summaryrefslogtreecommitdiff
path: root/thirdparty/embree-aarch64/kernels/common/alloc.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/embree-aarch64/kernels/common/alloc.h')
-rw-r--r--thirdparty/embree-aarch64/kernels/common/alloc.h1006
1 files changed, 1006 insertions, 0 deletions
diff --git a/thirdparty/embree-aarch64/kernels/common/alloc.h b/thirdparty/embree-aarch64/kernels/common/alloc.h
new file mode 100644
index 0000000000..488fa707ef
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/common/alloc.h
@@ -0,0 +1,1006 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "default.h"
+#include "device.h"
+#include "scene.h"
+#include "primref.h"
+
+#if defined(__aarch64__) && defined(BUILD_IOS)
+#include <mutex>
+#endif
+
+namespace embree
+{
+ class FastAllocator
+ {
+ /*! maximum supported alignment */
+ static const size_t maxAlignment = 64;
+
+ /*! maximum allocation size */
+
+ /* default settings */
+ //static const size_t defaultBlockSize = 4096;
+#define maxAllocationSize size_t(2*1024*1024-maxAlignment)
+
+ static const size_t MAX_THREAD_USED_BLOCK_SLOTS = 8;
+
+ public:
+
+ struct ThreadLocal2;
+ enum AllocationType { ALIGNED_MALLOC, EMBREE_OS_MALLOC, SHARED, ANY_TYPE };
+
+ /*! Per thread structure holding the current memory block. */
+ struct __aligned(64) ThreadLocal
+ {
+ ALIGNED_CLASS_(64);
+ public:
+
+ /*! Constructor for usage with ThreadLocalData */
+ __forceinline ThreadLocal (ThreadLocal2* parent)
+ : parent(parent), ptr(nullptr), cur(0), end(0), allocBlockSize(0), bytesUsed(0), bytesWasted(0) {}
+
+ /*! initialize allocator */
+ void init(FastAllocator* alloc)
+ {
+ ptr = nullptr;
+ cur = end = 0;
+ bytesUsed = 0;
+ bytesWasted = 0;
+ allocBlockSize = 0;
+ if (alloc) allocBlockSize = alloc->defaultBlockSize;
+ }
+
+ /* Allocate aligned memory from the threads memory block. */
+ __forceinline void* malloc(FastAllocator* alloc, size_t bytes, size_t align = 16)
+ {
+ /* bind the thread local allocator to the proper FastAllocator*/
+ parent->bind(alloc);
+
+ assert(align <= maxAlignment);
+ bytesUsed += bytes;
+
+ /* try to allocate in local block */
+ size_t ofs = (align - cur) & (align-1);
+ cur += bytes + ofs;
+ if (likely(cur <= end)) { bytesWasted += ofs; return &ptr[cur - bytes]; }
+ cur -= bytes + ofs;
+
+ /* if allocation is too large allocate with parent allocator */
+ if (4*bytes > allocBlockSize) {
+ return alloc->malloc(bytes,maxAlignment,false);
+ }
+
+ /* get new partial block if allocation failed */
+ size_t blockSize = allocBlockSize;
+ ptr = (char*) alloc->malloc(blockSize,maxAlignment,true);
+ bytesWasted += end-cur;
+ cur = 0; end = blockSize;
+
+ /* retry allocation */
+ ofs = (align - cur) & (align-1);
+ cur += bytes + ofs;
+ if (likely(cur <= end)) { bytesWasted += ofs; return &ptr[cur - bytes]; }
+ cur -= bytes + ofs;
+
+ /* get new full block if allocation failed */
+ blockSize = allocBlockSize;
+ ptr = (char*) alloc->malloc(blockSize,maxAlignment,false);
+ bytesWasted += end-cur;
+ cur = 0; end = blockSize;
+
+ /* retry allocation */
+ ofs = (align - cur) & (align-1);
+ cur += bytes + ofs;
