summaryrefslogtreecommitdiff
path: root/thirdparty/embree-aarch64/kernels/subdiv/half_edge.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/embree-aarch64/kernels/subdiv/half_edge.h')
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/half_edge.h371
1 files changed, 371 insertions, 0 deletions
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/half_edge.h b/thirdparty/embree-aarch64/kernels/subdiv/half_edge.h
new file mode 100644
index 0000000000..fb350ca71f
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/half_edge.h
@@ -0,0 +1,371 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "catmullclark_coefficients.h"
+
+namespace embree
+{
+ class __aligned(32) HalfEdge
+ {
+ friend class SubdivMesh;
+ public:
+
+ enum PatchType : char {
+ BILINEAR_PATCH = 0, //!< a bilinear patch
+ REGULAR_QUAD_PATCH = 1, //!< a regular quad patch can be represented as a B-Spline
+ IRREGULAR_QUAD_PATCH = 2, //!< an irregular quad patch can be represented as a Gregory patch
+ COMPLEX_PATCH = 3 //!< these patches need subdivision and cannot be processed by the above fast code paths
+ };
+
+ enum VertexType : char {
+ REGULAR_VERTEX = 0, //!< regular vertex
+ NON_MANIFOLD_EDGE_VERTEX = 1, //!< vertex of a non-manifold edge
+ };
+
+ __forceinline friend PatchType max( const PatchType& ty0, const PatchType& ty1) {
+ return (PatchType) max((int)ty0,(int)ty1);
+ }
+
+ struct Edge
+ {
+ /*! edge constructor */
+ __forceinline Edge(const uint32_t v0, const uint32_t v1)
+ : v0(v0), v1(v1) {}
+
+ /*! create an 64 bit identifier that is unique for the not oriented edge */
+ __forceinline operator uint64_t() const
+ {
+ uint32_t p0 = v0, p1 = v1;
+ if (p0<p1) std::swap(p0,p1);
+ return (((uint64_t)p0) << 32) | (uint64_t)p1;
+ }
+
+ public:
+ uint32_t v0,v1; //!< start and end vertex of the edge
+ };
+
+ HalfEdge ()
+ : vtx_index(-1), next_half_edge_ofs(0), prev_half_edge_ofs(0), opposite_half_edge_ofs(0), edge_crease_weight(0),
+ vertex_crease_weight(0), edge_level(0), patch_type(COMPLEX_PATCH), vertex_type(REGULAR_VERTEX)
+ {
+ static_assert(sizeof(HalfEdge) == 32, "invalid half edge size");
+ }
+
+ __forceinline bool hasOpposite() const { return opposite_half_edge_ofs != 0; }
+ __forceinline void setOpposite(HalfEdge* opposite) { opposite_half_edge_ofs = int(opposite-this); }
+
+ __forceinline HalfEdge* next() { assert( next_half_edge_ofs != 0 ); return &this[next_half_edge_ofs]; }
+ __forceinline const HalfEdge* next() const { assert( next_half_edge_ofs != 0 ); return &this[next_half_edge_ofs]; }
+
+ __forceinline HalfEdge* prev() { assert( prev_half_edge_ofs != 0 ); return &this[prev_half_edge_ofs]; }
+ __forceinline const HalfEdge* prev() const { assert( prev_half_edge_ofs != 0 ); return &this[prev_half_edge_ofs]; }
+
+ __forceinline HalfEdge* opposite() { assert( opposite_half_edge_ofs != 0 ); return &this[opposite_half_edge_ofs]; }
+ __forceinline const HalfEdge* opposite() const { assert( opposite_half_edge_ofs != 0 ); return &this[opposite_half_edge_ofs]; }
+
+ __forceinline HalfEdge* rotate() { return opposite()->next(); }
+ __forceinline const HalfEdge* rotate() const { return opposite()->next(); }
+
+ __forceinline unsigned int getStartVertexIndex() const { return vtx_index; }
+ __forceinline unsigned int getEndVertexIndex () const { return next()->vtx_index; }
+ __forceinline Edge getEdge () const { return Edge(getStartVertexIndex(),getEndVertexIndex()); }
+
+
+ /*! tests if the start vertex of the edge is regular */
+ __forceinline PatchType vertexType() const
+ {
+ const HalfEdge* p = this;
+ size_t face_valence = 0;
+ bool hasBorder = false;
+
+ do
+ {
+ /* we need subdivision to handle edge creases */
+ if (p->hasOpposite() && p->edge_crease_weight > 0.0f)
+ return COMPLEX_PATCH;
+
+ face_valence++;
+
+ /* test for quad */
+ const HalfEdge* pp = p;
+ pp = pp->next(); if (pp == p) return COMPLEX_PATCH;
+ pp = pp->next(); if (pp == p) return COMPLEX_PATCH;
