ float64x2_t v = vld1q_f64(p);
+ return vreinterpretq_m128d_f64(vextq_f64(v, v, 1));
+#else
+ int64x2_t v = vld1q_s64((const int64_t *) p);
+ return vreinterpretq_m128d_s64(vextq_s64(v, v, 1));
+#endif
}
-// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
-// values in dst.
-//
-// FOR j := 0 to 7
-// i := j*8
-// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8
-#define _m_pmaxub(a, b) _mm_max_pu8(a, b)
-
-// Compare packed signed 16-bit integers in a and b, and store packed minimum
-// values in dst.
-//
-// FOR j := 0 to 3
-// i := j*16
-// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16
-FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
+// Loads two double-precision from unaligned memory, floating-point values.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd
+FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
{
- return vreinterpret_m64_s16(
- vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
+ return _mm_load_pd(p);
}
-// Compare packed signed 16-bit integers in a and b, and store packed minimum
-// values in dst.
-//
-// FOR j := 0 to 3
-// i := j*16
-// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16
-#define _m_pminsw(a, b) _mm_min_pi16(a, b)
-
-// Computes the minima of the four single-precision, floating-point values of a
-// and b.
-// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
+// Loads 128-bit value. :
+// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
{
-#if SSE2NEON_PRECISE_MINMAX
- float32x4_t _a = vreinterpretq_f32_m128(a);
- float32x4_t _b = vreinterpretq_f32_m128(b);
- return vbslq_f32(vcltq_f32(_a, _b), _a, _b);
-#else
- return vreinterpretq_m128_f32(
- vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-#endif
+ return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
}
-// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
-// values in dst.
+// Load unaligned 32-bit integer from memory into the first element of dst.
//
-// FOR j := 0 to 7
-// i := j*8
-// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i])
-// ENDFOR
+// dst[31:0] := MEM[mem_addr+31:mem_addr]
+// dst[MAX:32] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8
-FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32
+FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
{
- return vreinterpret_m64_u8(
- vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
+ return vreinterpretq_m128i_s32(
+ vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0));
}
-// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
-// values in dst.
-//
-// FOR j := 0 to 7
-// i := j*8
-// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i])
-// ENDFOR
+// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
+// integers from b.
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8
-#define _m_pminub(a, b) _mm_min_pu8(a, b)
+// r0 := (a0 * b0) + (a1 * b1)
+// r1 := (a2 * b2) + (a3 * b3)
+// r2 := (a4 * b4) + (a5 * b5)
+// r3 := (a6 * b6) + (a7 * b7)
+// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
+{
+ int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
+ vget_low_s16(vreinterpretq_s16_m128i(b)));
+ int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
+ vget_high_s16(vreinterpretq_s16_m128i(b)));
-// Computes the maximum of the two lower scalar single-precision floating point
-// values of a and b.
-// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
+ int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
+ int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
+
+ return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
+}
+
+// Conditionally store 8-bit integer elements from a into memory using mask
+// (elements are not stored when the highest bit is not set in the corresponding
+// element) and a non-temporal memory hint. mem_addr does not need to be aligned
+// on any particular boundary.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmoveu_si128
+FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr)
{
- float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
+ int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7);
+ __m128 b = _mm_load_ps((const float *) mem_addr);
+ int8x16_t masked =
+ vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a),
+ vreinterpretq_s8_m128(b));
+ vst1q_s8((int8_t *) mem_addr, masked);
}
-// Computes the minimum of the two lower scalar single-precision floating point
-// values of a and b.
-// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
+// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
+// signed 16-bit integers from b.
+// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
{
- float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
+ return vreinterpretq_m128i_s16(
+ vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}
// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the
@@ -4146,13 +4575,41 @@ FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
}
-// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
-// 16 unsigned 8-bit integers from b.
-// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx
-FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
+// Compare packed double-precision (64-bit) floating-point elements in a and b,
+// and store packed maximum values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pd
+FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_u8(
- vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0;
+ d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1;
+
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b, store the maximum value in the lower element of dst, and copy the upper
+// element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sd
+FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+ return _mm_move_sd(a, _mm_max_pd(a, b));
+#else
+ double *da = (double *) &a;
+ double *db = (double *) &b;
+ double c[2] = {fmax(da[0], db[0]), da[1]};
+ return vld1q_f32((float32_t *) c);
+#endif
}
// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
@@ -4164,110 +4621,246 @@ FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}
-// Compare packed signed 8-bit integers in a and b, and store packed maximum
-// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8
-FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
+// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
+// 16 unsigned 8-bit integers from b.
+// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx
+FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
{
- return vreinterpretq_m128i_s8(
- vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+ return vreinterpretq_m128i_u8(
+ vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
}
-// Compare packed unsigned 16-bit integers in a and b, and store packed maximum
-// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16
-FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
+// Compare packed double-precision (64-bit) floating-point elements in a and b,
+// and store packed minimum values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pd
+FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_u16(
- vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+ uint64_t d[2];
+ d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0;
+ d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1;
+ return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
}
-// Compare packed signed 8-bit integers in a and b, and store packed minimum
-// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8
-FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b, store the minimum value in the lower element of dst, and copy the upper
+// element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sd
+FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s8(
- vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+#if defined(__aarch64__)
+ return _mm_move_sd(a, _mm_min_pd(a, b));
+#else
+ double *da = (double *) &a;
+ double *db = (double *) &b;
+ double c[2] = {fmin(da[0], db[0]), da[1]};
+ return vld1q_f32((float32_t *) c);
+#endif
}
-// Compare packed unsigned 16-bit integers in a and b, and store packed minimum
-// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16
-FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
+// Copy the lower 64-bit integer in a to the lower element of dst, and zero the
+// upper element.
+//
+// dst[63:0] := a[63:0]
+// dst[127:64] := 0
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64
+FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
{
- return vreinterpretq_m128i_u16(
- vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+ return vreinterpretq_m128i_s64(
+ vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1));
}
-// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
-// signed 16-bit integers from b.
-// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
+// Move the lower double-precision (64-bit) floating-point element from b to the
+// lower element of dst, and copy the upper element from a to the upper element
+// of dst.
+//
+// dst[63:0] := b[63:0]
+// dst[127:64] := a[127:64]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd
+FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_s16(
- vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+ return vreinterpretq_m128d_f32(
+ vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)),
+ vget_high_f32(vreinterpretq_f32_m128d(a))));
}
-// epi versions of min/max
-// Computes the pariwise maximums of the four signed 32-bit integer values of a
-// and b.
+// NEON does not provide a version of this function.
+// Creates a 16-bit mask from the most significant bits of the 16 signed or
+// unsigned 8-bit integers in a and zero extends the upper bits.
+// https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx
+FORCE_INLINE int _mm_movemask_epi8(__m128i a)
+{
+ // Use increasingly wide shifts+adds to collect the sign bits
+ // together.
+ // Since the widening shifts would be rather confusing to follow in little
+ // endian, everything will be illustrated in big endian order instead. This
+ // has a different result - the bits would actually be reversed on a big
+ // endian machine.
+
+ // Starting input (only half the elements are shown):
+ // 89 ff 1d c0 00 10 99 33
+ uint8x16_t input = vreinterpretq_u8_m128i(a);
+
+ // Shift out everything but the sign bits with an unsigned shift right.
+ //
+ // Bytes of the vector::
+ // 89 ff 1d c0 00 10 99 33
+ // \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7)
+ // | | | | | | | |
+ // 01 01 00 01 00 00 01 00
+ //
+ // Bits of first important lane(s):
+ // 10001001 (89)
+ // \______
+ // |
+ // 00000001 (01)
+ uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
+
+ // Merge the even lanes together with a 16-bit unsigned shift right + add.
+ // 'xx' represents garbage data which will be ignored in the final result.
+ // In the important bytes, the add functions like a binary OR.
+ //
+ // 01 01 00 01 00 00 01 00
+ // \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7))
+ // \| \| \| \|
+ // xx 03 xx 01 xx 00 xx 02
+ //
+ // 00000001 00000001 (01 01)
+ // \_______ |
+ // \|
+ // xxxxxxxx xxxxxx11 (xx 03)
+ uint32x4_t paired16 =
+ vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
+
+ // Repeat with a wider 32-bit shift + add.
+ // xx 03 xx 01 xx 00 xx 02
+ // \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >>
+ // 14))
+ // \| \|
+ // xx xx xx 0d xx xx xx 02
+ //
+ // 00000011 00000001 (03 01)
+ // \\_____ ||
+ // '----.\||
+ // xxxxxxxx xxxx1101 (xx 0d)
+ uint64x2_t paired32 =
+ vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
+
+ // Last, an even wider 64-bit shift + add to get our result in the low 8 bit
+ // lanes. xx xx xx 0d xx xx xx 02
+ // \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >>
+ // 28))
+ // \|
+ // xx xx xx xx xx xx xx d2
+ //
+ // 00001101 00000010 (0d 02)
+ // \ \___ | |
+ // '---. \| |
+ // xxxxxxxx 11010010 (xx d2)
+ uint8x16_t paired64 =
+ vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
+
+ // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
+ // xx xx xx xx xx xx xx d2
+ // || return paired64[0]
+ // d2
+ // Note: Little endian would return the correct value 4b (01001011) instead.
+ return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8);
+}
+
+// Set each bit of mask dst based on the most significant bit of the
+// corresponding packed double-precision (64-bit) floating-point element in a.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pd
+FORCE_INLINE int _mm_movemask_pd(__m128d a)
+{
+ uint64x2_t input = vreinterpretq_u64_m128d(a);
+ uint64x2_t high_bits = vshrq_n_u64(input, 63);
+ return vgetq_lane_u64(high_bits, 0) | (vgetq_lane_u64(high_bits, 1) << 1);
+}
+
+// Copy the lower 64-bit integer in a to dst.
//
-// A 128-bit parameter that can be defined with the following equations:
-// r0 := (a0 > b0) ? a0 : b0
-// r1 := (a1 > b1) ? a1 : b1
-// r2 := (a2 > b2) ? a2 : b2
-// r3 := (a3 > b3) ? a3 : b3
+// dst[63:0] := a[63:0]
//
-// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64
+FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
{
- return vreinterpretq_m128i_s32(
- vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+ return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
}
-// Computes the pariwise minima of the four signed 32-bit integer values of a
-// and b.
+// Copy the 64-bit integer a to the lower element of dst, and zero the upper
+// element.
//
-// A 128-bit parameter that can be defined with the following equations:
-// r0 := (a0 < b0) ? a0 : b0
-// r1 := (a1 < b1) ? a1 : b1
-// r2 := (a2 < b2) ? a2 : b2
-// r3 := (a3 < b3) ? a3 : b3
+// dst[63:0] := a[63:0]
+// dst[127:64] := 0
//
-// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64
+FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
{
- return vreinterpretq_m128i_s32(
- vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+ return vreinterpretq_m128i_s64(
+ vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0)));
}
-// Compare packed unsigned 32-bit integers in a and b, and store packed maximum
-// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
-FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
+// Multiply the low unsigned 32-bit integers from each packed 64-bit element in
+// a and b, and store the unsigned 64-bit results in dst.
+//
+// r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF)
+// r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF)
+FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
{
- return vreinterpretq_m128i_u32(
- vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
+ // vmull_u32 upcasts instead of masking, so we downcast.
+ uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
+ uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
+ return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
}
-// Compare packed unsigned 32-bit integers in a and b, and store packed minimum
-// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
-FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
+// Multiply packed double-precision (64-bit) floating-point elements in a and b,
+// and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd
+FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_u32(
- vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ double *da = (double *) &a;
+ double *db = (double *) &b;
+ double c[2];
+ c[0] = da[0] * db[0];
+ c[1] = da[1] * db[1];
+ return vld1q_f32((float32_t *) c);
+#endif
}
-// Multiply the packed unsigned 16-bit integers in a and b, producing
-// intermediate 32-bit integers, and store the high 16 bits of the intermediate
-// integers in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16
-FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
+// Multiply the lower double-precision (64-bit) floating-point element in a and
+// b, store the result in the lower element of dst, and copy the upper element
+// from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd
+FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
{
- return vreinterpret_m64_u16(vshrn_n_u32(
- vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16));
+ return _mm_move_sd(a, _mm_mul_pd(a, b));
+}
+
+// Multiply the low unsigned 32-bit integers from a and b, and store the
+// unsigned 64-bit result in dst.
+//
+// dst[63:0] := a[31:0] * b[31:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32
+FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
+{
+ return vreinterpret_m64_u64(vget_low_u64(
+ vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b))));
}
// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
@@ -4321,1341 +4914,2413 @@ FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b)
#endif
}
-// Computes pairwise add of each argument as single-precision, floating-point
-// values a and b.
-// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx
-FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
+// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
+// unsigned 16-bit integers from b.
+//
+// r0 := (a0 * b0)[15:0]
+// r1 := (a1 * b1)[15:0]
+// ...
+// r7 := (a7 * b7)[15:0]
+//
+// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128_f32(
- vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-#else
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(
- vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
-#endif
+ return vreinterpretq_m128i_s16(
+ vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}
-// Computes pairwise add of each argument as a 16-bit signed or unsigned integer
-// values a and b.
-FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
+// Compute the bitwise OR of packed double-precision (64-bit) floating-point
+// elements in a and b, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd
+FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b)
{
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
-#if defined(__aarch64__)
- return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
-#else
- return vreinterpretq_m128i_s16(
- vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
- vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
-#endif
+ return vreinterpretq_m128d_s64(
+ vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
}
-// Horizontally substract adjacent pairs of single-precision (32-bit)
-// floating-point elements in a and b, and pack the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps
-FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
+// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
+//
+// r := a | b
+//
+// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128_f32(vsubq_f32(
- vuzp1q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)),
- vuzp2q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b))));
-#else
- float32x4x2_t c =
- vuzpq_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b));
- return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
-#endif
+ return vreinterpretq_m128i_s32(
+ vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}
-// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
-// signed 16-bit results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16
-FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
+// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
+// saturates.
+// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx
+FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
{
- return vreinterpret_m64_s16(
- vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
+ return vreinterpretq_m128i_s8(
+ vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
+ vqmovn_s16(vreinterpretq_s16_m128i(b))));
}
-// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
-// signed 32-bit results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32
-FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
+// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers
+// and saturates.
+//
+// r0 := SignedSaturate(a0)
+// r1 := SignedSaturate(a1)
+// r2 := SignedSaturate(a2)
+// r3 := SignedSaturate(a3)
+// r4 := SignedSaturate(b0)
+// r5 := SignedSaturate(b1)
+// r6 := SignedSaturate(b2)
+// r7 := SignedSaturate(b3)
+//
+// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx
+FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
{
- return vreinterpret_m64_s32(
- vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)));
+ return vreinterpretq_m128i_s16(
+ vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
+ vqmovn_s32(vreinterpretq_s32_m128i(b))));
}
-// Computes pairwise difference of each argument as a 16-bit signed or unsigned
-// integer values a and b.
-FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
+// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned
+// integers and saturates.
+//
+// r0 := UnsignedSaturate(a0)
+// r1 := UnsignedSaturate(a1)
+// ...
+// r7 := UnsignedSaturate(a7)
+// r8 := UnsignedSaturate(b0)
+// r9 := UnsignedSaturate(b1)
+// ...
+// r15 := UnsignedSaturate(b7)
+//
+// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
{
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Subtract
- return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357));
+ return vreinterpretq_m128i_u8(
+ vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
+ vqmovun_s16(vreinterpretq_s16_m128i(b))));
}
-// Computes saturated pairwise sub of each argument as a 16-bit signed
-// integer values a and b.
-FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
+// Pause the processor. This is typically used in spin-wait loops and depending
+// on the x86 processor typical values are in the 40-100 cycle range. The
+// 'yield' instruction isn't a good fit beacuse it's effectively a nop on most
+// Arm cores. Experience with several databases has shown has shown an 'isb' is
+// a reasonable approximation.
+FORCE_INLINE void _mm_pause()
{
-#if defined(__aarch64__)
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- return vreinterpretq_s64_s16(
- vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
-#else
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Saturated add
- return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
-#endif
+ __asm__ __volatile__("isb\n");
}
-// Computes saturated pairwise difference of each argument as a 16-bit signed
-// integer values a and b.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16
-FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
+// Compute the absolute differences of packed unsigned 8-bit integers in a and
+// b, then horizontally sum each consecutive 8 differences to produce two
+// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
+// 16 bits of 64-bit elements in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8
+FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
{
-#if defined(__aarch64__)
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- return vreinterpretq_s64_s16(
- vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
-#else
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Saturated subtract
- return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357));
-#endif
+ uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
+ return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t)));
}
-// Computes pairwise add of each argument as a 32-bit signed or unsigned integer
-// values a and b.
-FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
+// Sets the 8 signed 16-bit integer values.
+// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_set_epi16(short i7,
+ short i6,
+ short i5,
+ short i4,
+ short i3,
+ short i2,
+ short i1,
+ short i0)
{
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- return vreinterpretq_m128i_s32(
- vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
- vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
+ int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
+ return vreinterpretq_m128i_s16(vld1q_s16(data));
}
-// Computes pairwise difference of each argument as a 32-bit signed or unsigned
-// integer values a and b.
-FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
+// Sets the 4 signed 32-bit integer values.
+// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
{
- int64x2_t a = vreinterpretq_s64_m128i(_a);
- int64x2_t b = vreinterpretq_s64_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|b0|b2]
- // [a1|a2|b1|b3]
- int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b));
- int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32));
- // Subtract
- return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13));
+ int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
+ return vreinterpretq_m128i_s32(vld1q_s32(data));
}
-// Kahan summation for accurate summation of floating-point numbers.
-// http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html
-FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y)
+// Returns the __m128i structure with its two 64-bit integer values
+// initialized to the values of the two 64-bit integers passed in.
+// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
+FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2)
{
- y -= *c;
- float t = *sum + y;
- *c = (t - *sum) - y;
- *sum = t;
+ return _mm_set_epi64x((int64_t) i1, (int64_t) i2);
}
-// Conditionally multiply the packed single-precision (32-bit) floating-point
-// elements in a and b using the high 4 bits in imm8, sum the four products,
-// and conditionally store the sum in dst using the low 4 bits of imm.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps
-FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
+// Returns the __m128i structure with its two 64-bit integer values
+// initialized to the values of the two 64-bit integers passed in.
+// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
+FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
{
-#if defined(__aarch64__)
- /* shortcuts */
- if (imm == 0xFF) {
- return _mm_set1_ps(vaddvq_f32(_mm_mul_ps(a, b)));
- }
- if (imm == 0x7F) {
- float32x4_t m = _mm_mul_ps(a, b);
- m[3] = 0;
- return _mm_set1_ps(vaddvq_f32(m));
- }
-#endif
-
- float s = 0, c = 0;
- float32x4_t f32a = vreinterpretq_f32_m128(a);
- float32x4_t f32b = vreinterpretq_f32_m128(b);
-
- /* To improve the accuracy of floating-point summation, Kahan algorithm
- * is used for each operation.
- */
- if (imm & (1 << 4))
- _sse2neon_kadd_f32(&s, &c, f32a[0] * f32b[0]);
- if (imm & (1 << 5))
- _sse2neon_kadd_f32(&s, &c, f32a[1] * f32b[1]);
- if (imm & (1 << 6))
- _sse2neon_kadd_f32(&s, &c, f32a[2] * f32b[2]);
- if (imm & (1 << 7))
- _sse2neon_kadd_f32(&s, &c, f32a[3] * f32b[3]);
- s += c;
-
- float32x4_t res = {
- (imm & 0x1) ? s : 0,
- (imm & 0x2) ? s : 0,
- (imm & 0x4) ? s : 0,
- (imm & 0x8) ? s : 0,
- };
- return vreinterpretq_m128_f32(res);
+ return vreinterpretq_m128i_s64(
+ vcombine_s64(vcreate_s64(i2), vcreate_s64(i1)));
}
-/* Compare operations */
+// Sets the 16 signed 8-bit integer values.
+// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
+ signed char b14,
+ signed char b13,
+ signed char b12,
+ signed char b11,
+ signed char b10,
+ signed char b9,
+ signed char b8,
+ signed char b7,
+ signed char b6,
+ signed char b5,
+ signed char b4,
+ signed char b3,
+ signed char b2,
+ signed char b1,
+ signed char b0)
+{
+ int8_t ALIGN_STRUCT(16)
+ data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
+ (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
+ (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
+ (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
+ return (__m128i) vld1q_s8(data);
+}
-// Compares for less than
-// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
+// Set packed double-precision (64-bit) floating-point elements in dst with the
+// supplied values.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd
+FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
{
- return vreinterpretq_m128_u32(
- vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+ double ALIGN_STRUCT(16) data[2] = {e0, e1};
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data));
+#else
+ return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data));
+#endif
}
-// Compares for less than
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100)
-FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b)
+// Broadcast double-precision (64-bit) floating-point value a to all elements of
+// dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1
+#define _mm_set_pd1 _mm_set1_pd
+
+// Copy double-precision (64-bit) floating-point element a to the lower element
+// of dst, and zero the upper element.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd
+FORCE_INLINE __m128d _mm_set_sd(double a)
{
- return _mm_move_ss(a, _mm_cmplt_ps(a, b));
+ return _mm_set_pd(0, a);
}
-// Compares for greater than.
+// Sets the 8 signed 16-bit integer values to w.
//
-// r0 := (a0 > b0) ? 0xffffffff : 0x0
-// r1 := (a1 > b1) ? 0xffffffff : 0x0
-// r2 := (a2 > b2) ? 0xffffffff : 0x0
-// r3 := (a3 > b3) ? 0xffffffff : 0x0
+// r0 := w
+// r1 := w
+// ...
+// r7 := w
//
-// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
+// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_set1_epi16(short w)
{
- return vreinterpretq_m128_u32(
- vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+ return vreinterpretq_m128i_s16(vdupq_n_s16(w));
}
-// Compares for greater than.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b)
+// Sets the 4 signed 32-bit integer values to i.
+//
+// r0 := i
+// r1 := i
+// r2 := i
+// r3 := I
+//
+// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_set1_epi32(int _i)
{
- return _mm_move_ss(a, _mm_cmpgt_ps(a, b));
+ return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
}
-// Compares for greater than or equal.
-// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
+// Sets the 2 signed 64-bit integer values to i.
+// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100)
+FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
{
- return vreinterpretq_m128_u32(
- vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+ return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i));
}
-// Compares for greater than or equal.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b)
+// Sets the 2 signed 64-bit integer values to i.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x
+FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
{
- return _mm_move_ss(a, _mm_cmpge_ps(a, b));
+ return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
}
-// Compares for less than or equal.
+// Sets the 16 signed 8-bit integer values to b.
//
-// r0 := (a0 <= b0) ? 0xffffffff : 0x0
-// r1 := (a1 <= b1) ? 0xffffffff : 0x0
-// r2 := (a2 <= b2) ? 0xffffffff : 0x0
-// r3 := (a3 <= b3) ? 0xffffffff : 0x0
+// r0 := b
+// r1 := b
+// ...
+// r15 := b
//
-// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
+// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
{
- return vreinterpretq_m128_u32(
- vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+ return vreinterpretq_m128i_s8(vdupq_n_s8(w));
}
-// Compares for less than or equal.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100)
-FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b)
+// Broadcast double-precision (64-bit) floating-point value a to all elements of
+// dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd
+FORCE_INLINE __m128d _mm_set1_pd(double d)
{
- return _mm_move_ss(a, _mm_cmple_ps(a, b));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(vdupq_n_f64(d));
+#else
+ return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d));
+#endif
}
-// Compares for equality.
-// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
+// Sets the 8 signed 16-bit integer values in reverse order.
+//
+// Return Value
+// r0 := w0
+// r1 := w1
+// ...
+// r7 := w7
+FORCE_INLINE __m128i _mm_setr_epi16(short w0,
+ short w1,
+ short w2,
+ short w3,
+ short w4,
+ short w5,
+ short w6,
+ short w7)
{
- return vreinterpretq_m128_u32(
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+ int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
+ return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
}
-// Compares for equality.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b)
+// Sets the 4 signed 32-bit integer values in reverse order
+// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
{
- return _mm_move_ss(a, _mm_cmpeq_ps(a, b));
+ int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
+ return vreinterpretq_m128i_s32(vld1q_s32(data));
}
-// Compares for inequality.
-// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
+// Set packed 64-bit integers in dst with the supplied values in reverse order.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64
+FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
{
- return vreinterpretq_m128_u32(vmvnq_u32(
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
+ return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
}
-// Compares for inequality.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b)
+// Sets the 16 signed 8-bit integer values in reverse order.
+// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
+ signed char b1,
+ signed char b2,
+ signed char b3,
+ signed char b4,
+ signed char b5,
+ signed char b6,
+ signed char b7,
+ signed char b8,
+ signed char b9,
+ signed char b10,
+ signed char b11,
+ signed char b12,
+ signed char b13,
+ signed char b14,
+ signed char b15)
{
- return _mm_move_ss(a, _mm_cmpneq_ps(a, b));
+ int8_t ALIGN_STRUCT(16)
+ data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
+ (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
+ (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
+ (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
+ return (__m128i) vld1q_s8(data);
}
-// Compares for not greater than or equal.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b)
+// Set packed double-precision (64-bit) floating-point elements in dst with the
+// supplied values in reverse order.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd
+FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0)
{
- return _mm_cmplt_ps(a, b);
+ return _mm_set_pd(e0, e1);
}
-// Compares for not greater than or equal.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b)
+// Return vector of type __m128d with all elements set to zero.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd
+FORCE_INLINE __m128d _mm_setzero_pd(void)
{
- return _mm_cmplt_ss(a, b);
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(vdupq_n_f64(0));
+#else
+ return vreinterpretq_m128d_f32(vdupq_n_f32(0));
+#endif
}
-// Compares for not greater than.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b)
+// Sets the 128-bit value to zero
+// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_setzero_si128(void)
{
- return _mm_cmple_ps(a, b);
+ return vreinterpretq_m128i_s32(vdupq_n_s32(0));
}
-// Compares for not greater than.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b)
+// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm.
+// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx
+// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
+// __constrange(0,255) int imm)
+#if __has_builtin(__builtin_shufflevector)
+#define _mm_shuffle_epi32(a, imm) \
+ __extension__({ \
+ int32x4_t _input = vreinterpretq_s32_m128i(a); \
+ int32x4_t _shuf = __builtin_shufflevector( \
+ _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
+ ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \
+ vreinterpretq_m128i_s32(_shuf); \
+ })
+#else // generic
+#define _mm_shuffle_epi32(a, imm) \
+ __extension__({ \
+ __m128i ret; \
+ switch (imm) { \
+ case _MM_SHUFFLE(1, 0, 3, 2): \
+ ret = _mm_shuffle_epi_1032((a)); \
+ break; \
+ case _MM_SHUFFLE(2, 3, 0, 1): \
+ ret = _mm_shuffle_epi_2301((a)); \
+ break; \
+ case _MM_SHUFFLE(0, 3, 2, 1): \
+ ret = _mm_shuffle_epi_0321((a)); \
+ break; \
+ case _MM_SHUFFLE(2, 1, 0, 3): \
+ ret = _mm_shuffle_epi_2103((a)); \
+ break; \
+ case _MM_SHUFFLE(1, 0, 1, 0): \
+ ret = _mm_shuffle_epi_1010((a)); \
+ break; \
+ case _MM_SHUFFLE(1, 0, 0, 1): \
+ ret = _mm_shuffle_epi_1001((a)); \
+ break; \
+ case _MM_SHUFFLE(0, 1, 0, 1): \
+ ret = _mm_shuffle_epi_0101((a)); \
+ break; \
+ case _MM_SHUFFLE(2, 2, 1, 1): \
+ ret = _mm_shuffle_epi_2211((a)); \
+ break; \
+ case _MM_SHUFFLE(0, 1, 2, 2): \
+ ret = _mm_shuffle_epi_0122((a)); \
+ break; \
+ case _MM_SHUFFLE(3, 3, 3, 2): \
+ ret = _mm_shuffle_epi_3332((a)); \
+ break; \
+ case _MM_SHUFFLE(0, 0, 0, 0): \
+ ret = _mm_shuffle_epi32_splat((a), 0); \
+ break; \
+ case _MM_SHUFFLE(1, 1, 1, 1): \
+ ret = _mm_shuffle_epi32_splat((a), 1); \
+ break; \
+ case _MM_SHUFFLE(2, 2, 2, 2): \
+ ret = _mm_shuffle_epi32_splat((a), 2); \
+ break; \
+ case _MM_SHUFFLE(3, 3, 3, 3): \
+ ret = _mm_shuffle_epi32_splat((a), 3); \
+ break; \
+ default: \
+ ret = _mm_shuffle_epi32_default((a), (imm)); \
+ break; \
+ } \
+ ret; \
+ })
+#endif
+
+// Shuffle double-precision (64-bit) floating-point elements using the control
+// in imm8, and store the results in dst.
+//
+// dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64]
+// dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd
+#if __has_builtin(__builtin_shufflevector)
+#define _mm_shuffle_pd(a, b, imm8) \
+ vreinterpretq_m128d_s64(__builtin_shufflevector( \
+ vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), imm8 & 0x1, \
+ ((imm8 & 0x2) >> 1) + 2))
+#else
+#define _mm_shuffle_pd(a, b, imm8) \
+ _mm_castsi128_pd(_mm_set_epi64x( \
+ vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \
+ vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1)))
+#endif
+
+// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
+// __constrange(0,255) int imm)
+#if __has_builtin(__builtin_shufflevector)
+#define _mm_shufflehi_epi16(a, imm) \
+ __extension__({ \
+ int16x8_t _input = vreinterpretq_s16_m128i(a); \
+ int16x8_t _shuf = __builtin_shufflevector( \
+ _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \
+ (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
+ (((imm) >> 6) & 0x3) + 4); \
+ vreinterpretq_m128i_s16(_shuf); \
+ })
+#else // generic
+#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
+#endif
+
+// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
+// __constrange(0,255) int imm)
+#if __has_builtin(__builtin_shufflevector)
+#define _mm_shufflelo_epi16(a, imm) \
+ __extension__({ \
+ int16x8_t _input = vreinterpretq_s16_m128i(a); \
+ int16x8_t _shuf = __builtin_shufflevector( \
+ _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \
+ (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
+ vreinterpretq_m128i_s16(_shuf); \
+ })
+#else // generic
+#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
+#endif
+
+// Shift packed 16-bit integers in a left by count while shifting in zeros, and
+// store the results in dst.
+//
+// FOR j := 0 to 7
+// i := j*16
+// IF count[63:0] > 15
+// dst[i+15:i] := 0
+// ELSE
+// dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi16
+FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
{
- return _mm_cmple_ss(a, b);
+ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+ if (_sse2neon_unlikely(c & ~15))
+ return _mm_setzero_si128();
+
+ int16x8_t vc = vdupq_n_s16((int16_t) c);
+ return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc));
}
-// Compares for not less than or equal.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b)
+// Shift packed 32-bit integers in a left by count while shifting in zeros, and
+// store the results in dst.
+//
+// FOR j := 0 to 3
+// i := j*32
+// IF count[63:0] > 31
+// dst[i+31:i] := 0
+// ELSE
+// dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi32
+FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
{
- return _mm_cmpgt_ps(a, b);
+ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+ if (_sse2neon_unlikely(c & ~31))
+ return _mm_setzero_si128();
+
+ int32x4_t vc = vdupq_n_s32((int32_t) c);
+ return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc));
}
-// Compares for not less than or equal.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b)
+// Shift packed 64-bit integers in a left by count while shifting in zeros, and
+// store the results in dst.
+//
+// FOR j := 0 to 1
+// i := j*64
+// IF count[63:0] > 63
+// dst[i+63:i] := 0
+// ELSE
+// dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi64
+FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
{
- return _mm_cmpgt_ss(a, b);
+ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+ if (_sse2neon_unlikely(c & ~63))
+ return _mm_setzero_si128();
+
+ int64x2_t vc = vdupq_n_s64((int64_t) c);
+ return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc));
}
-// Compares for not less than.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
+// Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and
+// store the results in dst.
+//
+// FOR j := 0 to 7
+// i := j*16
+// IF imm8[7:0] > 15
+// dst[i+15:i] := 0
+// ELSE
+// dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi16
+FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm)
{
- return _mm_cmpge_ps(a, b);
+ if (_sse2neon_unlikely(imm & ~15))
+ return _mm_setzero_si128();
+ return vreinterpretq_m128i_s16(
+ vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm)));
}
-// Compares for not less than.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
+// Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and
+// store the results in dst.
+//
+// FOR j := 0 to 3
+// i := j*32
+// IF imm8[7:0] > 31
+// dst[i+31:i] := 0
+// ELSE
+// dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi32
+FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
{
- return _mm_cmpge_ss(a, b);
+ if (_sse2neon_unlikely(imm & ~31))
+ return _mm_setzero_si128();
+ return vreinterpretq_m128i_s32(
+ vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm)));
}
-// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
-// unsigned 8-bit integers in b for equality.
-// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
+// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
+// store the results in dst.
+//
+// FOR j := 0 to 1
+// i := j*64
+// IF imm8[7:0] > 63
+// dst[i+63:i] := 0
+// ELSE
+// dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi64
+FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
+{
+ if (_sse2neon_unlikely(imm & ~63))
+ return _mm_setzero_si128();
+ return vreinterpretq_m128i_s64(
+ vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm)));
+}
+
+// Shift a left by imm8 bytes while shifting in zeros, and store the results in
+// dst.
+//
+// tmp := imm8[7:0]
+// IF tmp > 15
+// tmp := 16
+// FI
+// dst[127:0] := a[127:0] << (tmp*8)
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_si128
+FORCE_INLINE __m128i _mm_slli_si128(__m128i a, int imm)
{
+ if (_sse2neon_unlikely(imm & ~15))
+ return _mm_setzero_si128();
+ uint8x16_t tmp[2] = {vdupq_n_u8(0), vreinterpretq_u8_m128i(a)};
return vreinterpretq_m128i_u8(
- vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+ vld1q_u8(((uint8_t const *) tmp) + (16 - imm)));
}
-// Compare packed double-precision (64-bit) floating-point elements in a and b
-// for equality, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd
-FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
+// Compute the square root of packed double-precision (64-bit) floating-point
+// elements in a, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_pd
+FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a)
{
#if defined(__aarch64__)
- return vreinterpretq_m128d_u64(
- vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+ return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a)));
#else
- // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
- uint32x4_t cmp =
- vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
- uint32x4_t swapped = vrev64q_u32(cmp);
- return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped));
+ double a0 = sqrt(((double *) &a)[0]);
+ double a1 = sqrt(((double *) &a)[1]);
+ return _mm_set_pd(a1, a0);
#endif
}
-// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
-// unsigned 16-bit integers in b for equality.
-// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
+// Compute the square root of the lower double-precision (64-bit) floating-point
+// element in b, store the result in the lower element of dst, and copy the
+// upper element from a to the upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sd
+FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b)
{
- return vreinterpretq_m128i_u16(
- vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+#if defined(__aarch64__)
+ return _mm_move_sd(a, _mm_sqrt_pd(b));
+#else
+ return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0]));
+#endif
}
-// Compare packed 32-bit integers in a and b for equality, and store the results
-// in dst
-FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
+// Shift packed 16-bit integers in a right by count while shifting in sign bits,
+// and store the results in dst.
+//
+// FOR j := 0 to 7
+// i := j*16
+// IF count[63:0] > 15
+// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0)
+// ELSE
+// dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi16
+FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
{
- return vreinterpretq_m128i_u32(
- vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+ int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
+ if (_sse2neon_unlikely(c & ~15))
+ return _mm_cmplt_epi16(a, _mm_setzero_si128());
+ return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c)));
}
-// Compare packed 64-bit integers in a and b for equality, and store the results
-// in dst
-FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
+// Shift packed 32-bit integers in a right by count while shifting in sign bits,
+// and store the results in dst.
+//
+// FOR j := 0 to 3
+// i := j*32
+// IF count[63:0] > 31
+// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0)
+// ELSE
+// dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi32
+FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128i_u64(
- vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
-#else
- // ARMv7 lacks vceqq_u64
- // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
- uint32x4_t cmp =
- vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
- uint32x4_t swapped = vrev64q_u32(cmp);
- return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
-#endif
+ int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
+ if (_sse2neon_unlikely(c & ~31))
+ return _mm_cmplt_epi32(a, _mm_setzero_si128());
+ return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c)));
}
-// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
-// in b for lesser than.
-// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
+// Shift packed 16-bit integers in a right by imm8 while shifting in sign
+// bits, and store the results in dst.
+//
+// FOR j := 0 to 7
+// i := j*16
+// IF imm8[7:0] > 15
+// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0)
+// ELSE
+// dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16
+FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
{
- return vreinterpretq_m128i_u8(
- vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+ const int count = (imm & ~15) ? 15 : imm;
+ return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
}
-// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
-// in b for greater than.
+// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits,
+// and store the results in dst.
//
-// r0 := (a0 > b0) ? 0xff : 0x0
-// r1 := (a1 > b1) ? 0xff : 0x0
-// ...
-// r15 := (a15 > b15) ? 0xff : 0x0
+// FOR j := 0 to 3
+// i := j*32
+// IF imm8[7:0] > 31
+// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0)
+// ELSE
+// dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0])
+// FI
+// ENDFOR
//
-// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32
+// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
+#define _mm_srai_epi32(a, imm) \
+ __extension__({ \
+ __m128i ret; \
+ if (_sse2neon_unlikely((imm) == 0)) { \
+ ret = a; \
+ } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \
+ ret = vreinterpretq_m128i_s32( \
+ vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-imm))); \
+ } else { \
+ ret = vreinterpretq_m128i_s32( \
+ vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \
+ } \
+ ret; \
+ })
+
+// Shift packed 16-bit integers in a right by count while shifting in zeros, and
+// store the results in dst.
+//
+// FOR j := 0 to 7
+// i := j*16
+// IF count[63:0] > 15
+// dst[i+15:i] := 0
+// ELSE
+// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi16
+FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
{
- return vreinterpretq_m128i_u8(
- vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+ if (_sse2neon_unlikely(c & ~15))
+ return _mm_setzero_si128();
+
+ int16x8_t vc = vdupq_n_s16(-(int16_t) c);
+ return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc));
}
-// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
-// in b for less than.
+// Shift packed 32-bit integers in a right by count while shifting in zeros, and
+// store the results in dst.
//
-// r0 := (a0 < b0) ? 0xffff : 0x0
-// r1 := (a1 < b1) ? 0xffff : 0x0
-// ...
-// r7 := (a7 < b7) ? 0xffff : 0x0
+// FOR j := 0 to 3
+// i := j*32
+// IF count[63:0] > 31
+// dst[i+31:i] := 0
+// ELSE
+// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0])
+// FI
+// ENDFOR
//
-// https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi32
+FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
{
- return vreinterpretq_m128i_u16(
- vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+ if (_sse2neon_unlikely(c & ~31))
+ return _mm_setzero_si128();
+
+ int32x4_t vc = vdupq_n_s32(-(int32_t) c);
+ return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc));
}
-// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
-// in b for greater than.
+// Shift packed 64-bit integers in a right by count while shifting in zeros, and
+// store the results in dst.
//
-// r0 := (a0 > b0) ? 0xffff : 0x0
-// r1 := (a1 > b1) ? 0xffff : 0x0
-// ...
-// r7 := (a7 > b7) ? 0xffff : 0x0
+// FOR j := 0 to 1
+// i := j*64
+// IF count[63:0] > 63
+// dst[i+63:i] := 0
+// ELSE
+// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0])
+// FI
+// ENDFOR
//
-// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi64
+FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
{
- return vreinterpretq_m128i_u16(
- vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+ if (_sse2neon_unlikely(c & ~63))
+ return _mm_setzero_si128();
+
+ int64x2_t vc = vdupq_n_s64(-(int64_t) c);
+ return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc));
}
+// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and
+// store the results in dst.
+//
+// FOR j := 0 to 7
+// i := j*16
+// IF imm8[7:0] > 15
+// dst[i+15:i] := 0
+// ELSE
+// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16
+#define _mm_srli_epi16(a, imm) \
+ __extension__({ \
+ __m128i ret; \
+ if (_sse2neon_unlikely(imm & ~15)) { \
+ ret = _mm_setzero_si128(); \
+ } else { \
+ ret = vreinterpretq_m128i_u16( \
+ vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-imm))); \
+ } \
+ ret; \
+ })
+
+// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
+// store the results in dst.
+//
+// FOR j := 0 to 3
+// i := j*32
+// IF imm8[7:0] > 31
+// dst[i+31:i] := 0
+// ELSE
+// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32
+// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
+#define _mm_srli_epi32(a, imm) \
+ __extension__({ \
+ __m128i ret; \
+ if (_sse2neon_unlikely(imm & ~31)) { \
+ ret = _mm_setzero_si128(); \
+ } else { \
+ ret = vreinterpretq_m128i_u32( \
+ vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-imm))); \
+ } \
+ ret; \
+ })
-// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
-// in b for less than.
-// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
+// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
+// store the results in dst.
+//
+// FOR j := 0 to 1
+// i := j*64
+// IF imm8[7:0] > 63
+// dst[i+63:i] := 0
+// ELSE
+// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0])
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64
+#define _mm_srli_epi64(a, imm) \
+ __extension__({ \
+ __m128i ret; \
+ if (_sse2neon_unlikely(imm & ~63)) { \
+ ret = _mm_setzero_si128(); \
+ } else { \
+ ret = vreinterpretq_m128i_u64( \
+ vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-imm))); \
+ } \
+ ret; \
+ })
+
+// Shift a right by imm8 bytes while shifting in zeros, and store the results in
+// dst.
+//
+// tmp := imm8[7:0]
+// IF tmp > 15
+// tmp := 16
+// FI
+// dst[127:0] := a[127:0] >> (tmp*8)
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_si128
+FORCE_INLINE __m128i _mm_srli_si128(__m128i a, int imm)
{
- return vreinterpretq_m128i_u32(
- vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+ if (_sse2neon_unlikely(imm & ~15))
+ return _mm_setzero_si128();
+ uint8x16_t tmp[2] = {vreinterpretq_u8_m128i(a), vdupq_n_u8(0)};
+ return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + imm));
}
-// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
-// in b for greater than.
-// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
+// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
+// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
+// or a general-protection exception may be generated.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd
+FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
{
- return vreinterpretq_m128i_u32(
- vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+#if defined(__aarch64__)
+ vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a));
+#else
+ vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a));
+#endif
}
-// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
-// in b for greater than.
-FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
+// Store the lower double-precision (64-bit) floating-point element from a into
+// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
+// boundary or a general-protection exception may be generated.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1
+FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
{
#if defined(__aarch64__)
- return vreinterpretq_m128i_u64(
- vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
+ float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a));
+ vst1q_f64((float64_t *) mem_addr,
+ vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low)));
#else
- // ARMv7 lacks vcgtq_s64.
- // This is based off of Clang's SSE2 polyfill:
- // (a > b) -> ((a_hi > b_hi) || (a_lo > b_lo && a_hi == b_hi))
-
- // Mask the sign bit out since we need a signed AND an unsigned comparison
- // and it is ugly to try and split them.
- int32x4_t mask = vreinterpretq_s32_s64(vdupq_n_s64(0x80000000ull));
- int32x4_t a_mask = veorq_s32(vreinterpretq_s32_m128i(a), mask);
- int32x4_t b_mask = veorq_s32(vreinterpretq_s32_m128i(b), mask);
- // Check if a > b
- int64x2_t greater = vreinterpretq_s64_u32(vcgtq_s32(a_mask, b_mask));
- // Copy upper mask to lower mask
- // a_hi > b_hi
- int64x2_t gt_hi = vshrq_n_s64(greater, 63);
- // Copy lower mask to upper mask
- // a_lo > b_lo
- int64x2_t gt_lo = vsliq_n_s64(greater, greater, 32);
- // Compare for equality
- int64x2_t equal = vreinterpretq_s64_u32(vceqq_s32(a_mask, b_mask));
- // Copy upper mask to lower mask
- // a_hi == b_hi
- int64x2_t eq_hi = vshrq_n_s64(equal, 63);
- // a_hi > b_hi || (a_lo > b_lo && a_hi == b_hi)
- int64x2_t ret = vorrq_s64(gt_hi, vandq_s64(gt_lo, eq_hi));
- return vreinterpretq_m128i_s64(ret);
+ float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a));
+ vst1q_f32((float32_t *) mem_addr,
+ vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low)));
#endif
}
-// Compares the four 32-bit floats in a and b to check if any values are NaN.
-// Ordered compare between each value returns true for "orderable" and false for
-// "not orderable" (NaN).
-// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see
-// also:
-// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
-// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
-FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
+// Store the lower double-precision (64-bit) floating-point element from a into
+// memory. mem_addr does not need to be aligned on any particular boundary.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_store_sd
+FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a)
{
- // Note: NEON does not have ordered compare builtin
- // Need to compare a eq a and b eq b to check for NaN
- // Do AND of results to get final
- uint32x4_t ceqaa =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t ceqbb =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
+#if defined(__aarch64__)
+ vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
+#else
+ vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a)));
+#endif
}
-// Compares for ordered.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b)
+// Stores four 32-bit integer values as (as a __m128i value) at the address p.
+// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
+FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
{
- return _mm_move_ss(a, _mm_cmpord_ps(a, b));
+ vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
}
-// Compares for unordered.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b)
+// Store the lower double-precision (64-bit) floating-point element from a into
+// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
+// boundary or a general-protection exception may be generated.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd
+#define _mm_store1_pd _mm_store_pd1
+
+// Store the upper double-precision (64-bit) floating-point element from a into
+// memory.
+//
+// MEM[mem_addr+63:mem_addr] := a[127:64]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd
+FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
{
- uint32x4_t f32a =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t f32b =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b)));
+#if defined(__aarch64__)
+ vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a)));
+#else
+ vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a)));
+#endif
}
-// Compares for unordered.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100)
-FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b)
+// Reads the lower 64 bits of b and stores them into the lower 64 bits of a.
+// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx
+FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
{
- return _mm_move_ss(a, _mm_cmpunord_ps(a, b));
+ uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a));
+ uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b));
+ *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi));
}
-// Compares the lower single-precision floating point scalar values of a and b
-// using a less than operation. :
-// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important
-// note!! The documentation on MSDN is incorrect! If either of the values is a
-// NAN the docs say you will get a one, but in fact, it will return a zero!!
-FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
+// Store the lower double-precision (64-bit) floating-point element from a into
+// memory.
+//
+// MEM[mem_addr+63:mem_addr] := a[63:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd
+FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
{
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_lt_b =
- vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_lt_b), 0) != 0) ? 1 : 0;
+#if defined(__aarch64__)
+ vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
+#else
+ vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a)));
+#endif
}
-// Compares the lower single-precision floating point scalar values of a and b
-// using a greater than operation. :
-// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx
-FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
+// Store 2 double-precision (64-bit) floating-point elements from a into memory
+// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
+// general-protection exception may be generated.
+//
+// MEM[mem_addr+63:mem_addr] := a[127:64]
+// MEM[mem_addr+127:mem_addr+64] := a[63:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd
+FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
{
- // return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_gt_b =
- vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1 : 0;
+ float32x4_t f = vreinterpretq_f32_m128d(a);
+ _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2)));
}
-// Compares the lower single-precision floating point scalar values of a and b
-// using a less than or equal operation. :
-// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx
-FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
+// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
+// elements) from a into memory. mem_addr does not need to be aligned on any
+// particular boundary.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd
+FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
{
- // return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_le_b =
- vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_le_b), 0) != 0) ? 1 : 0;
+ _mm_store_pd(mem_addr, a);
}
-// Compares the lower single-precision floating point scalar values of a and b
-// using a greater than or equal operation. :
-// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx
-FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
+// Stores 128-bits of integer data a at the address p.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si128
+FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
{
- // return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_ge_b =
- vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1 : 0;
+ vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
}
-// Compares the lower single-precision floating point scalar values of a and b
-// using an equality operation. :
-// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx
-FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
+// Stores 32-bits of integer data a at the address p.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si32
+FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a)
{
- // return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_eq_b =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_eq_b), 0) != 0) ? 1 : 0;
+ vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0);
}
-// Compares the lower single-precision floating point scalar values of a and b
-// using an inequality operation. :
-// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx
-FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
+// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
+// elements) from a into memory using a non-temporal memory hint. mem_addr must
+// be aligned on a 16-byte boundary or a general-protection exception may be
+// generated.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pd
+FORCE_INLINE void _mm_stream_pd(double *p, __m128d a)
{
- // return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
- uint32x4_t a_neq_b = vmvnq_u32(
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_neq_b), 0) != 0) ? 1 : 0;
+#if __has_builtin(__builtin_nontemporal_store)
+ __builtin_nontemporal_store(a, (float32x4_t *) p);
+#elif defined(__aarch64__)
+ vst1q_f64(p, vreinterpretq_f64_m128d(a));
+#else
+ vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a));
+#endif
}
-// according to the documentation, these intrinsics behave the same as the
-// non-'u' versions. We'll just alias them here.
-#define _mm_ucomieq_ss _mm_comieq_ss
-#define _mm_ucomige_ss _mm_comige_ss
-#define _mm_ucomigt_ss _mm_comigt_ss
-#define _mm_ucomile_ss _mm_comile_ss
-#define _mm_ucomilt_ss _mm_comilt_ss
-#define _mm_ucomineq_ss _mm_comineq_ss
+// Stores the data in a to the address p without polluting the caches. If the
+// cache line containing address p is already in the cache, the cache will be
+// updated.
+// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx
+FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
+{
+#if __has_builtin(__builtin_nontemporal_store)
+ __builtin_nontemporal_store(a, p);
+#else
+ vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a));
+#endif
+}
-/* Conversions */
+// Store 32-bit integer a into memory using a non-temporal hint to minimize
+// cache pollution. If the cache line containing address mem_addr is already in
+// the cache, the cache will be updated.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si32
+FORCE_INLINE void _mm_stream_si32(int *p, int a)
+{
+ vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0);
+}
-// Convert packed signed 32-bit integers in b to packed single-precision
-// (32-bit) floating-point elements, store the results in the lower 2 elements
-// of dst, and copy the upper 2 packed elements from a to the upper elements of
-// dst.
+// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and
+// store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16
+FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_s16(
+ vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
+// unsigned 32-bit integers of a.
//
-// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
-// dst[63:32] := Convert_Int32_To_FP32(b[63:32])
-// dst[95:64] := a[95:64]
-// dst[127:96] := a[127:96]
+// r0 := a0 - b0
+// r1 := a1 - b1
+// r2 := a2 - b2
+// r3 := a3 - b3
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps
-FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
+// https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
{
- return vreinterpretq_m128_f32(
- vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
- vget_high_f32(vreinterpretq_f32_m128(a))));
+ return vreinterpretq_m128i_s32(
+ vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}
-// Convert the signed 32-bit integer b to a single-precision (32-bit)
-// floating-point element, store the result in the lower element of dst, and
-// copy the upper 3 packed elements from a to the upper elements of dst.
+// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a,
+// and store the results in dst.
+// r0 := a0 - b0
+// r1 := a1 - b1
+FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_s64(
+ vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
+}
+
+// Subtract packed 8-bit integers in b from packed 8-bit integers in a, and
+// store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi8
+FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_s8(
+ vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Subtract packed double-precision (64-bit) floating-point elements in b from
+// packed double-precision (64-bit) floating-point elements in a, and store the
+// results in dst.
//
-// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
-// dst[127:32] := a[127:32]
+// FOR j := 0 to 1
+// i := j*64
+// dst[i+63:i] := a[i+63:i] - b[i+63:i]
+// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss
-FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_sub_pd
+FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
{
- return vreinterpretq_m128_f32(
- vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ double *da = (double *) &a;
+ double *db = (double *) &b;
+ double c[2];
+ c[0] = da[0] - db[0];
+ c[1] = da[1] - db[1];
+ return vld1q_f32((float32_t *) c);
+#endif
}
-// Convert the signed 32-bit integer b to a single-precision (32-bit)
-// floating-point element, store the result in the lower element of dst, and
-// copy the upper 3 packed elements from a to the upper elements of dst.
+// Subtract the lower double-precision (64-bit) floating-point element in b from
+// the lower double-precision (64-bit) floating-point element in a, store the
+// result in the lower element of dst, and copy the upper element from a to the
+// upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sd
+FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
+{
+ return _mm_move_sd(a, _mm_sub_pd(a, b));
+}
+
+// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst.
//
-// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
-// dst[127:32] := a[127:32]
+// dst[63:0] := a[63:0] - b[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss
-#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64
+FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
+{
+ return vreinterpret_m64_s64(
+ vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
+}
-// Convert the signed 64-bit integer b to a single-precision (32-bit)
-// floating-point element, store the result in the lower element of dst, and
-// copy the upper 3 packed elements from a to the upper elements of dst.
+// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers
+// of a and saturates.
//
-// dst[31:0] := Convert_Int64_To_FP32(b[63:0])
-// dst[127:32] := a[127:32]
+// r0 := SignedSaturate(a0 - b0)
+// r1 := SignedSaturate(a1 - b1)
+// ...
+// r7 := SignedSaturate(a7 - b7)
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss
-FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
+// https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90)
+FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
{
- return vreinterpretq_m128_f32(
- vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
+ return vreinterpretq_m128i_s16(
+ vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}
-// Convert the lower single-precision (32-bit) floating-point element in a to a
-// 32-bit integer, and store the result in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si
-FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
+// Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers
+// of a and saturates.
+//
+// r0 := SignedSaturate(a0 - b0)
+// r1 := SignedSaturate(a1 - b1)
+// ...
+// r15 := SignedSaturate(a15 - b15)
+//
+// https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90)
+FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
{
-#if defined(__aarch64__)
- return vgetq_lane_s32(vcvtnq_s32_f32(vreinterpretq_f32_m128(a)), 0);
-#else
- float32_t data = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32_t diff = data - floor(data);
- if (diff > 0.5)
- return (int32_t) ceil(data);
- if (unlikely(diff == 0.5)) {
- int32_t f = (int32_t) floor(data);
- int32_t c = (int32_t) ceil(data);
- return c & 1 ? f : c;
- }
- return (int32_t) floor(data);
-#endif
+ return vreinterpretq_m128i_s8(
+ vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}
-// Convert packed 16-bit integers in a to packed single-precision (32-bit)
-// floating-point elements, and store the results in dst.
+// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit
+// integers of a and saturates..
+// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx
+FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_u16(
+ vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+}
+
+// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit
+// integers of a and saturates.
//
-// FOR j := 0 to 3
-// i := j*16
-// m := j*32
-// dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i])
-// ENDFOR
+// r0 := UnsignedSaturate(a0 - b0)
+// r1 := UnsignedSaturate(a1 - b1)
+// ...
+// r15 := UnsignedSaturate(a15 - b15)
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps
-FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
+// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90)
+FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
{
- return vreinterpretq_m128_f32(
- vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a))));
+ return vreinterpretq_m128i_u8(
+ vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
}
-// Convert packed 32-bit integers in b to packed single-precision (32-bit)
-// floating-point elements, store the results in the lower 2 elements of dst,
-// and copy the upper 2 packed elements from a to the upper elements of dst.