+ if (likely(cur <= end)) { bytesWasted += ofs; return &ptr[cur - bytes]; }
+ cur -= bytes + ofs;
+
+ /* should never happen as large allocations get handled specially above */
+ assert(false);
+ return nullptr;
+ }
+
+
+ /*! returns amount of used bytes */
+ __forceinline size_t getUsedBytes() const { return bytesUsed; }
+
+ /*! returns amount of free bytes */
+ __forceinline size_t getFreeBytes() const { return end-cur; }
+
+ /*! returns amount of wasted bytes */
+ __forceinline size_t getWastedBytes() const { return bytesWasted; }
+
+ private:
+ ThreadLocal2* parent;
+ char* ptr; //!< pointer to memory block
+ size_t cur; //!< current location of the allocator
+ size_t end; //!< end of the memory block
+ size_t allocBlockSize; //!< block size for allocations
+ size_t bytesUsed; //!< number of total bytes allocated
+ size_t bytesWasted; //!< number of bytes wasted
+ };
+
+ /*! Two thread local structures. */
+ struct __aligned(64) ThreadLocal2
+ {
+ ALIGNED_CLASS_(64);
+ public:
+
+ __forceinline ThreadLocal2()
+ : alloc(nullptr), alloc0(this), alloc1(this) {}
+
+ /*! bind to fast allocator */
+ __forceinline void bind(FastAllocator* alloc_i)
+ {
+ assert(alloc_i);
+ if (alloc.load() == alloc_i) return;
+#if defined(__aarch64__) && defined(BUILD_IOS)
+ std::scoped_lock lock(mutex);
+#else
+ Lock<SpinLock> lock(mutex);
+#endif
+ //if (alloc.load() == alloc_i) return; // not required as only one thread calls bind
+ if (alloc.load()) {
+ alloc.load()->bytesUsed += alloc0.getUsedBytes() + alloc1.getUsedBytes();
+ alloc.load()->bytesFree += alloc0.getFreeBytes() + alloc1.getFreeBytes();
+ alloc.load()->bytesWasted += alloc0.getWastedBytes() + alloc1.getWastedBytes();
+ }
+ alloc0.init(alloc_i);
+ alloc1.init(alloc_i);
+ alloc.store(alloc_i);
+ alloc_i->join(this);
+ }
+
+ /*! unbind to fast allocator */
+ void unbind(FastAllocator* alloc_i)
+ {
+ assert(alloc_i);
+ if (alloc.load() != alloc_i) return;
+#if defined(__aarch64__) && defined(BUILD_IOS)
+ std::scoped_lock lock(mutex);
+#else
+ Lock<SpinLock> lock(mutex);
+#endif
+ if (alloc.load() != alloc_i) return; // required as a different thread calls unbind
+ alloc.load()->bytesUsed += alloc0.getUsedBytes() + alloc1.getUsedBytes();
+ alloc.load()->bytesFree += alloc0.getFreeBytes() + alloc1.getFreeBytes();
+ alloc.load()->bytesWasted += alloc0.getWastedBytes() + alloc1.getWastedBytes();
+ alloc0.init(nullptr);
+ alloc1.init(nullptr);
+ alloc.store(nullptr);
+ }
+
+ public:
+#if defined(__aarch64__) && defined(BUILD_IOS)
+ std::mutex mutex;
+#else
+ SpinLock mutex; //!< required as unbind is called from other threads
+#endif
+ std::atomic<FastAllocator*> alloc; //!< parent allocator
+ ThreadLocal alloc0;
+ ThreadLocal alloc1;
+ };
+
+ FastAllocator (Device* device, bool osAllocation)
+ : device(device), slotMask(0), usedBlocks(nullptr), freeBlocks(nullptr), use_single_mode(false), defaultBlockSize(PAGE_SIZE), estimatedSize(0),
+ growSize(PAGE_SIZE), maxGrowSize(maxAllocationSize), log2_grow_size_scale(0), bytesUsed(0), bytesFree(0), bytesWasted(0), atype(osAllocation ? EMBREE_OS_MALLOC : ALIGNED_MALLOC),