+ pp = pp->next(); if (pp == p) return COMPLEX_PATCH;
+ pp = pp->next(); if (pp != p) return COMPLEX_PATCH;
+
+ /* continue with next face */
+ p = p->prev();
+ if (likely(p->hasOpposite()))
+ p = p->opposite();
+
+ /* if there is no opposite go the long way to the other side of the border */
+ else
+ {
+ face_valence++;
+ hasBorder = true;
+ p = this;
+ while (p->hasOpposite())
+ p = p->rotate();
+ }
+ } while (p != this);
+
+ /* calculate vertex type */
+ if (face_valence == 2 && hasBorder) {
+ if (vertex_crease_weight == 0.0f ) return REGULAR_QUAD_PATCH;
+ else if (vertex_crease_weight == float(inf)) return REGULAR_QUAD_PATCH;
+ else return COMPLEX_PATCH;
+ }
+ else if (vertex_crease_weight != 0.0f) return COMPLEX_PATCH;
+ else if (face_valence == 3 && hasBorder) return REGULAR_QUAD_PATCH;
+ else if (face_valence == 4 && !hasBorder) return REGULAR_QUAD_PATCH;
+ else return IRREGULAR_QUAD_PATCH;
+ }
+
+ /*! tests if this edge is part of a bilinear patch */
+ __forceinline bool bilinearVertex() const {
+ return vertex_crease_weight == float(inf) && edge_crease_weight == float(inf);
+ }
+
+ /*! calculates the type of the patch */
+ __forceinline PatchType patchType() const
+ {
+ const HalfEdge* p = this;
+ PatchType ret = REGULAR_QUAD_PATCH;
+ bool bilinear = true;
+
+ ret = max(ret,p->vertexType());
+ bilinear &= p->bilinearVertex();
+ if ((p = p->next()) == this) return COMPLEX_PATCH;
+
+ ret = max(ret,p->vertexType());
+ bilinear &= p->bilinearVertex();
+ if ((p = p->next()) == this) return COMPLEX_PATCH;
+
+ ret = max(ret,p->vertexType());
+ bilinear &= p->bilinearVertex();
+ if ((p = p->next()) == this) return COMPLEX_PATCH;
+
+ ret = max(ret,p->vertexType());
+ bilinear &= p->bilinearVertex();
+ if ((p = p->next()) != this) return COMPLEX_PATCH;
+
+ if (bilinear) return BILINEAR_PATCH;
+ return ret;
+ }
+
+ /*! tests if the face is a regular b-spline face */
+ __forceinline bool isRegularFace() const {
+ return patch_type == REGULAR_QUAD_PATCH;
+ }
+
+ /*! tests if the face can be diced (using bspline or gregory patch) */
+ __forceinline bool isGregoryFace() const {
+ return patch_type == IRREGULAR_QUAD_PATCH || patch_type == REGULAR_QUAD_PATCH;
+ }
+
+ /*! tests if the base vertex of this half edge is a corner vertex */
+ __forceinline bool isCorner() const {
+ return !hasOpposite() && !prev()->hasOpposite();
+ }
+
+ /*! tests if the vertex is attached to any border */
+ __forceinline bool vertexHasBorder() const
+ {
+ const HalfEdge* p = this;
+ do {
+ if (!p->hasOpposite()) return true;
+ p = p->rotate();
+ } while (p != this);
+ return false;
+ }
+
+ /*! tests if the face this half edge belongs to has some border */
+ __forceinline bool faceHasBorder() const
+ {
+ const HalfEdge* p = this;
+ do {
+ if (p->vertexHasBorder()) return true;
+ p = p->next();
+ } while (p != this);
+ return false;
+ }
+
+ /*! calculates conservative bounds of a catmull clark subdivision face */
+ __forceinline BBox3fa bounds(const BufferView<Vec3fa>& vertices) const
+ {
+ BBox3fa bounds = this->get1RingBounds(vertices);
+ for (const HalfEdge* p=this->next(); p!=this; p=p->next())
+ bounds.extend(p->get1RingBounds(vertices));
+ return bounds;
+ }
+
+ /*! tests if this is a valid patch */
+ __forceinline bool valid(const BufferView<Vec3fa>& vertices) const
+ {
+ size_t N = 1;
+ if (!this->validRing(vertices)) return false;
+ for (const HalfEdge* p=this->next(); p!=this; p=p->next(), N++) {
+ if (!p->validRing(vertices)) return false;
+ }
+ return N >= 3 && N <= MAX_PATCH_VALENCE;
+ }
+
+ /*! counts number of polygon edges */
+ __forceinline unsigned int numEdges() const
+ {
+ unsigned int N = 1;
+ for (const HalfEdge* p=this->next(); p!=this; p=p->next(), N++);
+ return N;
+ }
+
+ /*! calculates face and edge valence */
+ __forceinline void calculateFaceValenceAndEdgeValence(size_t& faceValence, size_t& edgeValence) const
+ {