+#define _mm_ucomieq_sd _mm_comieq_sd
+#define _mm_ucomige_sd _mm_comige_sd
+#define _mm_ucomigt_sd _mm_comigt_sd
+#define _mm_ucomile_sd _mm_comile_sd
+#define _mm_ucomilt_sd _mm_comilt_sd
+#define _mm_ucomineq_sd _mm_comineq_sd
+
+// Return vector of type __m128d with undefined elements.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_pd
+FORCE_INLINE __m128d _mm_undefined_pd(void)
+{
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#endif
+ __m128d a;
+ return a;
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+}
+
+// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the
+// upper 4 signed or unsigned 16-bit integers in b.
//
-// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
-// dst[63:32] := Convert_Int32_To_FP32(b[63:32])
-// dst[95:64] := a[95:64]
-// dst[127:96] := a[127:96]
+// r0 := a4
+// r1 := b4
+// r2 := a5
+// r3 := b5
+// r4 := a6
+// r5 := b6
+// r6 := a7
+// r7 := b7
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps
-FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
+// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
{
- return vreinterpretq_m128_f32(
- vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
- vget_high_f32(vreinterpretq_f32_m128(a))));
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s16(
+ vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+#else
+ int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
+ int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
+ int16x4x2_t result = vzip_s16(a1, b1);
+ return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
+#endif
}
-// Convert packed signed 32-bit integers in a to packed single-precision
-// (32-bit) floating-point elements, store the results in the lower 2 elements
-// of dst, then covert the packed signed 32-bit integers in b to
-// single-precision (32-bit) floating-point element, and store the results in
-// the upper 2 elements of dst.
+// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the
+// upper 2 signed or unsigned 32-bit integers in b.
+// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s32(
+ vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+#else
+ int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
+ int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
+ int32x2x2_t result = vzip_s32(a1, b1);
+ return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
+#endif
+}
+
+// Interleaves the upper signed or unsigned 64-bit integer in a with the
+// upper signed or unsigned 64-bit integer in b.
//
-// dst[31:0] := Convert_Int32_To_FP32(a[31:0])
-// dst[63:32] := Convert_Int32_To_FP32(a[63:32])
-// dst[95:64] := Convert_Int32_To_FP32(b[31:0])
-// dst[127:96] := Convert_Int32_To_FP32(b[63:32])
+// r0 := a1
+// r1 := b1
+FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
+{
+ int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
+ int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
+ return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
+}
+
+// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper
+// 8 signed or unsigned 8-bit integers in b.
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps
-FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
+// r0 := a8
+// r1 := b8
+// r2 := a9
+// r3 := b9
+// ...
+// r14 := a15
+// r15 := b15
+//
+// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
{
- return vreinterpretq_m128_f32(vcvtq_f32_s32(
- vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))));
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s8(
+ vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+#else
+ int8x8_t a1 =
+ vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
+ int8x8_t b1 =
+ vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
+ int8x8x2_t result = vzip_s8(a1, b1);
+ return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
+#endif
}
-// Convert the lower packed 8-bit integers in a to packed single-precision
-// (32-bit) floating-point elements, and store the results in dst.
+// Unpack and interleave double-precision (64-bit) floating-point elements from
+// the high half of a and b, and store the results in dst.
//
-// FOR j := 0 to 3
-// i := j*8
-// m := j*32
-// dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i])
-// ENDFOR
+// DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) {
+// dst[63:0] := src1[127:64]
+// dst[127:64] := src2[127:64]
+// RETURN dst[127:0]
+// }
+// dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps
-FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd
+FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
{
- return vreinterpretq_m128_f32(vcvtq_f32_s32(
- vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a))))));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ return vreinterpretq_m128d_s64(
+ vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)),
+ vget_high_s64(vreinterpretq_s64_m128d(b))));
+#endif
}
-// Convert packed unsigned 16-bit integers in a to packed single-precision
-// (32-bit) floating-point elements, and store the results in dst.
+// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the
+// lower 4 signed or unsigned 16-bit integers in b.
//
-// FOR j := 0 to 3
-// i := j*16
-// m := j*32
-// dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i])
-// ENDFOR
+// r0 := a0
+// r1 := b0
+// r2 := a1
+// r3 := b1
+// r4 := a2
+// r5 := b2
+// r6 := a3
+// r7 := b3
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps
-FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
+// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx
+FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
{
- return vreinterpretq_m128_f32(
- vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a))));
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s16(
+ vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+#else
+ int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
+ int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
+ int16x4x2_t result = vzip_s16(a1, b1);
+ return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
+#endif
}
-// Convert the lower packed unsigned 8-bit integers in a to packed
-// single-precision (32-bit) floating-point elements, and store the results in
-// dst.
+// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the
+// lower 2 signed or unsigned 32 - bit integers in b.
//
-// FOR j := 0 to 3
-// i := j*8
-// m := j*32
-// dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i])
-// ENDFOR
+// r0 := a0
+// r1 := b0
+// r2 := a1
+// r3 := b1
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps
-FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
+// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
{
- return vreinterpretq_m128_f32(vcvtq_f32_u32(
- vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a))))));
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s32(
+ vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+#else
+ int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
+ int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
+ int32x2x2_t result = vzip_s32(a1, b1);
+ return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
+#endif
}
-// Converts the four single-precision, floating-point values of a to signed
-// 32-bit integer values using truncate.
-// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
+FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
{
- return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
+ int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
+ int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
+ return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
}
-// Convert the lower double-precision (64-bit) floating-point element in a to a
-// 64-bit integer with truncation, and store the result in dst.
+// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower
+// 8 signed or unsigned 8-bit integers in b.
//
-// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
+// r0 := a0
+// r1 := b0
+// r2 := a1
+// r3 := b1
+// ...
+// r14 := a7
+// r15 := b7
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64
-FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
+// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx
+FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
{
#if defined(__aarch64__)
- return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0);
+ return vreinterpretq_m128i_s8(
+ vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
#else
- double ret = *((double *) &a);
- return (int64_t) ret;
+ int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
+ int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
+ int8x8x2_t result = vzip_s8(a1, b1);
+ return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
#endif
}
-// Convert the lower double-precision (64-bit) floating-point element in a to a
-// 64-bit integer with truncation, and store the result in dst.
+// Unpack and interleave double-precision (64-bit) floating-point elements from
+// the low half of a and b, and store the results in dst.
//
-// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
+// DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) {
+// dst[63:0] := src1[63:0]
+// dst[127:64] := src2[63:0]
+// RETURN dst[127:0]
+// }
+// dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x
-#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a)
-
-// Converts the four signed 32-bit integer values of a to single-precision,
-// floating-point values
-// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd
+FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
{
- return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ return vreinterpretq_m128d_s64(
+ vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)),
+ vget_low_s64(vreinterpretq_s64_m128d(b))));
+#endif
}
-// Converts the four unsigned 8-bit integers in the lower 16 bits to four
-// unsigned 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
+// Compute the bitwise XOR of packed double-precision (64-bit) floating-point
+// elements in a and b, and store the results in dst.
+//
+// FOR j := 0 to 1
+// i := j*64
+// dst[i+63:i] := a[i+63:i] XOR b[i+63:i]
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd
+FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
{
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
- uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- return vreinterpretq_m128i_u16(u16x8);
+ return vreinterpretq_m128d_s64(
+ veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
}
-// Converts the four unsigned 8-bit integers in the lower 32 bits to four
-// unsigned 32-bit integers.
-// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx
-FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
+// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in
+// b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
{
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
- uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
- return vreinterpretq_m128i_u32(u32x4);
+ return vreinterpretq_m128i_s32(
+ veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}
-// Converts the two unsigned 8-bit integers in the lower 16 bits to two
-// unsigned 64-bit integers.
-FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
+/* SSE3 */
+
+// Alternatively add and subtract packed double-precision (64-bit)
+// floating-point elements in a to/from packed elements in b, and store the
+// results in dst.
+//
+// FOR j := 0 to 1
+// i := j*64
+// IF ((j & 1) == 0)
+// dst[i+63:i] := a[i+63:i] - b[i+63:i]
+// ELSE
+// dst[i+63:i] := a[i+63:i] + b[i+63:i]
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_addsub_pd
+FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b)
{
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */
- uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */
- uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
- uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_u64(u64x2);
+ __m128d mask = _mm_set_pd(1.0f, -1.0f);
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a),
+ vreinterpretq_f64_m128d(b),
+ vreinterpretq_f64_m128d(mask)));
+#else
+ return _mm_add_pd(_mm_mul_pd(b, mask), a);
+#endif
}
-// Converts the four unsigned 8-bit integers in the lower 16 bits to four
-// unsigned 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
+// Alternatively add and subtract packed single-precision (32-bit)
+// floating-point elements in a to/from packed elements in b, and store the
+// results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps
+FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
{
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
- int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- return vreinterpretq_m128i_s16(s16x8);
+ __m128 mask = {-1.0f, 1.0f, -1.0f, 1.0f};
+#if defined(__aarch64__) || defined(__ARM_FEATURE_FMA) /* VFPv4+ */
+ return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a),
+ vreinterpretq_f32_m128(mask),
+ vreinterpretq_f32_m128(b)));
+#else
+ return _mm_add_ps(_mm_mul_ps(b, mask), a);
+#endif
}
-// Converts the four unsigned 8-bit integers in the lower 32 bits to four
-// unsigned 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
+// Horizontally add adjacent pairs of double-precision (64-bit) floating-point
+// elements in a and b, and pack the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd
+FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b)
{
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
- int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
- return vreinterpretq_m128i_s32(s32x4);
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+ double *da = (double *) &a;
+ double *db = (double *) &b;
+ double c[] = {da[0] + da[1], db[0] + db[1]};
+ return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
+#endif
}
-// Converts the two signed 8-bit integers in the lower 32 bits to four
-// signed 64-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
+// Computes pairwise add of each argument as single-precision, floating-point
+// values a and b.
+// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx
+FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
{
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */
- int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */
- int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
- int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_s64(s64x2);
+#if defined(__aarch64__)
+ return vreinterpretq_m128_f32(
+ vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#else
+ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
+ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
+ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
+ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
+ return vreinterpretq_m128_f32(
+ vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
+#endif
}
-// Converts the four signed 16-bit integers in the lower 64 bits to four signed
-// 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
+// Horizontally subtract adjacent pairs of double-precision (64-bit)
+// floating-point elements in a and b, and pack the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pd
+FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b)
{
- return vreinterpretq_m128i_s32(
- vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(vsubq_f64(
+ vuzp1q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b)),
+ vuzp2q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b))));
+#else
+ double *da = (double *) &_a;
+ double *db = (double *) &_b;
+ double c[] = {da[0] - da[1], db[0] - db[1]};
+ return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
+#endif
}
-// Converts the two signed 16-bit integers in the lower 32 bits two signed
-// 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
+// Horizontally substract adjacent pairs of single-precision (32-bit)
+// floating-point elements in a and b, and pack the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps
+FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
{
- int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */
- int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
- int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_s64(s64x2);
+#if defined(__aarch64__)
+ return vreinterpretq_m128_f32(vsubq_f32(
+ vuzp1q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)),
+ vuzp2q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b))));
+#else
+ float32x4x2_t c =
+ vuzpq_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b));
+ return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
+#endif
}
-// Converts the four unsigned 16-bit integers in the lower 64 bits to four
-// unsigned 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
+// Load 128-bits of integer data from unaligned memory into dst. This intrinsic
+// may perform better than _mm_loadu_si128 when the data crosses a cache line
+// boundary.
+//
+// dst[127:0] := MEM[mem_addr+127:mem_addr]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128
+#define _mm_lddqu_si128 _mm_loadu_si128
+
+// Load a double-precision (64-bit) floating-point element from memory into both
+// elements of dst.
+//
+// dst[63:0] := MEM[mem_addr+63:mem_addr]
+// dst[127:64] := MEM[mem_addr+63:mem_addr]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd
+#define _mm_loaddup_pd _mm_load1_pd
+
+// Duplicate the low double-precision (64-bit) floating-point element from a,
+// and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd
+FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
{
- return vreinterpretq_m128i_u32(
- vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
+#if (__aarch64__)
+ return vreinterpretq_m128d_f64(
+ vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0));
+#else
+ return vreinterpretq_m128d_u64(
+ vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)));
+#endif
}
-// Converts the two unsigned 16-bit integers in the lower 32 bits to two
-// unsigned 64-bit integers.
-FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
+// Duplicate odd-indexed single-precision (32-bit) floating-point elements
+// from a, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps
+FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
{
- uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */
- uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
- uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_u64(u64x2);
+#if __has_builtin(__builtin_shufflevector)
+ return vreinterpretq_m128_f32(__builtin_shufflevector(
+ vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
+#else
+ float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
+ float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3);
+ float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3};
+ return vreinterpretq_m128_f32(vld1q_f32(data));
+#endif
}
-// Converts the two unsigned 32-bit integers in the lower 64 bits to two
-// unsigned 64-bit integers.
-FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
+// Duplicate even-indexed single-precision (32-bit) floating-point elements
+// from a, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps
+FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
{
- return vreinterpretq_m128i_u64(
- vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
+#if __has_builtin(__builtin_shufflevector)
+ return vreinterpretq_m128_f32(__builtin_shufflevector(
+ vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
+#else
+ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+ float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2);
+ float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2};
+ return vreinterpretq_m128_f32(vld1q_f32(data));
+#endif
}
-// Converts the two signed 32-bit integers in the lower 64 bits to two signed
-// 64-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
+/* SSSE3 */
+
+// Compute the absolute value of packed signed 16-bit integers in a, and store
+// the unsigned results in dst.
+//
+// FOR j := 0 to 7
+// i := j*16
+// dst[i+15:i] := ABS(a[i+15:i])
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16
+FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
{
- return vreinterpretq_m128i_s64(
- vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
+ return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
}
-// Converts the four single-precision, floating-point values of a to signed
-// 32-bit integer values.
+// Compute the absolute value of packed signed 32-bit integers in a, and store
+// the unsigned results in dst.
//
-// r0 := (int) a0
-// r1 := (int) a1
-// r2 := (int) a2
-// r3 := (int) a3
+// FOR j := 0 to 3
+// i := j*32
+// dst[i+31:i] := ABS(a[i+31:i])
+// ENDFOR
//
-// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx
-// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
-// does not support! It is supported on ARMv8-A however.
-FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32
+FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
-#else
- uint32x4_t signmask = vdupq_n_u32(0x80000000);
- float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
- vdupq_n_f32(0.5f)); /* +/- 0.5 */
- int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
- vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
- int32x4_t r_trunc =
- vcvtq_s32_f32(vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
- int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
- vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
- int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
- vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
- float32x4_t delta = vsubq_f32(
- vreinterpretq_f32_m128(a),
- vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
- uint32x4_t is_delta_half = vceqq_f32(delta, half); /* delta == +/- 0.5 */
- return vreinterpretq_m128i_s32(vbslq_s32(is_delta_half, r_even, r_normal));
-#endif
+ return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
}
-// Convert packed single-precision (32-bit) floating-point elements in a to
-// packed 16-bit integers, and store the results in dst. Note: this intrinsic
-// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and
-// 0x7FFFFFFF.
+// Compute the absolute value of packed signed 8-bit integers in a, and store
+// the unsigned results in dst.
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16
-FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
+// FOR j := 0 to 15
+// i := j*8
+// dst[i+7:i] := ABS(a[i+7:i])
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8
+FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
{
- return vreinterpret_m64_s16(
- vmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a))));
+ return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
}
-// Copy the lower 32-bit integer in a to dst.
+// Compute the absolute value of packed signed 16-bit integers in a, and store
+// the unsigned results in dst.
//
-// dst[31:0] := a[31:0]
+// FOR j := 0 to 3
+// i := j*16
+// dst[i+15:i] := ABS(a[i+15:i])
+// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32
-FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16
+FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
{
- return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
+ return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
}
-// Copy the lower 64-bit integer in a to dst.
+// Compute the absolute value of packed signed 32-bit integers in a, and store
+// the unsigned results in dst.
//
-// dst[63:0] := a[63:0]
+// FOR j := 0 to 1
+// i := j*32
+// dst[i+31:i] := ABS(a[i+31:i])
+// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64
-FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32
+FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
{
- return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
+ return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
}
-// Copy the lower 64-bit integer in a to dst.
+// Compute the absolute value of packed signed 8-bit integers in a, and store
+// the unsigned results in dst.
//
-// dst[63:0] := a[63:0]
+// FOR j := 0 to 7
+// i := j*8
+// dst[i+7:i] := ABS(a[i+7:i])
+// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
-#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8
+FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
+{
+ return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
+}
-// Moves 32-bit integer a to the least significant 32 bits of an __m128 object,
-// zero extending the upper bits.
+// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift
+// the result right by imm8 bytes, and store the low 16 bytes in dst.
//
-// r0 := a
-// r1 := 0x0
-// r2 := 0x0
-// r3 := 0x0
+// tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8)
+// dst[127:0] := tmp[127:0]
//
-// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx
-FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8
+FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm)
{
- return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
+ if (_sse2neon_unlikely(imm & ~31))
+ return _mm_setzero_si128();
+ int idx;
+ uint8x16_t tmp[2];
+ if (imm >= 16) {
+ idx = imm - 16;
+ tmp[0] = vreinterpretq_u8_m128i(a);
+ tmp[1] = vdupq_n_u8(0);
+ } else {
+ idx = imm;
+ tmp[0] = vreinterpretq_u8_m128i(b);
+ tmp[1] = vreinterpretq_u8_m128i(a);
+ }
+ return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + idx));
}
-// Moves 64-bit integer a to the least significant 64 bits of an __m128 object,
-// zero extending the upper bits.
+// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift
+// the result right by imm8 bytes, and store the low 8 bytes in dst.
//
-// r0 := a
-// r1 := 0x0
-FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
+// tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8)
+// dst[63:0] := tmp[63:0]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8
+#define _mm_alignr_pi8(a, b, imm) \
+ __extension__({ \
+ __m64 ret; \
+ if (_sse2neon_unlikely((imm) >= 16)) { \
+ ret = vreinterpret_m64_s8(vdup_n_s8(0)); \
+ } else { \
+ uint8x8_t tmp_low, tmp_high; \
+ if (imm >= 8) { \
+ const int idx = imm - 8; \
+ tmp_low = vreinterpret_u8_m64(a); \
+ tmp_high = vdup_n_u8(0); \
+ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
+ } else { \
+ const int idx = imm; \
+ tmp_low = vreinterpret_u8_m64(b); \
+ tmp_high = vreinterpret_u8_m64(a); \
+ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
+ } \
+ } \
+ ret; \
+ })
+
+// Computes pairwise add of each argument as a 16-bit signed or unsigned integer
+// values a and b.
+FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
{
- return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
+ int16x8_t a = vreinterpretq_s16_m128i(_a);
+ int16x8_t b = vreinterpretq_s16_m128i(_b);
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
+#else
+ return vreinterpretq_m128i_s16(
+ vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
+ vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
+#endif
}
-// Cast vector of type __m128 to type __m128d. This intrinsic is only used for
-// compilation and does not generate any instructions, thus it has zero latency.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd
-FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
+// Computes pairwise add of each argument as a 32-bit signed or unsigned integer
+// values a and b.
+FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
{
- return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
+ int32x4_t a = vreinterpretq_s32_m128i(_a);
+ int32x4_t b = vreinterpretq_s32_m128i(_b);
+ return vreinterpretq_m128i_s32(
+ vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
+ vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
}
-// Applies a type cast to reinterpret four 32-bit floating point values passed
-// in as a 128-bit parameter as packed 32-bit integers.
-// https://msdn.microsoft.com/en-us/library/bb514099.aspx
-FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
+// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
+// signed 16-bit results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16
+FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
{
- return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
+ return vreinterpret_m64_s16(
+ vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
}
-// Cast vector of type __m128i to type __m128d. This intrinsic is only used for
-// compilation and does not generate any instructions, thus it has zero latency.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd
-FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a)
+// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
+// signed 32-bit results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32
+FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
+{
+ return vreinterpret_m64_s32(
+ vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)));
+}
+
+// Computes saturated pairwise sub of each argument as a 16-bit signed
+// integer values a and b.
+FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
{
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a));
+ int16x8_t a = vreinterpretq_s16_m128i(_a);
+ int16x8_t b = vreinterpretq_s16_m128i(_b);
+ return vreinterpretq_s64_s16(
+ vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
#else
- return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a));
+ int32x4_t a = vreinterpretq_s32_m128i(_a);
+ int32x4_t b = vreinterpretq_s32_m128i(_b);
+ // Interleave using vshrn/vmovn
+ // [a0|a2|a4|a6|b0|b2|b4|b6]
+ // [a1|a3|a5|a7|b1|b3|b5|b7]
+ int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
+ int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
+ // Saturated add
+ return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
#endif
}
-// Applies a type cast to reinterpret four 32-bit integers passed in as a
-// 128-bit parameter as packed 32-bit floating point values.
-// https://msdn.microsoft.com/en-us/library/bb514029.aspx
-FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
+// Horizontally add adjacent pairs of signed 16-bit integers in a and b using
+// saturation, and pack the signed 16-bit results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadds_pi16
+FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b)
{
- return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
+ int16x4_t a = vreinterpret_s16_m64(_a);
+ int16x4_t b = vreinterpret_s16_m64(_b);
+#if defined(__aarch64__)
+ return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
+#else
+ int16x4x2_t res = vuzp_s16(a, b);
+ return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1]));
+#endif
}
-// Loads 128-bit value. :
-// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx
-FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
+// Computes pairwise difference of each argument as a 16-bit signed or unsigned
+// integer values a and b.
+FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
{
- return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
+ int32x4_t a = vreinterpretq_s32_m128i(_a);
+ int32x4_t b = vreinterpretq_s32_m128i(_b);
+ // Interleave using vshrn/vmovn
+ // [a0|a2|a4|a6|b0|b2|b4|b6]
+ // [a1|a3|a5|a7|b1|b3|b5|b7]
+ int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
+ int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
+ // Subtract
+ return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357));
}
-// Load a double-precision (64-bit) floating-point element from memory into both
-// elements of dst.
-//
-// dst[63:0] := MEM[mem_addr+63:mem_addr]
-// dst[127:64] := MEM[mem_addr+63:mem_addr]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd
-FORCE_INLINE __m128d _mm_load1_pd(const double *p)
+// Computes pairwise difference of each argument as a 32-bit signed or unsigned
+// integer values a and b.
+FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
+{
+ int64x2_t a = vreinterpretq_s64_m128i(_a);
+ int64x2_t b = vreinterpretq_s64_m128i(_b);
+ // Interleave using vshrn/vmovn
+ // [a0|a2|b0|b2]
+ // [a1|a2|b1|b3]
+ int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b));
+ int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32));
+ // Subtract
+ return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13));
+}
+
+// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
+// the signed 16-bit results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pi16
+FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b)
+{
+ int32x4_t ab =
+ vcombine_s32(vreinterpret_s32_m64(_a), vreinterpret_s32_m64(_b));
+
+ int16x4_t ab_low_bits = vmovn_s32(ab);
+ int16x4_t ab_high_bits = vshrn_n_s32(ab, 16);
+
+ return vreinterpret_m64_s16(vsub_s16(ab_low_bits, ab_high_bits));
+}
+
+// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
+// the signed 32-bit results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_hsub_pi32
+FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b)
{
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vld1q_dup_f64(p));
+ int32x2_t a = vreinterpret_s32_m64(_a);
+ int32x2_t b = vreinterpret_s32_m64(_b);
+ return vreinterpret_m64_s32(vsub_s32(vtrn1_s32(a, b), vtrn2_s32(a, b)));
#else
- return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p));
+ int32x2x2_t trn_ab =
+ vtrn_s32(vreinterpret_s32_m64(_a), vreinterpret_s32_m64(_b));
+ return vreinterpret_m64_s32(vsub_s32(trn_ab.val[0], trn_ab.val[1]));
#endif
}
-// Load a double-precision (64-bit) floating-point element from memory into both
-// elements of dst.
-//
-// dst[63:0] := MEM[mem_addr+63:mem_addr]
-// dst[127:64] := MEM[mem_addr+63:mem_addr]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1
-#define _mm_load_pd1 _mm_load1_pd
+// Computes saturated pairwise difference of each argument as a 16-bit signed
+// integer values a and b.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16
+FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
+{
+#if defined(__aarch64__)
+ int16x8_t a = vreinterpretq_s16_m128i(_a);
+ int16x8_t b = vreinterpretq_s16_m128i(_b);
+ return vreinterpretq_s64_s16(
+ vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
+#else
+ int32x4_t a = vreinterpretq_s32_m128i(_a);
+ int32x4_t b = vreinterpretq_s32_m128i(_b);
+ // Interleave using vshrn/vmovn
+ // [a0|a2|a4|a6|b0|b2|b4|b6]
+ // [a1|a3|a5|a7|b1|b3|b5|b7]
+ int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
+ int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
+ // Saturated subtract
+ return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357));
+#endif
+}
-// Load a double-precision (64-bit) floating-point element from memory into the
-// upper element of dst, and copy the lower element from a to dst. mem_addr does
-// not need to be aligned on any particular boundary.
-//
-// dst[63:0] := a[63:0]
-// dst[127:64] := MEM[mem_addr+63:mem_addr]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd
-FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
+// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
+// using saturation, and pack the signed 16-bit results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_pi16
+FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b)
{
+ int16x4_t a = vreinterpret_s16_m64(_a);
+ int16x4_t b = vreinterpret_s16_m64(_b);
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p)));
+ return vreinterpret_s64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
#else
- return vreinterpretq_m128d_f32(vcombine_f32(
- vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p)));
+ int16x4x2_t res = vuzp_s16(a, b);
+ return vreinterpret_s64_s16(vqsub_s16(res.val[0], res.val[1]));
#endif
}
-// Load a double-precision (64-bit) floating-point element from memory into both
-// elements of dst.
-//
-// dst[63:0] := MEM[mem_addr+63:mem_addr]
-// dst[127:64] := MEM[mem_addr+63:mem_addr]
+// Vertically multiply each unsigned 8-bit integer from a with the corresponding
+// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
+// Horizontally add adjacent pairs of intermediate signed 16-bit integers,
+// and pack the saturated results in dst.
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1
-#define _mm_load_pd1 _mm_load1_pd
+// FOR j := 0 to 7
+// i := j*16
+// dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] +
+// a[i+7:i]*b[i+7:i] )
+// ENDFOR
+FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
+{
+#if defined(__aarch64__)
+ uint8x16_t a = vreinterpretq_u8_m128i(_a);
+ int8x16_t b = vreinterpretq_s8_m128i(_b);
+ int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))),
+ vmovl_s8(vget_low_s8(b)));
+ int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))),
+ vmovl_s8(vget_high_s8(b)));
+ return vreinterpretq_m128i_s16(
+ vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)));
+#else
+ // This would be much simpler if x86 would choose to zero extend OR sign
+ // extend, not both. This could probably be optimized better.
+ uint16x8_t a = vreinterpretq_u16_m128i(_a);
+ int16x8_t b = vreinterpretq_s16_m128i(_b);
-// Load a double-precision (64-bit) floating-point element from memory into both
-// elements of dst.
-//
-// dst[63:0] := MEM[mem_addr+63:mem_addr]
-// dst[127:64] := MEM[mem_addr+63:mem_addr]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd
-#define _mm_loaddup_pd _mm_load1_pd
+ // Zero extend a
+ int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
+ int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
-// Loads 128-bit value. :
-// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
+ // Sign extend by shifting left then shifting right.
+ int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
+ int16x8_t b_odd = vshrq_n_s16(b, 8);
+
+ // multiply
+ int16x8_t prod1 = vmulq_s16(a_even, b_even);
+ int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
+
+ // saturated add
+ return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
+#endif
+}
+
+// Vertically multiply each unsigned 8-bit integer from a with the corresponding
+// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
+// Horizontally add adjacent pairs of intermediate signed 16-bit integers, and
+// pack the saturated results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maddubs_pi16
+FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b)
{
- return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
+ uint16x4_t a = vreinterpret_u16_m64(_a);
+ int16x4_t b = vreinterpret_s16_m64(_b);
+
+ // Zero extend a
+ int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8));
+ int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff)));
+
+ // Sign extend by shifting left then shifting right.
+ int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8);
+ int16x4_t b_odd = vshr_n_s16(b, 8);
+
+ // multiply
+ int16x4_t prod1 = vmul_s16(a_even, b_even);
+ int16x4_t prod2 = vmul_s16(a_odd, b_odd);
+
+ // saturated add
+ return vreinterpret_m64_s16(vqadd_s16(prod1, prod2));
}
-// Load unaligned 32-bit integer from memory into the first element of dst.
-//
-// dst[31:0] := MEM[mem_addr+31:mem_addr]
-// dst[MAX:32] := 0
+// Multiply packed signed 16-bit integers in a and b, producing intermediate
+// signed 32-bit integers. Shift right by 15 bits while rounding up, and store
+// the packed 16-bit integers in dst.
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32
-FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
+// r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15)
+// r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15)
+// r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15)
+// ...
+// r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15)
+FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
{
- return vreinterpretq_m128i_s32(
- vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0));
+ // Has issues due to saturation
+ // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
+
+ // Multiply
+ int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
+ vget_low_s16(vreinterpretq_s16_m128i(b)));
+ int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
+ vget_high_s16(vreinterpretq_s16_m128i(b)));
+
+ // Rounding narrowing shift right
+ // narrow = (int16_t)((mul + 16384) >> 15);
+ int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
+ int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
+
+ // Join together
+ return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
}
-// Convert packed double-precision (64-bit) floating-point elements in a to
-// packed single-precision (32-bit) floating-point elements, and store the
-// results in dst.
+// Multiply packed signed 16-bit integers in a and b, producing intermediate
+// signed 32-bit integers. Truncate each intermediate integer to the 18 most
+// significant bits, round by adding 1, and store bits [16:1] to dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhrs_pi16
+FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)
+{
+ int32x4_t mul_extend =
+ vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b)));
+
+ // Rounding narrowing shift right
+ return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15));
+}
+
+// Shuffle packed 8-bit integers in a according to shuffle control mask in the
+// corresponding 8-bit element of b, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8
+FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
+{
+ int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a
+ uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b
+ uint8x16_t idx_masked =
+ vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
+#elif defined(__GNUC__)
+ int8x16_t ret;
+ // %e and %f represent the even and odd D registers
+ // respectively.
+ __asm__ __volatile__(
+ "vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
+ "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
+ : [ret] "=&w"(ret)
+ : [tbl] "w"(tbl), [idx] "w"(idx_masked));
+ return vreinterpretq_m128i_s8(ret);
+#else
+ // use this line if testing on aarch64
+ int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
+ return vreinterpretq_m128i_s8(
+ vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
+ vtbl2_s8(a_split, vget_high_u8(idx_masked))));
+#endif
+}
+
+// Shuffle packed 8-bit integers in a according to shuffle control mask in the
+// corresponding 8-bit element of b, and store the results in dst.
//
-// FOR j := 0 to 1
-// i := 32*j
-// k := 64*j
-// dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k])
+// FOR j := 0 to 7
+// i := j*8
+// IF b[i+7] == 1
+// dst[i+7:i] := 0
+// ELSE
+// index[2:0] := b[i+2:i]
+// dst[i+7:i] := a[index*8+7:index*8]
+// FI
// ENDFOR
-// dst[127:64] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps
-FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi8
+FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b)
+{
+ const int8x8_t controlMask =
+ vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t)(0x1 << 7 | 0x07)));
+ int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask);
+ return vreinterpret_m64_s8(res);
+}
+
+// Negate packed 16-bit integers in a when the corresponding signed
+// 16-bit integer in b is negative, and store the results in dst.
+// Element in dst are zeroed out when the corresponding element
+// in b is zero.
+//
+// for i in 0..7
+// if b[i] < 0
+// r[i] := -a[i]
+// else if b[i] == 0
+// r[i] := 0
+// else
+// r[i] := a[i]
+// fi
+// done
+FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
{
+ int16x8_t a = vreinterpretq_s16_m128i(_a);
+ int16x8_t b = vreinterpretq_s16_m128i(_b);
+
+ // signed shift right: faster than vclt
+ // (b < 0) ? 0xFFFF : 0
+ uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
+ // (b == 0) ? 0xFFFF : 0
#if defined(__aarch64__)
- float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a));
- return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0)));
+ int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b));
#else
- float a0 = (float) ((double *) &a)[0];
- float a1 = (float) ((double *) &a)[1];
- return _mm_set_ps(0, 0, a1, a0);
+ int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0)));
#endif
+
+ // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative
+ // 'a') based on ltMask
+ int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a);
+ // res = masked & (~zeroMask)
+ int16x8_t res = vbicq_s16(masked, zeroMask);
+ return vreinterpretq_m128i_s16(res);
}
-// Copy the lower double-precision (64-bit) floating-point element of a to dst.
+// Negate packed 32-bit integers in a when the corresponding signed
+// 32-bit integer in b is negative, and store the results in dst.
+// Element in dst are zeroed out when the corresponding element
+// in b is zero.
//
-// dst[63:0] := a[63:0]
+// for i in 0..3
+// if b[i] < 0
+// r[i] := -a[i]
+// else if b[i] == 0
+// r[i] := 0
+// else
+// r[i] := a[i]
+// fi
+// done
+FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
+{
+ int32x4_t a = vreinterpretq_s32_m128i(_a);
+ int32x4_t b = vreinterpretq_s32_m128i(_b);
+
+ // signed shift right: faster than vclt
+ // (b < 0) ? 0xFFFFFFFF : 0
+ uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
+
+ // (b == 0) ? 0xFFFFFFFF : 0
+#if defined(__aarch64__)
+ int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b));
+#else
+ int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0)));
+#endif
+
+ // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative
+ // 'a') based on ltMask
+ int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a);
+ // res = masked & (~zeroMask)
+ int32x4_t res = vbicq_s32(masked, zeroMask);
+ return vreinterpretq_m128i_s32(res);
+}
+
+// Negate packed 8-bit integers in a when the corresponding signed
+// 8-bit integer in b is negative, and store the results in dst.
+// Element in dst are zeroed out when the corresponding element
+// in b is zero.
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64
-FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
+// for i in 0..15
+// if b[i] < 0
+// r[i] := -a[i]
+// else if b[i] == 0
+// r[i] := 0
+// else
+// r[i] := a[i]
+// fi
+// done
+FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
{
+ int8x16_t a = vreinterpretq_s8_m128i(_a);
+ int8x16_t b = vreinterpretq_s8_m128i(_b);
+
+ // signed shift right: faster than vclt
+ // (b < 0) ? 0xFF : 0
+ uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
+
+ // (b == 0) ? 0xFF : 0
#if defined(__aarch64__)
- return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0);
+ int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b));
#else
- return ((double *) &a)[0];
+ int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
#endif
+
+ // bitwise select either a or nagative 'a' (vnegq_s8(a) return nagative 'a')
+ // based on ltMask
+ int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
+ // res = masked & (~zeroMask)
+ int8x16_t res = vbicq_s8(masked, zeroMask);
+
+ return vreinterpretq_m128i_s8(res);
}
-// Convert packed single-precision (32-bit) floating-point elements in a to
-// packed double-precision (64-bit) floating-point elements, and store the
-// results in dst.
+// Negate packed 16-bit integers in a when the corresponding signed 16-bit
+// integer in b is negative, and store the results in dst. Element in dst are
+// zeroed out when the corresponding element in b is zero.
//
-// FOR j := 0 to 1
-// i := 64*j
-// k := 32*j
-// dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k])
+// FOR j := 0 to 3
+// i := j*16
+// IF b[i+15:i] < 0
+// dst[i+15:i] := -(a[i+15:i])
+// ELSE IF b[i+15:i] == 0
+// dst[i+15:i] := 0
+// ELSE
+// dst[i+15:i] := a[i+15:i]
+// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd
-FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16
+FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
{
+ int16x4_t a = vreinterpret_s16_m64(_a);
+ int16x4_t b = vreinterpret_s16_m64(_b);
+
+ // signed shift right: faster than vclt
+ // (b < 0) ? 0xFFFF : 0
+ uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15));
+
+ // (b == 0) ? 0xFFFF : 0
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a))));
+ int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b));
#else
- double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
- return _mm_set_pd(a1, a0);
+ int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
#endif
-}
-// Cast vector of type __m128d to type __m128i. This intrinsic is only used for
-// compilation and does not generate any instructions, thus it has zero latency.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128
-FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
-{
- return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
+ // bitwise select either a or nagative 'a' (vneg_s16(a) return nagative 'a')
+ // based on ltMask
+ int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
+ // res = masked & (~zeroMask)
+ int16x4_t res = vbic_s16(masked, zeroMask);
+
+ return vreinterpret_m64_s16(res);
}
-// Cast vector of type __m128d to type __m128. This intrinsic is only used for
-// compilation and does not generate any instructions, thus it has zero latency.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps
-FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
+// Negate packed 32-bit integers in a when the corresponding signed 32-bit
+// integer in b is negative, and store the results in dst. Element in dst are
+// zeroed out when the corresponding element in b is zero.