+ primrefarray(device,0)
+ {
+ for (size_t i=0; i<MAX_THREAD_USED_BLOCK_SLOTS; i++)
+ {
+ threadUsedBlocks[i] = nullptr;
+ threadBlocks[i] = nullptr;
+ assert(!slotMutex[i].isLocked());
+ }
+ }
+
+ ~FastAllocator () {
+ clear();
+ }
+
+ /*! returns the device attached to this allocator */
+ Device* getDevice() {
+ return device;
+ }
+
+ void share(mvector<PrimRef>& primrefarray_i) {
+ primrefarray = std::move(primrefarray_i);
+ }
+
+ void unshare(mvector<PrimRef>& primrefarray_o)
+ {
+ reset(); // this removes blocks that are allocated inside the shared primref array
+ primrefarray_o = std::move(primrefarray);
+ }
+
+ /*! returns first fast thread local allocator */
+ __forceinline ThreadLocal* _threadLocal() {
+ return &threadLocal2()->alloc0;
+ }
+
+ void setOSallocation(bool flag)
+ {
+ atype = flag ? EMBREE_OS_MALLOC : ALIGNED_MALLOC;
+ }
+
+ private:
+
+ /*! returns both fast thread local allocators */
+ __forceinline ThreadLocal2* threadLocal2()
+ {
+ ThreadLocal2* alloc = thread_local_allocator2;
+ if (alloc == nullptr) {
+ thread_local_allocator2 = alloc = new ThreadLocal2;
+#if defined(__aarch64__) && defined(BUILD_IOS)
+ std::scoped_lock lock(s_thread_local_allocators_lock);
+#else
+ Lock<SpinLock> lock(s_thread_local_allocators_lock);
+#endif
+ s_thread_local_allocators.push_back(make_unique(alloc));
+ }
+ return alloc;
+ }
+
+ public:
+
+ __forceinline void join(ThreadLocal2* alloc)
+ {
+#if defined(__aarch64__) && defined(BUILD_IOS)
+ std::scoped_lock lock(s_thread_local_allocators_lock);
+#else
+ Lock<SpinLock> lock(thread_local_allocators_lock);
+#endif
+ thread_local_allocators.push_back(alloc);
+ }
+
+ public:
+
+ struct CachedAllocator
+ {
+ __forceinline CachedAllocator(void* ptr)
+ : alloc(nullptr), talloc0(nullptr), talloc1(nullptr)
+ {
+ assert(ptr == nullptr);
+ }
+
+ __forceinline CachedAllocator(FastAllocator* alloc, ThreadLocal2* talloc)
+ : alloc(alloc), talloc0(&talloc->alloc0), talloc1(alloc->use_single_mode ? &talloc->alloc0 : &talloc->alloc1) {}
+
+ __forceinline operator bool () const {
+ return alloc != nullptr;
+ }
+
+ __forceinline void* operator() (size_t bytes, size_t align = 16) const {
+ return talloc0->malloc(alloc,bytes,align);
+ }
+
+ __forceinline void* malloc0 (size_t bytes, size_t align = 16) const {
+ return talloc0->malloc(alloc,bytes,align);
+ }
+
+ __forceinline void* malloc1 (size_t bytes, size_t align = 16) const {
+ return talloc1->malloc(alloc,bytes,align);
+ }
+
+ public:
+ FastAllocator* alloc;
+ ThreadLocal* talloc0;
+ ThreadLocal* talloc1;
+ };
+
+ __forceinline CachedAllocator getCachedAllocator() {
+ return CachedAllocator(this,threadLocal2());
+ }
+
+ /*! Builder interface to create thread local allocator */
+ struct Create
+ {
+ public:
+ __forceinline Create (FastAllocator* allocator) : allocator(allocator) {}
+ __forceinline CachedAllocator operator() () const { return allocator->getCachedAllocator(); }
+
+ private:
+ FastAllocator* allocator;
+ };
+
+ void internal_fix_used_blocks()
+ {
+ /* move thread local blocks to global block list */