+ faceValence = 0;
+ edgeValence = 0;
+
+ const HalfEdge* p = this;
+ do
+ {
+ /* calculate bounds of current face */
+ unsigned int numEdges = p->numEdges();
+ assert(numEdges >= 3);
+ edgeValence += numEdges-2;
+
+ faceValence++;
+ p = p->prev();
+
+ /* continue with next face */
+ if (likely(p->hasOpposite()))
+ p = p->opposite();
+
+ /* if there is no opposite go the long way to the other side of the border */
+ else {
+ faceValence++;
+ edgeValence++;
+ p = this;
+ while (p->hasOpposite())
+ p = p->opposite()->next();
+ }
+
+ } while (p != this);
+ }
+
+ /*! stream output */
+ friend __forceinline std::ostream &operator<<(std::ostream &o, const HalfEdge &h)
+ {
+ return o << "{ " <<
+ "vertex = " << h.vtx_index << ", " << //" -> " << h.next()->vtx_index << ", " <<
+ "prev = " << h.prev_half_edge_ofs << ", " <<
+ "next = " << h.next_half_edge_ofs << ", " <<
+ "opposite = " << h.opposite_half_edge_ofs << ", " <<
+ "edge_crease = " << h.edge_crease_weight << ", " <<
+ "vertex_crease = " << h.vertex_crease_weight << ", " <<
+ //"edge_level = " << h.edge_level <<
+ " }";
+ }
+
+ private:
+
+ /*! calculates the bounds of the face associated with the half-edge */
+ __forceinline BBox3fa getFaceBounds(const BufferView<Vec3fa>& vertices) const
+ {
+ BBox3fa b = vertices[getStartVertexIndex()];
+ for (const HalfEdge* p = next(); p!=this; p=p->next()) {
+ b.extend(vertices[p->getStartVertexIndex()]);
+ }
+ return b;
+ }
+
+ /*! calculates the bounds of the 1-ring associated with the vertex of the half-edge */
+ __forceinline BBox3fa get1RingBounds(const BufferView<Vec3fa>& vertices) const
+ {
+ BBox3fa bounds = empty;
+ const HalfEdge* p = this;
+ do
+ {
+ /* calculate bounds of current face */
+ bounds.extend(p->getFaceBounds(vertices));
+ p = p->prev();
+
+ /* continue with next face */
+ if (likely(p->hasOpposite()))
+ p = p->opposite();
+
+ /* if there is no opposite go the long way to the other side of the border */
+ else {
+ p = this;
+ while (p->hasOpposite())
+ p = p->opposite()->next();
+ }
+
+ } while (p != this);
+
+ return bounds;
+ }
+
+ /*! tests if this is a valid face */
+ __forceinline bool validFace(const BufferView<Vec3fa>& vertices, size_t& N) const
+ {
+ const Vec3fa v = vertices[getStartVertexIndex()];
+ if (!isvalid(v)) return false;
+ size_t n = 1;
+ for (const HalfEdge* p = next(); p!=this; p=p->next(), n++) {
+ const Vec3fa v = vertices[p->getStartVertexIndex()];
+ if (!isvalid(v)) return false;
+ }
+ N += n-2;
+ return n >= 3 && n <= MAX_PATCH_VALENCE;
+ }
+
+ /*! tests if this is a valid ring */
+ __forceinline bool validRing(const BufferView<Vec3fa>& vertices) const
+ {
+ size_t faceValence = 0;
+ size_t edgeValence = 0;
+
+ const HalfEdge* p = this;
+ do
+ {
+ /* calculate bounds of current face */
+ if (!p->validFace(vertices,edgeValence))
+ return false;
+
+ faceValence++;
+ p = p->prev();
+
+ /* continue with next face */
+ if (likely(p->hasOpposite()))
+ p = p->opposite();
+
+ /* if there is no opposite go the long way to the other side of the border */
+ else {
+ faceValence++;
+ edgeValence++;
+ p = this;
+ while (p->hasOpposite())
+ p = p->opposite()->next();
+ }
+
+ } while (p != this);
+
+ return faceValence <= MAX_RING_FACE_VALENCE && edgeValence <= MAX_RING_EDGE_VALENCE;
+ }
+
+ private:
+ unsigned int vtx_index; //!< index of edge start vertex
+ int next_half_edge_ofs; //!< relative offset to next half edge of face
+ int prev_half_edge_ofs; //!< relative offset to previous half edge of face
+ int opposite_half_edge_ofs; //!< relative offset to opposite half edge
+
+ public:
+ float edge_crease_weight; //!< crease weight attached to edge
+ float vertex_crease_weight; //!< crease weight attached to start vertex
+ float edge_level; //!< subdivision factor for edge
+ PatchType patch_type; //!< stores type of subdiv patch
+ VertexType vertex_type; //!< stores type of the start vertex
+ char align[2];
+ };
+}