+//
+// FOR j := 0 to 1
+// i := j*32
+// IF b[i+31:i] < 0
+// dst[i+31:i] := -(a[i+31:i])
+// ELSE IF b[i+31:i] == 0
+// dst[i+31:i] := 0
+// ELSE
+// dst[i+31:i] := a[i+31:i]
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32
+FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
{
- return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a));
+ int32x2_t a = vreinterpret_s32_m64(_a);
+ int32x2_t b = vreinterpret_s32_m64(_b);
+
+ // signed shift right: faster than vclt
+ // (b < 0) ? 0xFFFFFFFF : 0
+ uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31));
+
+ // (b == 0) ? 0xFFFFFFFF : 0
+#if defined(__aarch64__)
+ int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b));
+#else
+ int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
+#endif
+
+ // bitwise select either a or nagative 'a' (vneg_s32(a) return nagative 'a')
+ // based on ltMask
+ int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
+ // res = masked & (~zeroMask)
+ int32x2_t res = vbic_s32(masked, zeroMask);
+
+ return vreinterpret_m64_s32(res);
}
-// Blend packed single-precision (32-bit) floating-point elements from a and b
-// using mask, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps
-FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
+// Negate packed 8-bit integers in a when the corresponding signed 8-bit integer
+// in b is negative, and store the results in dst. Element in dst are zeroed out
+// when the corresponding element in b is zero.
+//
+// FOR j := 0 to 7
+// i := j*8
+// IF b[i+7:i] < 0
+// dst[i+7:i] := -(a[i+7:i])
+// ELSE IF b[i+7:i] == 0
+// dst[i+7:i] := 0
+// ELSE
+// dst[i+7:i] := a[i+7:i]
+// FI
+// ENDFOR
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8
+FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
{
- // Use a signed shift right to create a mask with the sign bit
- uint32x4_t mask =
- vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31));
- float32x4_t a = vreinterpretq_f32_m128(_a);
- float32x4_t b = vreinterpretq_f32_m128(_b);
- return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
+ int8x8_t a = vreinterpret_s8_m64(_a);
+ int8x8_t b = vreinterpret_s8_m64(_b);
+
+ // signed shift right: faster than vclt
+ // (b < 0) ? 0xFF : 0
+ uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7));
+
+ // (b == 0) ? 0xFF : 0
+#if defined(__aarch64__)
+ int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b));
+#else
+ int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
+#endif
+
+ // bitwise select either a or nagative 'a' (vneg_s8(a) return nagative 'a')
+ // based on ltMask
+ int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
+ // res = masked & (~zeroMask)
+ int8x8_t res = vbic_s8(masked, zeroMask);
+
+ return vreinterpret_m64_s8(res);
}
+/* SSE4.1 */
+
+// Blend packed 16-bit integers from a and b using control mask imm8, and store
+// the results in dst.
+//
+// FOR j := 0 to 7
+// i := j*16
+// IF imm8[j]
+// dst[i+15:i] := b[i+15:i]
+// ELSE
+// dst[i+15:i] := a[i+15:i]
+// FI
+// ENDFOR
+// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
+// __constrange(0,255) int imm)
+#define _mm_blend_epi16(a, b, imm) \
+ __extension__({ \
+ const uint16_t ones = 0xffff; \
+ const uint16_t zeros = 0x0000; \
+ const uint16_t _mask[8] = {((imm) & (1 << 0)) ? ones : zeros, \
+ ((imm) & (1 << 1)) ? ones : zeros, \
+ ((imm) & (1 << 2)) ? ones : zeros, \
+ ((imm) & (1 << 3)) ? ones : zeros, \
+ ((imm) & (1 << 4)) ? ones : zeros, \
+ ((imm) & (1 << 5)) ? ones : zeros, \
+ ((imm) & (1 << 6)) ? ones : zeros, \
+ ((imm) & (1 << 7)) ? ones : zeros}; \
+ uint16x8_t _mask_vec = vld1q_u16(_mask); \
+ uint16x8_t _a = vreinterpretq_u16_m128i(a); \
+ uint16x8_t _b = vreinterpretq_u16_m128i(b); \
+ vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a)); \
+ })
+
+// Blend packed double-precision (64-bit) floating-point elements from a and b
+// using control mask imm8, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_pd
+#define _mm_blend_pd(a, b, imm) \
+ __extension__({ \
+ const uint64_t _mask[2] = { \
+ ((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \
+ ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)}; \
+ uint64x2_t _mask_vec = vld1q_u64(_mask); \
+ uint64x2_t _a = vreinterpretq_u64_m128d(a); \
+ uint64x2_t _b = vreinterpretq_u64_m128d(b); \
+ vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, _b, _a)); \
+ })
+
// Blend packed single-precision (32-bit) floating-point elements from a and b
// using mask, and store the results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps
@@ -5672,6 +7337,27 @@ FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8)
return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
}
+// Blend packed 8-bit integers from a and b using mask, and store the results in
+// dst.
+//
+// FOR j := 0 to 15
+// i := j*8
+// IF mask[i+7]
+// dst[i+7:i] := b[i+7:i]
+// ELSE
+// dst[i+7:i] := a[i+7:i]
+// FI
+// ENDFOR
+FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
+{
+ // Use a signed shift right to create a mask with the sign bit
+ uint8x16_t mask =
+ vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
+ uint8x16_t a = vreinterpretq_u8_m128i(_a);
+ uint8x16_t b = vreinterpretq_u8_m128i(_b);
+ return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
+}
+
// Blend packed double-precision (64-bit) floating-point elements from a and b
// using mask, and store the results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd
@@ -5690,154 +7376,55 @@ FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask)
#endif
}
-typedef struct {
- uint16_t res0;
- uint8_t res1 : 6;
- uint8_t bit22 : 1;
- uint8_t bit23 : 1;
- uint8_t res2;
-#if defined(__aarch64__)
- uint32_t res3;
-#endif
-} fpcr_bitfield;
-
-// Macro: Set the rounding mode bits of the MXCSR control and status register to
-// the value in unsigned 32-bit integer a. The rounding mode may contain any of
-// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP,
-// _MM_ROUND_TOWARD_ZERO
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE
-FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
-{
- union {
- fpcr_bitfield field;
-#if defined(__aarch64__)
- uint64_t value;
-#else
- uint32_t value;
-#endif
- } r;
-
-#if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
-#else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
-#endif
-
- switch (rounding) {
- case _MM_ROUND_TOWARD_ZERO:
- r.field.bit22 = 1;
- r.field.bit23 = 1;
- break;
- case _MM_ROUND_DOWN:
- r.field.bit22 = 0;
- r.field.bit23 = 1;
- break;
- case _MM_ROUND_UP:
- r.field.bit22 = 1;
- r.field.bit23 = 0;
- break;
- default: //_MM_ROUND_NEAREST
- r.field.bit22 = 0;
- r.field.bit23 = 0;
- }
-
-#if defined(__aarch64__)
- asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
-#else
- asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
-#endif
-}
-
-FORCE_INLINE void _mm_setcsr(unsigned int a)
+// Blend packed single-precision (32-bit) floating-point elements from a and b
+// using mask, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps
+FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
{
- _MM_SET_ROUNDING_MODE(a);
+ // Use a signed shift right to create a mask with the sign bit
+ uint32x4_t mask =
+ vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31));
+ float32x4_t a = vreinterpretq_f32_m128(_a);
+ float32x4_t b = vreinterpretq_f32_m128(_b);
+ return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
}
-// Round the packed single-precision (32-bit) floating-point elements in a using
-// the rounding parameter, and store the results as packed single-precision
+// Round the packed double-precision (64-bit) floating-point elements in a up
+// to an integer value, and store the results as packed double-precision
// floating-point elements in dst.
-// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
-FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_pd
+FORCE_INLINE __m128d _mm_ceil_pd(__m128d a)
{
#if defined(__aarch64__)
- switch (rounding) {
- case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
- case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
- case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
- case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a)));
- default: //_MM_FROUND_CUR_DIRECTION
- return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a)));
- }
+ return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a)));
#else
- float *v_float = (float *) &a;
- __m128 zero, neg_inf, pos_inf;
-
- switch (rounding) {
- case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
- return _mm_cvtepi32_ps(_mm_cvtps_epi32(a));
- case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
- return (__m128){floorf(v_float[0]), floorf(v_float[1]),
- floorf(v_float[2]), floorf(v_float[3])};
- case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
- return (__m128){ceilf(v_float[0]), ceilf(v_float[1]), ceilf(v_float[2]),
- ceilf(v_float[3])};
- case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
- zero = _mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f);
- neg_inf = _mm_set_ps(floorf(v_float[0]), floorf(v_float[1]),
- floorf(v_float[2]), floorf(v_float[3]));
- pos_inf = _mm_set_ps(ceilf(v_float[0]), ceilf(v_float[1]),
- ceilf(v_float[2]), ceilf(v_float[3]));
- return _mm_blendv_ps(pos_inf, neg_inf, _mm_cmple_ps(a, zero));
- default: //_MM_FROUND_CUR_DIRECTION
- return (__m128){roundf(v_float[0]), roundf(v_float[1]),
- roundf(v_float[2]), roundf(v_float[3])};
- }
+ double *f = (double *) &a;
+ return _mm_set_pd(ceil(f[1]), ceil(f[0]));
#endif
}
-// Convert packed single-precision (32-bit) floating-point elements in a to
-// packed 32-bit integers, and store the results in dst.
-//
-// FOR j := 0 to 1
-// i := 32*j
-// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi
-FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
+// Round the packed single-precision (32-bit) floating-point elements in a up to
+// an integer value, and store the results as packed single-precision
+// floating-point elements in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps
+FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
{
#if defined(__aarch64__)
- return vreinterpret_m64_s32(
- vget_low_s32(vcvtnq_s32_f32(vreinterpretq_f32_m128(a))));
+ return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
#else
- return vreinterpret_m64_s32(
- vcvt_s32_f32(vget_low_f32(vreinterpretq_f32_m128(
- _mm_round_ps(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)))));
+ float *f = (float *) &a;
+ return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0]));
#endif
}
-// Convert packed single-precision (32-bit) floating-point elements in a to
-// packed 32-bit integers, and store the results in dst.
-//
-// FOR j := 0 to 1
-// i := 32*j
-// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
-// ENDFOR
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32
-#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a)
-
-// Round the packed single-precision (32-bit) floating-point elements in a up to
-// an integer value, and store the results as packed single-precision
-// floating-point elements in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps
-FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
+// Round the lower double-precision (64-bit) floating-point element in b up to
+// an integer value, store the result as a double-precision floating-point
+// element in the lower element of dst, and copy the upper element from a to the
+// upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_sd
+FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b)
{
- return _mm_round_ps(a, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC);
+ return _mm_move_sd(a, _mm_ceil_pd(b));
}
// Round the lower single-precision (32-bit) floating-point element in b up to
@@ -5851,396 +7438,442 @@ FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss
FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b)
{
- return _mm_move_ss(
- a, _mm_round_ps(b, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC));
+ return _mm_move_ss(a, _mm_ceil_ps(b));
}
-// Round the packed single-precision (32-bit) floating-point elements in a down
-// to an integer value, and store the results as packed single-precision
-// floating-point elements in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps
-FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
+// Compare packed 64-bit integers in a and b for equality, and store the results
+// in dst
+FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
{
- return _mm_round_ps(a, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC);
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_u64(
+ vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
+#else
+ // ARMv7 lacks vceqq_u64
+ // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
+ uint32x4_t cmp =
+ vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
+ uint32x4_t swapped = vrev64q_u32(cmp);
+ return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
+#endif
}
-// Round the lower single-precision (32-bit) floating-point element in b down to
-// an integer value, store the result as a single-precision floating-point
-// element in the lower element of dst, and copy the upper 3 packed elements
-// from a to the upper elements of dst.
-//
-// dst[31:0] := FLOOR(b[31:0])
-// dst[127:32] := a[127:32]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss
-FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
+// Converts the four signed 16-bit integers in the lower 64 bits to four signed
+// 32-bit integers.
+FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
{
- return _mm_move_ss(
- a, _mm_round_ps(b, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC));
+ return vreinterpretq_m128i_s32(
+ vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
}
-// Load 128-bits of integer data from unaligned memory into dst. This intrinsic
-// may perform better than _mm_loadu_si128 when the data crosses a cache line
-// boundary.
-//
-// dst[127:0] := MEM[mem_addr+127:mem_addr]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128
-#define _mm_lddqu_si128 _mm_loadu_si128
+// Converts the two signed 16-bit integers in the lower 32 bits two signed
+// 32-bit integers.
+FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
+{
+ int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */
+ int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
+ int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
+ return vreinterpretq_m128i_s64(s64x2);
+}
-/* Miscellaneous Operations */
+// Converts the two signed 32-bit integers in the lower 64 bits to two signed
+// 64-bit integers.
+FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
+{
+ return vreinterpretq_m128i_s64(
+ vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
+}
-// Shifts the 8 signed 16-bit integers in a right by count bits while shifting
-// in the sign bit.
-//
-// r0 := a0 >> count
-// r1 := a1 >> count
-// ...
-// r7 := a7 >> count
-//
-// https://msdn.microsoft.com/en-us/library/3c9997dk(v%3dvs.90).aspx
-FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
+// Converts the four unsigned 8-bit integers in the lower 16 bits to four
+// unsigned 32-bit integers.
+FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
{
- int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
- if (unlikely(c > 15))
- return _mm_cmplt_epi16(a, _mm_setzero_si128());
- return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c)));
+ int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
+ int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
+ return vreinterpretq_m128i_s16(s16x8);
}
-// Shifts the 4 signed 32-bit integers in a right by count bits while shifting
-// in the sign bit.
-//
-// r0 := a0 >> count
-// r1 := a1 >> count
-// r2 := a2 >> count
-// r3 := a3 >> count
-//
-// https://msdn.microsoft.com/en-us/library/ce40009e(v%3dvs.100).aspx
-FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
+// Converts the four unsigned 8-bit integers in the lower 32 bits to four
+// unsigned 32-bit integers.
+FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
{
- int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
- if (unlikely(c > 31))
- return _mm_cmplt_epi32(a, _mm_setzero_si128());
- return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c)));
+ int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
+ int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
+ int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
+ return vreinterpretq_m128i_s32(s32x4);
}
-// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
-// saturates.
-// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx
-FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
+// Converts the two signed 8-bit integers in the lower 32 bits to four
+// signed 64-bit integers.
+FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
{
- return vreinterpretq_m128i_s8(
- vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
- vqmovn_s16(vreinterpretq_s16_m128i(b))));
+ int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */
+ int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */
+ int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
+ int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
+ return vreinterpretq_m128i_s64(s64x2);
}
-// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned
-// integers and saturates.
-//
-// r0 := UnsignedSaturate(a0)
-// r1 := UnsignedSaturate(a1)
-// ...
-// r7 := UnsignedSaturate(a7)
-// r8 := UnsignedSaturate(b0)
-// r9 := UnsignedSaturate(b1)
-// ...
-// r15 := UnsignedSaturate(b7)
-//
-// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
+// Converts the four unsigned 16-bit integers in the lower 64 bits to four
+// unsigned 32-bit integers.
+FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
{
- return vreinterpretq_m128i_u8(
- vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
- vqmovun_s16(vreinterpretq_s16_m128i(b))));
+ return vreinterpretq_m128i_u32(
+ vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
}
-// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers
-// and saturates.
-//
-// r0 := SignedSaturate(a0)
-// r1 := SignedSaturate(a1)
-// r2 := SignedSaturate(a2)
-// r3 := SignedSaturate(a3)
-// r4 := SignedSaturate(b0)
-// r5 := SignedSaturate(b1)
-// r6 := SignedSaturate(b2)
-// r7 := SignedSaturate(b3)
-//
-// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx
-FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
+// Converts the two unsigned 16-bit integers in the lower 32 bits to two
+// unsigned 64-bit integers.
+FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
{
- return vreinterpretq_m128i_s16(
- vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
- vqmovn_s32(vreinterpretq_s32_m128i(b))));
+ uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */
+ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
+ uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
+ return vreinterpretq_m128i_u64(u64x2);
}
-// Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit
-// integers and saturates.
-//
-// r0 := UnsignedSaturate(a0)
-// r1 := UnsignedSaturate(a1)
-// r2 := UnsignedSaturate(a2)
-// r3 := UnsignedSaturate(a3)
-// r4 := UnsignedSaturate(b0)
-// r5 := UnsignedSaturate(b1)
-// r6 := UnsignedSaturate(b2)
-// r7 := UnsignedSaturate(b3)
-FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
+// Converts the two unsigned 32-bit integers in the lower 64 bits to two
+// unsigned 64-bit integers.
+FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
{
- return vreinterpretq_m128i_u16(
- vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)),
- vqmovun_s32(vreinterpretq_s32_m128i(b))));
+ return vreinterpretq_m128i_u64(
+ vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
}
-// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower
-// 8 signed or unsigned 8-bit integers in b.
-//
-// r0 := a0
-// r1 := b0
-// r2 := a1
-// r3 := b1
-// ...
-// r14 := a7
-// r15 := b7
-//
-// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx
-FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
+// Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers,
+// and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu8_epi16
+FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128i_s8(
- vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
-#else
- int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
- int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
- int8x8x2_t result = vzip_s8(a1, b1);
- return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
-#endif
+ uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */
+ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */
+ return vreinterpretq_m128i_u16(u16x8);
}
-// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the
-// lower 4 signed or unsigned 16-bit integers in b.
-//
-// r0 := a0
-// r1 := b0
-// r2 := a1
-// r3 := b1
-// r4 := a2
-// r5 := b2
-// r6 := a3
-// r7 := b3
-//
-// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx
-FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
+// Converts the four unsigned 8-bit integers in the lower 32 bits to four
+// unsigned 32-bit integers.
+// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx
+FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128i_s16(
- vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-#else
- int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
- int16x4x2_t result = vzip_s16(a1, b1);
- return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
-#endif
+ uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
+ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
+ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
+ return vreinterpretq_m128i_u32(u32x4);
}
-// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the
-// lower 2 signed or unsigned 32 - bit integers in b.
-//
-// r0 := a0
-// r1 := b0
-// r2 := a1
-// r3 := b1
-//
-// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
+// Converts the two unsigned 8-bit integers in the lower 16 bits to two
+// unsigned 64-bit integers.
+FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
+{
+ uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */
+ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */
+ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
+ uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
+ return vreinterpretq_m128i_u64(u64x2);
+}
+
+// Conditionally multiply the packed double-precision (64-bit) floating-point
+// elements in a and b using the high 4 bits in imm8, sum the four products, and
+// conditionally store the sum in dst using the low 4 bits of imm8.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_pd
+FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm)
{
+ // Generate mask value from constant immediate bit value
+ const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0;
+ const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0;
+#if !SSE2NEON_PRECISE_DP
+ const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0;
+ const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0;
+#endif
+ // Conditional multiplication
+#if !SSE2NEON_PRECISE_DP
+ __m128d mul = _mm_mul_pd(a, b);
+ const __m128d mulMask =
+ _mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask));
+ __m128d tmp = _mm_and_pd(mul, mulMask);
+#else
#if defined(__aarch64__)
- return vreinterpretq_m128i_s32(
- vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+ double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) *
+ vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0)
+ : 0;
+ double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) *
+ vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1)
+ : 0;
#else
- int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
- int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
- int32x2x2_t result = vzip_s32(a1, b1);
- return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
+ double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0;
+ double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0;
+#endif
+ __m128d tmp = _mm_set_pd(d1, d0);
#endif
+ // Sum the products
+#if defined(__aarch64__)
+ double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp));
+#else
+ double sum = *((double *) &tmp) + *(((double *) &tmp) + 1);
+#endif
+ // Conditionally store the sum
+ const __m128d sumMask =
+ _mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask));
+ __m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask);
+ return res;
}
-FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
+// Conditionally multiply the packed single-precision (32-bit) floating-point
+// elements in a and b using the high 4 bits in imm8, sum the four products,
+// and conditionally store the sum in dst using the low 4 bits of imm.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps
+FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
{
- int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
- int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
+#if defined(__aarch64__)
+ /* shortcuts */
+ if (imm == 0xFF) {
+ return _mm_set1_ps(vaddvq_f32(_mm_mul_ps(a, b)));
+ }
+ if (imm == 0x7F) {
+ float32x4_t m = _mm_mul_ps(a, b);
+ m[3] = 0;
+ return _mm_set1_ps(vaddvq_f32(m));
+ }
+#endif
+
+ float s = 0, c = 0;
+ float32x4_t f32a = vreinterpretq_f32_m128(a);
+ float32x4_t f32b = vreinterpretq_f32_m128(b);
+
+ /* To improve the accuracy of floating-point summation, Kahan algorithm
+ * is used for each operation.
+ */
+ if (imm & (1 << 4))
+ _sse2neon_kadd_f32(&s, &c, f32a[0] * f32b[0]);
+ if (imm & (1 << 5))
+ _sse2neon_kadd_f32(&s, &c, f32a[1] * f32b[1]);
+ if (imm & (1 << 6))
+ _sse2neon_kadd_f32(&s, &c, f32a[2] * f32b[2]);
+ if (imm & (1 << 7))
+ _sse2neon_kadd_f32(&s, &c, f32a[3] * f32b[3]);
+ s += c;
+
+ float32x4_t res = {
+ (imm & 0x1) ? s : 0,
+ (imm & 0x2) ? s : 0,
+ (imm & 0x4) ? s : 0,
+ (imm & 0x8) ? s : 0,
+ };
+ return vreinterpretq_m128_f32(res);
}
-// Selects and interleaves the lower two single-precision, floating-point values
-// from a and b.
-//
-// r0 := a0
-// r1 := b0
-// r2 := a1
-// r3 := b1
-//
-// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx
-FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
+// Extracts the selected signed or unsigned 32-bit integer from a and zero
+// extends.
+// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
+#define _mm_extract_epi32(a, imm) \
+ vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
+
+// Extracts the selected signed or unsigned 64-bit integer from a and zero
+// extends.
+// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
+#define _mm_extract_epi64(a, imm) \
+ vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
+
+// Extracts the selected signed or unsigned 8-bit integer from a and zero
+// extends.
+// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_epi8
+#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
+
+// Extracts the selected single-precision (32-bit) floating-point from a.
+// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
+#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))
+
+// Round the packed double-precision (64-bit) floating-point elements in a down
+// to an integer value, and store the results as packed double-precision
+// floating-point elements in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_pd
+FORCE_INLINE __m128d _mm_floor_pd(__m128d a)
{
#if defined(__aarch64__)
- return vreinterpretq_m128_f32(
- vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+ return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a)));
#else
- float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
- float32x2x2_t result = vzip_f32(a1, b1);
- return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
+ double *f = (double *) &a;
+ return _mm_set_pd(floor(f[1]), floor(f[0]));
#endif
}
-// Unpack and interleave double-precision (64-bit) floating-point elements from
-// the low half of a and b, and store the results in dst.
-//
-// DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) {
-// dst[63:0] := src1[63:0]
-// dst[127:64] := src2[63:0]
-// RETURN dst[127:0]
-// }
-// dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0])
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd
-FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
+// Round the packed single-precision (32-bit) floating-point elements in a down
+// to an integer value, and store the results as packed single-precision
+// floating-point elements in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps
+FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
{
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+ return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
#else
- return vreinterpretq_m128d_s64(
- vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)),
- vget_low_s64(vreinterpretq_s64_m128d(b))));
+ float *f = (float *) &a;
+ return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0]));
#endif
}
-// Unpack and interleave double-precision (64-bit) floating-point elements from
-// the high half of a and b, and store the results in dst.
-//
-// DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) {
-// dst[63:0] := src1[127:64]
-// dst[127:64] := src2[127:64]
-// RETURN dst[127:0]
-// }
-// dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0])
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd
-FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
+// Round the lower double-precision (64-bit) floating-point element in b down to
+// an integer value, store the result as a double-precision floating-point
+// element in the lower element of dst, and copy the upper element from a to the
+// upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_sd
+FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
-#else
- return vreinterpretq_m128d_s64(
- vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)),
- vget_high_s64(vreinterpretq_s64_m128d(b))));
-#endif
+ return _mm_move_sd(a, _mm_floor_pd(b));
}
-// Selects and interleaves the upper two single-precision, floating-point values
-// from a and b.
+// Round the lower single-precision (32-bit) floating-point element in b down to
+// an integer value, store the result as a single-precision floating-point
+// element in the lower element of dst, and copy the upper 3 packed elements
+// from a to the upper elements of dst.
//
-// r0 := a2
-// r1 := b2
-// r2 := a3
-// r3 := b3
+// dst[31:0] := FLOOR(b[31:0])
+// dst[127:32] := a[127:32]
//
-// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx
-FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss
+FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128_f32(
- vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-#else
- float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
- float32x2x2_t result = vzip_f32(a1, b1);
- return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
-#endif
+ return _mm_move_ss(a, _mm_floor_ps(b));
}
-// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper
-// 8 signed or unsigned 8-bit integers in b.
+// Inserts the least significant 32 bits of b into the selected 32-bit integer
+// of a.
+// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
+// __constrange(0,4) int imm)
+#define _mm_insert_epi32(a, b, imm) \
+ __extension__({ \
+ vreinterpretq_m128i_s32( \
+ vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \
+ })
+
+// Inserts the least significant 64 bits of b into the selected 64-bit integer
+// of a.
+// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
+// __constrange(0,2) int imm)
+#define _mm_insert_epi64(a, b, imm) \
+ __extension__({ \
+ vreinterpretq_m128i_s64( \
+ vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \
+ })
+
+// Inserts the least significant 8 bits of b into the selected 8-bit integer
+// of a.
+// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
+// __constrange(0,16) int imm)
+#define _mm_insert_epi8(a, b, imm) \
+ __extension__({ \
+ vreinterpretq_m128i_s8( \
+ vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \
+ })
+
+// Copy a to tmp, then insert a single-precision (32-bit) floating-point
+// element from b into tmp using the control in imm8. Store tmp to dst using
+// the mask in imm8 (elements are zeroed out when the corresponding bit is set).
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=insert_ps
+#define _mm_insert_ps(a, b, imm8) \
+ __extension__({ \
+ float32x4_t tmp1 = \
+ vsetq_lane_f32(vgetq_lane_f32(b, (imm8 >> 6) & 0x3), \
+ vreinterpretq_f32_m128(a), 0); \
+ float32x4_t tmp2 = \
+ vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), vreinterpretq_f32_m128(a), \
+ ((imm8 >> 4) & 0x3)); \
+ const uint32_t data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, \
+ ((imm8) & (1 << 1)) ? UINT32_MAX : 0, \
+ ((imm8) & (1 << 2)) ? UINT32_MAX : 0, \
+ ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; \
+ uint32x4_t mask = vld1q_u32(data); \
+ float32x4_t all_zeros = vdupq_n_f32(0); \
+ \
+ vreinterpretq_m128_f32( \
+ vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))); \
+ })
+
+// epi versions of min/max
+// Computes the pariwise maximums of the four signed 32-bit integer values of a
+// and b.
//
-// r0 := a8
-// r1 := b8
-// r2 := a9
-// r3 := b9
-// ...
-// r14 := a15
-// r15 := b15
+// A 128-bit parameter that can be defined with the following equations:
+// r0 := (a0 > b0) ? a0 : b0
+// r1 := (a1 > b1) ? a1 : b1
+// r2 := (a2 > b2) ? a2 : b2
+// r3 := (a3 > b3) ? a3 : b3
//
-// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
+// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_s32(
+ vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Compare packed signed 8-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8
+FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
{
-#if defined(__aarch64__)
return vreinterpretq_m128i_s8(
- vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
-#else
- int8x8_t a1 =
- vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
- int8x8_t b1 =
- vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
- int8x8x2_t result = vzip_s8(a1, b1);
- return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
-#endif
+ vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}
-// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the
-// upper 4 signed or unsigned 16-bit integers in b.
+// Compare packed unsigned 16-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16
+FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_u16(
+ vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+}
+
+// Compare packed unsigned 32-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
+FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_u32(
+ vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
+}
+
+// Computes the pariwise minima of the four signed 32-bit integer values of a
+// and b.
//
-// r0 := a4
-// r1 := b4
-// r2 := a5
-// r3 := b5
-// r4 := a6
-// r5 := b6
-// r6 := a7
-// r7 := b7
+// A 128-bit parameter that can be defined with the following equations:
+// r0 := (a0 < b0) ? a0 : b0
+// r1 := (a1 < b1) ? a1 : b1
+// r2 := (a2 < b2) ? a2 : b2
+// r3 := (a3 < b3) ? a3 : b3
//
-// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
+// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128i_s16(
- vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-#else
- int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
- int16x4x2_t result = vzip_s16(a1, b1);
- return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
-#endif
+ return vreinterpretq_m128i_s32(
+ vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}
-// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the
-// upper 2 signed or unsigned 32-bit integers in b.
-// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
+// Compare packed signed 8-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8
+FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
{
-#if defined(__aarch64__)
- return vreinterpretq_m128i_s32(
- vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-#else
- int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
- int32x2x2_t result = vzip_s32(a1, b1);
- return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
-#endif
+ return vreinterpretq_m128i_s8(
+ vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}
-// Interleaves the upper signed or unsigned 64-bit integer in a with the
-// upper signed or unsigned 64-bit integer in b.
-//
-// r0 := a1
-// r1 := b1
-FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
+// Compare packed unsigned 16-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16
+FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
{
- int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
- int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
+ return vreinterpretq_m128i_u16(
+ vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+}
+
+// Compare packed unsigned 32-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
+FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_u32(
+ vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
}
// Horizontally compute the minimum amongst the packed unsigned 16-bit integers
@@ -6296,6 +7929,339 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
return dst;
}
+// Compute the sum of absolute differences (SADs) of quadruplets of unsigned
+// 8-bit integers in a compared to those in b, and store the 16-bit results in
+// dst. Eight SADs are performed using one quadruplet from b and eight
+// quadruplets from a. One quadruplet is selected from b starting at on the
+// offset specified in imm8. Eight quadruplets are formed from sequential 8-bit
+// integers selected from a starting at the offset specified in imm8.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mpsadbw_epu8
+FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm)
+{
+ uint8x16_t _a, _b;
+
+ switch (imm & 0x4) {
+ case 0:
+ // do nothing
+ _a = vreinterpretq_u8_m128i(a);
+ break;
+ case 4:
+ _a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a),
+ vreinterpretq_u32_m128i(a), 1));
+ break;
+ default:
+#if defined(__GNUC__) || defined(__clang__)
+ __builtin_unreachable();
+#endif
+ break;
+ }
+
+ switch (imm & 0x3) {
+ case 0:
+ _b = vreinterpretq_u8_u32(
+ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0)));
+ break;
+ case 1:
+ _b = vreinterpretq_u8_u32(
+ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1)));
+ break;
+ case 2:
+ _b = vreinterpretq_u8_u32(
+ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2)));
+ break;
+ case 3:
+ _b = vreinterpretq_u8_u32(
+ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3)));
+ break;
+ default:
+#if defined(__GNUC__) || defined(__clang__)
+ __builtin_unreachable();
+#endif
+ break;
+ }
+
+ int16x8_t c04, c15, c26, c37;
+ uint8x8_t low_b = vget_low_u8(_b);
+ c04 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
+ _a = vextq_u8(_a, _a, 1);
+ c15 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
+ _a = vextq_u8(_a, _a, 1);
+ c26 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
+ _a = vextq_u8(_a, _a, 1);
+ c37 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
+#if defined(__aarch64__)
+ // |0|4|2|6|
+ c04 = vpaddq_s16(c04, c26);
+ // |1|5|3|7|
+ c15 = vpaddq_s16(c15, c37);
+
+ int32x4_t trn1_c =
+ vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
+ int32x4_t trn2_c =
+ vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
+ return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c),
+ vreinterpretq_s16_s32(trn2_c)));
+#else
+ int16x4_t c01, c23, c45, c67;
+ c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15));
+ c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37));
+ c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15));
+ c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37));
+
+ return vreinterpretq_m128i_s16(
+ vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67)));
+#endif
+}
+
+// Multiply the low signed 32-bit integers from each packed 64-bit element in
+// a and b, and store the signed 64-bit results in dst.
+//
+// r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0
+// r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2
+FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
+{
+ // vmull_s32 upcasts instead of masking, so we downcast.
+ int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
+ int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
+ return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
+}
+
+// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or
+// unsigned 32-bit integers from b.
+// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx
+FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_s32(
+ vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit
+// integers and saturates.
+//
+// r0 := UnsignedSaturate(a0)
+// r1 := UnsignedSaturate(a1)
+// r2 := UnsignedSaturate(a2)
+// r3 := UnsignedSaturate(a3)
+// r4 := UnsignedSaturate(b0)
+// r5 := UnsignedSaturate(b1)
+// r6 := UnsignedSaturate(b2)
+// r7 := UnsignedSaturate(b3)
+FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
+{
+ return vreinterpretq_m128i_u16(
+ vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)),
+ vqmovun_s32(vreinterpretq_s32_m128i(b))));
+}
+
+// Round the packed double-precision (64-bit) floating-point elements in a using
+// the rounding parameter, and store the results as packed double-precision
+// floating-point elements in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_pd
+FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding)
+{
+#if defined(__aarch64__)
+ switch (rounding) {
+ case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
+ return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a)));
+ case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
+ return _mm_floor_pd(a);
+ case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
+ return _mm_ceil_pd(a);
+ case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
+ return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a)));
+ default: //_MM_FROUND_CUR_DIRECTION
+ return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)));
+ }
+#else
+ double *v_double = (double *) &a;
+
+ if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
+ (rounding == _MM_FROUND_CUR_DIRECTION &&
+ _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
+ double res[2], tmp;
+ for (int i = 0; i < 2; i++) {
+ tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i];
+ double roundDown = floor(tmp); // Round down value
+ double roundUp = ceil(tmp); // Round up value
+ double diffDown = tmp - roundDown;
+ double diffUp = roundUp - tmp;
+ if (diffDown < diffUp) {
+ /* If it's closer to the round down value, then use it */
+ res[i] = roundDown;
+ } else if (diffDown > diffUp) {
+ /* If it's closer to the round up value, then use it */
+ res[i] = roundUp;
+ } else {
+ /* If it's equidistant between round up and round down value,
+ * pick the one which is an even number */
+ double half = roundDown / 2;
+ if (half != floor(half)) {
+ /* If the round down value is odd, return the round up value
+ */
+ res[i] = roundUp;
+ } else {
+ /* If the round up value is odd, return the round down value
+ */
+ res[i] = roundDown;
+ }
+ }
+ res[i] = (v_double[i] < 0) ? -res[i] : res[i];
+ }
+ return _mm_set_pd(res[1], res[0]);
+ } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
+ (rounding == _MM_FROUND_CUR_DIRECTION &&
+ _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
+ return _mm_floor_pd(a);
+ } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
+ (rounding == _MM_FROUND_CUR_DIRECTION &&
+ _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
+ return _mm_ceil_pd(a);
+ }
+ return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]),
+ v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0]));
+#endif
+}
+
+// Round the packed single-precision (32-bit) floating-point elements in a using
+// the rounding parameter, and store the results as packed single-precision
+// floating-point elements in dst.
+// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
+FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
+{
+#if defined(__aarch64__)
+ switch (rounding) {
+ case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
+ return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
+ case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
+ return _mm_floor_ps(a);
+ case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
+ return _mm_ceil_ps(a);
+ case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
+ return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a)));
+ default: //_MM_FROUND_CUR_DIRECTION
+ return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a)));
+ }
+#else
+ float *v_float = (float *) &a;
+
+ if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
+ (rounding == _MM_FROUND_CUR_DIRECTION &&
+ _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
+ uint32x4_t signmask = vdupq_n_u32(0x80000000);
+ float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
+ vdupq_n_f32(0.5f)); /* +/- 0.5 */
+ int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
+ vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
+ int32x4_t r_trunc = vcvtq_s32_f32(
+ vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
+ int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
+ vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
+ int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
+ vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
+ float32x4_t delta = vsubq_f32(
+ vreinterpretq_f32_m128(a),
+ vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
+ uint32x4_t is_delta_half =
+ vceqq_f32(delta, half); /* delta == +/- 0.5 */
+ return vreinterpretq_m128_f32(
+ vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal)));
+ } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
+ (rounding == _MM_FROUND_CUR_DIRECTION &&
+ _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
+ return _mm_floor_ps(a);
+ } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
+ (rounding == _MM_FROUND_CUR_DIRECTION &&
+ _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
+ return _mm_ceil_ps(a);
+ }
+ return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]),
+ v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]),
+ v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]),
+ v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0]));
+#endif
+}
+
+// Round the lower double-precision (64-bit) floating-point element in b using
+// the rounding parameter, store the result as a double-precision floating-point
+// element in the lower element of dst, and copy the upper element from a to the
+// upper element of dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_sd
+FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding)
+{
+ return _mm_move_sd(a, _mm_round_pd(b, rounding));
+}
+
+// Round the lower single-precision (32-bit) floating-point element in b using
+// the rounding parameter, store the result as a single-precision floating-point
+// element in the lower element of dst, and copy the upper 3 packed elements
+// from a to the upper elements of dst. Rounding is done according to the
+// rounding[3:0] parameter, which can be one of:
+// (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and
+// suppress exceptions
+// (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and
+// suppress exceptions
+// (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress
+// exceptions
+// (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress
+// exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see
+// _MM_SET_ROUNDING_MODE
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ss
+FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding)
+{
+ return _mm_move_ss(a, _mm_round_ps(b, rounding));
+}
+
+// Load 128-bits of integer data from memory into dst using a non-temporal
+// memory hint. mem_addr must be aligned on a 16-byte boundary or a
+// general-protection exception may be generated.
+//
+// dst[127:0] := MEM[mem_addr+127:mem_addr]
+//
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128
+FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
+{
+#if __has_builtin(__builtin_nontemporal_store)
+ return __builtin_nontemporal_load(p);
+#else
+ return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p));
+#endif
+}
+
+// Compute the bitwise NOT of a and then AND with a 128-bit vector containing
+// all 1's, and return 1 if the result is zero, otherwise return 0.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones
+FORCE_INLINE int _mm_test_all_ones(__m128i a)
+{
+ return (uint64_t)(vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
+ ~(uint64_t) 0;
+}
+
+// Compute the bitwise AND of 128 bits (representing integer data) in a and
+// mask, and return 1 if the result is zero, otherwise return 0.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros
+FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
+{
+ int64x2_t a_and_mask =
+ vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
+ return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1));
+}
+
+// Compute the bitwise AND of 128 bits (representing integer data) in a and
+// mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute
+// the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is
+// zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
+// otherwise return 0.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_test_mix_ones_zero
+FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask)
+{
+ uint64x2_t zf =
+ vandq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a));
+ uint64x2_t cf =
+ vbicq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a));
+ uint64x2_t result = vandq_u64(zf, cf);
+ return !(vgetq_lane_u64(result, 0) | vgetq_lane_u64(result, 1));
+}
+
// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
@@ -6312,6 +8278,14 @@ FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
+// otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
+// otherwise return 0.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testnzc_si128
+#define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b)
+
+// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
+// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
+// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
// otherwise set CF to 0. Return the ZF value.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testz_si128
FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
@@ -6321,299 +8295,93 @@ FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
}
-// Extracts the selected signed or unsigned 8-bit integer from a and zero
-// extends.
-// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm)
-#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
-
-// Inserts the least significant 8 bits of b into the selected 8-bit integer
-// of a.
-// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
-// __constrange(0,16) int imm)
-#define _mm_insert_epi8(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s8( \
- vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \
- })
-
-// Extracts the selected signed or unsigned 16-bit integer from a and zero
-// extends.
-// https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx
-// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
-#define _mm_extract_epi16(a, imm) \
- vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
-
-// Inserts the least significant 16 bits of b into the selected 16-bit integer
-// of a.
-// https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx
-// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
-// __constrange(0,8) int imm)
-#define _mm_insert_epi16(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s16( \
- vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \
- })
-
-// Copy a to dst, and insert the 16-bit integer i into dst at the location
-// specified by imm8.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16
-#define _mm_insert_pi16(a, b, imm) \
- __extension__({ \
- vreinterpret_m64_s16( \
- vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \
- })
-
-// Extracts the selected signed or unsigned 32-bit integer from a and zero
-// extends.
-// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
-#define _mm_extract_epi32(a, imm) \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
-
-// Extracts the selected single-precision (32-bit) floating-point from a.
-// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
-#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))
-
-// Inserts the least significant 32 bits of b into the selected 32-bit integer
-// of a.
-// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
-// __constrange(0,4) int imm)
-#define _mm_insert_epi32(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32( \
- vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \
- })
-
-// Extracts the selected signed or unsigned 64-bit integer from a and zero
-// extends.
-// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
-#define _mm_extract_epi64(a, imm) \
- vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
-
-// Inserts the least significant 64 bits of b into the selected 64-bit integer
-// of a.
-// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
-// __constrange(0,2) int imm)
-#define _mm_insert_epi64(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s64( \
- vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \
- })
+/* SSE4.2 */
-// Count the number of bits set to 1 in unsigned 32-bit integer a, and
-// return that count in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32
-FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
+// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
+// in b for greater than.
+FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
{
#if defined(__aarch64__)
-#if __has_builtin(__builtin_popcount)
- return __builtin_popcount(a);
+ return vreinterpretq_m128i_u64(
+ vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
#else
- return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a)));
-#endif
-#else
- uint32_t count = 0;
- uint8x8_t input_val, count8x8_val;
- uint16x4_t count16x4_val;
- uint32x2_t count32x2_val;
-
- input_val = vld1_u8((uint8_t *) &a);
- count8x8_val = vcnt_u8(input_val);
- count16x4_val = vpaddl_u8(count8x8_val);
- count32x2_val = vpaddl_u16(count16x4_val);
-
- vst1_u32(&count, count32x2_val);
- return count;
+ return vreinterpretq_m128i_s64(vshrq_n_s64(
+ vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)),
+ 63));
#endif
}
-// Count the number of bits set to 1 in unsigned 64-bit integer a, and
-// return that count in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64
-FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
+// Starting with the initial value in crc, accumulates a CRC32 value for
+// unsigned 16-bit integer v.
+// https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100)
+FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
{
-#if defined(__aarch64__)
-#if __has_builtin(__builtin_popcountll)
- return __builtin_popcountll(a);
-#else
- return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a)));
-#endif
+#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
+ __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
+ : [c] "+r"(crc)
+ : [v] "r"(v));
#else
- uint64_t count = 0;
- uint8x8_t input_val, count8x8_val;
- uint16x4_t count16x4_val;
- uint32x2_t count32x2_val;
- uint64x1_t count64x1_val;
-
- input_val = vld1_u8((uint8_t *) &a);
- count8x8_val = vcnt_u8(input_val);
- count16x4_val = vpaddl_u8(count8x8_val);
- count32x2_val = vpaddl_u16(count16x4_val);
- count64x1_val = vpaddl_u32(count32x2_val);
- vst1_u64(&count, count64x1_val);
- return count;
+ crc = _mm_crc32_u8(crc, v & 0xff);
+ crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
#endif
+ return crc;
}
-// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
-// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
-// transposed matrix in these vectors (row0 now contains column 0, etc.).
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS
-#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
- do { \
- float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \
- float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \
- row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \
- vget_low_f32(ROW23.val[0])); \
- row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \
- vget_low_f32(ROW23.val[1])); \
- row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \
- vget_high_f32(ROW23.val[0])); \
- row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \
- vget_high_f32(ROW23.val[1])); \
- } while (0)
-
-/* Crypto Extensions */
-
-#if defined(__ARM_FEATURE_CRYPTO)
-// Wraps vmull_p64
-FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
-{
- poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
- poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
- return vreinterpretq_u64_p128(vmull_p64(a, b));
-}
-#else // ARMv7 polyfill
-// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
-//
-// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
-// 64-bit->128-bit polynomial multiply.
-//
-// It needs some work and is somewhat slow, but it is still faster than all
-// known scalar methods.
-//
-// Algorithm adapted to C from
-// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
-// from "Fast Software Polynomial Multiplication on ARM Processors Using the
-// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
-// (https://hal.inria.fr/hal-01506572)
-static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
+// Starting with the initial value in crc, accumulates a CRC32 value for
+// unsigned 32-bit integer v.
+// https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100)
+FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
{
- poly8x8_t a = vreinterpret_p8_u64(_a);
- poly8x8_t b = vreinterpret_p8_u64(_b);
-
- // Masks
- uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
- vcreate_u8(0x00000000ffffffff));
- uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
- vcreate_u8(0x0000000000000000));
-
- // Do the multiplies, rotating with vext to get all combinations
- uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
- uint8x16_t e =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
- uint8x16_t f =
- vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
- uint8x16_t g =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
- uint8x16_t h =
- vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
- uint8x16_t i =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
- uint8x16_t j =
- vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
- uint8x16_t k =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
-
- // Add cross products
- uint8x16_t l = veorq_u8(e, f); // L = E + F
- uint8x16_t m = veorq_u8(g, h); // M = G + H
- uint8x16_t n = veorq_u8(i, j); // N = I + J
-
- // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
- // instructions.
-#if defined(__aarch64__)
- uint8x16_t lm_p0 = vreinterpretq_u8_u64(
- vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
- uint8x16_t lm_p1 = vreinterpretq_u8_u64(
- vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
- uint8x16_t nk_p0 = vreinterpretq_u8_u64(
- vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
- uint8x16_t nk_p1 = vreinterpretq_u8_u64(
- vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
+#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
+ __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
+ : [c] "+r"(crc)
+ : [v] "r"(v));
#else
- uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
- uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
- uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
- uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
+ crc = _mm_crc32_u16(crc, v & 0xffff);
+ crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
#endif
- // t0 = (L) (P0 + P1) << 8
- // t1 = (M) (P2 + P3) << 16
- uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
- uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
- uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
-
- // t2 = (N) (P4 + P5) << 24
- // t3 = (K) (P6 + P7) << 32
- uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
- uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
- uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
+ return crc;
+}
- // De-interleave
-#if defined(__aarch64__)
- uint8x16_t t0 = vreinterpretq_u8_u64(
- vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
- uint8x16_t t1 = vreinterpretq_u8_u64(
- vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
- uint8x16_t t2 = vreinterpretq_u8_u64(
- vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
- uint8x16_t t3 = vreinterpretq_u8_u64(
- vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
+// Starting with the initial value in crc, accumulates a CRC32 value for
+// unsigned 64-bit integer v.
+// https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100)
+FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
+{
+#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
+ __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
+ : [c] "+r"(crc)
+ : [v] "r"(v));
#else
- uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
- uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
- uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
- uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
+ crc = _mm_crc32_u32((uint32_t)(crc), v & 0xffffffff);
+ crc = _mm_crc32_u32((uint32_t)(crc), (v >> 32) & 0xffffffff);
#endif
- // Shift the cross products
- uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
- uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
- uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
- uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
-
- // Accumulate the products
- uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
- uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
- uint8x16_t mix = veorq_u8(d, cross1);
- uint8x16_t r = veorq_u8(mix, cross2);
- return vreinterpretq_u64_u8(r);
+ return crc;
}
-#endif // ARMv7 polyfill
-// Perform a carry-less multiplication of two 64-bit integers, selected from a
-// and b according to imm8, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128
-FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
+// Starting with the initial value in crc, accumulates a CRC32 value for
+// unsigned 8-bit integer v.
+// https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100)
+FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
{
- uint64x2_t a = vreinterpretq_u64_m128i(_a);
- uint64x2_t b = vreinterpretq_u64_m128i(_b);
- switch (imm & 0x11) {
- case 0x00:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
- case 0x01:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
- case 0x10:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
- case 0x11:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
- default:
- abort();
+#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
+ __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
+ : [c] "+r"(crc)
+ : [v] "r"(v));
+#else
+ crc ^= v;
+ for (int bit = 0; bit < 8; bit++) {
+ if (crc & 1)
+ crc = (crc >> 1) ^ UINT32_C(0x82f63b78);
+ else
+ crc = (crc >> 1);
}
+#endif
+ return crc;
}
+/* AES */
+
#if !defined(__ARM_FEATURE_CRYPTO)
/* clang-format off */
#define SSE2NEON_AES_DATA(w) \
@@ -6752,22 +8520,22 @@ FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
{
/* FIXME: optimized for NEON */
uint8_t v[4][4] = {
- [0] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]},
- [1] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]},
- [2] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]},
- [3] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]},
+ {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]},
+ {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]},
+ {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]},
+ {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)],
+ SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]},
};
for (int i = 0; i < 16; i++)
vreinterpretq_nth_u8_m128i(a, i) =
@@ -6833,155 +8601,134 @@ FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
}
#endif
-/* Streaming Extensions */
+/* Others */
-// Guarantees that every preceding store is globally visible before any
-// subsequent store.
-// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx
-FORCE_INLINE void _mm_sfence(void)
+// Perform a carry-less multiplication of two 64-bit integers, selected from a
+// and b according to imm8, and store the results in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128
+FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
{
- __sync_synchronize();
+ uint64x2_t a = vreinterpretq_u64_m128i(_a);
+ uint64x2_t b = vreinterpretq_u64_m128i(_b);
+ switch (imm & 0x11) {
+ case 0x00:
+ return vreinterpretq_m128i_u64(
+ _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
+ case 0x01:
+ return vreinterpretq_m128i_u64(
+ _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
+ case 0x10:
+ return vreinterpretq_m128i_u64(
+ _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
+ case 0x11:
+ return vreinterpretq_m128i_u64(
+ _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
+ default:
+ abort();
+ }
}
-// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
-// point elements) from a into memory using a non-temporal memory hint.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps
-FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
+FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode()
{
-#if __has_builtin(__builtin_nontemporal_store)
- __builtin_nontemporal_store(a, (float32x4_t *) p);
+ union {
+ fpcr_bitfield field;
+#if defined(__aarch64__)
+ uint64_t value;
#else
- vst1q_f32(p, vreinterpretq_f32_m128(a));
+ uint32_t value;
#endif
-}
+ } r;
-// Stores the data in a to the address p without polluting the caches. If the
-// cache line containing address p is already in the cache, the cache will be
-// updated.
-// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx
-FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
-{
-#if __has_builtin(__builtin_nontemporal_store)
- __builtin_nontemporal_store(a, p);
+#if defined(__aarch64__)
+ asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
#else
- vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a));
+ asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
#endif
+
+ return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF;
}
-// Load 128-bits of integer data from memory into dst using a non-temporal
-// memory hint. mem_addr must be aligned on a 16-byte boundary or a
-// general-protection exception may be generated.
-//
-// dst[127:0] := MEM[mem_addr+127:mem_addr]
-//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128
-FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
+// Count the number of bits set to 1 in unsigned 32-bit integer a, and
+// return that count in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32
+FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
{
-#if __has_builtin(__builtin_nontemporal_store)
- return __builtin_nontemporal_load(p);
+#if defined(__aarch64__)
+#if __has_builtin(__builtin_popcount)
+ return __builtin_popcount(a);
#else
- return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p));
+ return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a)));
#endif
-}
-
-// Cache line containing p is flushed and invalidated from all caches in the
-// coherency domain. :
-// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx
-FORCE_INLINE void _mm_clflush(void const *p)
-{
- (void) p;
- // no corollary for Neon?
-}
+#else
+ uint32_t count = 0;
+ uint8x8_t input_val, count8x8_val;
+ uint16x4_t count16x4_val;
+ uint32x2_t count32x2_val;
-// Allocate aligned blocks of memory.
-// https://software.intel.com/en-us/
-// cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks
-FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
-{
- void *ptr;
- if (align == 1)
- return malloc(size);
- if (align == 2 || (sizeof(void *) == 8 && align == 4))
- align = sizeof(void *);
- if (!posix_memalign(&ptr, align, size))
- return ptr;
- return NULL;
-}
+ input_val = vld1_u8((uint8_t *) &a);
+ count8x8_val = vcnt_u8(input_val);
+ count16x4_val = vpaddl_u8(count8x8_val);
+ count32x2_val = vpaddl_u16(count16x4_val);
-// Free aligned memory that was allocated with _mm_malloc.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free
-FORCE_INLINE void _mm_free(void *addr)
-{
- free(addr);
+ vst1_u32(&count, count32x2_val);
+ return count;
+#endif
}
-// Starting with the initial value in crc, accumulates a CRC32 value for
-// unsigned 8-bit integer v.
-// https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100)
-FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
+// Count the number of bits set to 1 in unsigned 64-bit integer a, and
+// return that count in dst.
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64
+FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
{
-#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
+#if defined(__aarch64__)
+#if __has_builtin(__builtin_popcountll)
+ return __builtin_popcountll(a);
#else
- crc ^= v;
- for (int bit = 0; bit < 8; bit++) {
- if (crc & 1)
- crc = (crc >> 1) ^ UINT32_C(0x82f63b78);
- else
- crc = (crc >> 1);
- }
+ return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a)));
+#endif
+#else
+ uint64_t count = 0;
+ uint8x8_t input_val, count8x8_val;
+ uint16x4_t count16x4_val;
+ uint32x2_t count32x2_val;
+ uint64x1_t count64x1_val;
+
+ input_val = vld1_u8((uint8_t *) &a);
+ count8x8_val = vcnt_u8(input_val);
+ count16x4_val = vpaddl_u8(count8x8_val);
+ count32x2_val = vpaddl_u16(count16x4_val);
+ count64x1_val = vpaddl_u32(count32x2_val);
+ vst1_u64(&count, count64x1_val);
+ return count;
#endif
- return crc;
}
-// Starting with the initial value in crc, accumulates a CRC32 value for
-// unsigned 16-bit integer v.
-// https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100)
-FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
+FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag)
{
-#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
+ // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
+ // regardless of the value of the FZ bit.
+ union {
+ fpcr_bitfield field;
+#if defined(__aarch64__)
+ uint64_t value;
#else
- crc = _mm_crc32_u8(crc, v & 0xff);
- crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
+ uint32_t value;
#endif
- return crc;
-}
+ } r;
-// Starting with the initial value in crc, accumulates a CRC32 value for
-// unsigned 32-bit integer v.
-// https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100)
-FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
-{
-#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
+#if defined(__aarch64__)
+ asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
#else
- crc = _mm_crc32_u16(crc, v & 0xffff);
- crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
+ asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
#endif
- return crc;
-}
-// Starting with the initial value in crc, accumulates a CRC32 value for
-// unsigned 64-bit integer v.
-// https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100)
-FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
-{
-#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
+ r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON;
+
+#if defined(__aarch64__)
+ asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
#else
- crc = _mm_crc32_u32((uint32_t)(crc), v & 0xffffffff);
- crc = _mm_crc32_u32((uint32_t)(crc), (v >> 32) & 0xffffffff);
+ asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
#endif
- return crc;
}
#if defined(__GNUC__) || defined(__clang__)
@@ -6993,4 +8740,4 @@ FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
#pragma GCC pop_options
#endif
-#endif
+#endif \ No newline at end of file