+ for (size_t i = 0; i < MAX_THREAD_USED_BLOCK_SLOTS; i++)
+ {
+ while (threadBlocks[i].load() != nullptr) {
+ Block* nextUsedBlock = threadBlocks[i].load()->next;
+ threadBlocks[i].load()->next = usedBlocks.load();
+ usedBlocks = threadBlocks[i].load();
+ threadBlocks[i] = nextUsedBlock;
+ }
+ threadBlocks[i] = nullptr;
+ }
+ }
+
+ static const size_t threadLocalAllocOverhead = 20; //! 20 means 5% parallel allocation overhead through unfilled thread local blocks
+#if defined(__AVX512ER__) // KNL
+ static const size_t mainAllocOverheadStatic = 15; //! 15 means 7.5% allocation overhead through unfilled main alloc blocks
+#else
+ static const size_t mainAllocOverheadStatic = 20; //! 20 means 5% allocation overhead through unfilled main alloc blocks
+#endif
+ static const size_t mainAllocOverheadDynamic = 8; //! 20 means 12.5% allocation overhead through unfilled main alloc blocks
+
+ /* calculates a single threaded threshold for the builders such
+ * that for small scenes the overhead of partly allocated blocks
+ * per thread is low */
+ size_t fixSingleThreadThreshold(size_t branchingFactor, size_t defaultThreshold, size_t numPrimitives, size_t bytesEstimated)
+ {
+ if (numPrimitives == 0 || bytesEstimated == 0)
+ return defaultThreshold;
+
+ /* calculate block size in bytes to fulfill threadLocalAllocOverhead constraint */
+ const size_t single_mode_factor = use_single_mode ? 1 : 2;
+ const size_t threadCount = TaskScheduler::threadCount();
+ const size_t singleThreadBytes = single_mode_factor*threadLocalAllocOverhead*defaultBlockSize;
+
+ /* if we do not have to limit number of threads use optimal thresdhold */
+ if ( (bytesEstimated+(singleThreadBytes-1))/singleThreadBytes >= threadCount)
+ return defaultThreshold;
+
+ /* otherwise limit number of threads by calculating proper single thread threshold */
+ else {
+ double bytesPerPrimitive = double(bytesEstimated)/double(numPrimitives);
+ return size_t(ceil(branchingFactor*singleThreadBytes/bytesPerPrimitive));
+ }
+ }
+
+ __forceinline size_t alignSize(size_t i) {
+ return (i+127)/128*128;
+ }
+
+ /*! initializes the grow size */
+ __forceinline void initGrowSizeAndNumSlots(size_t bytesEstimated, bool fast)
+ {
+ /* we do not need single thread local allocator mode */
+ use_single_mode = false;
+
+ /* calculate growSize such that at most mainAllocationOverhead gets wasted when a block stays unused */
+ size_t mainAllocOverhead = fast ? mainAllocOverheadDynamic : mainAllocOverheadStatic;
+ size_t blockSize = alignSize(bytesEstimated/mainAllocOverhead);
+ growSize = maxGrowSize = clamp(blockSize,size_t(1024),maxAllocationSize);
+
+ /* if we reached the maxAllocationSize for growSize, we can
+ * increase the number of allocation slots by still guaranteeing
+ * the mainAllocationOverhead */
+ slotMask = 0x0;
+
+ if (MAX_THREAD_USED_BLOCK_SLOTS >= 2 && bytesEstimated > 2*mainAllocOverhead*growSize) slotMask = 0x1;
+ if (MAX_THREAD_USED_BLOCK_SLOTS >= 4 && bytesEstimated > 4*mainAllocOverhead*growSize) slotMask = 0x3;
+ if (MAX_THREAD_USED_BLOCK_SLOTS >= 8 && bytesEstimated > 8*mainAllocOverhead*growSize) slotMask = 0x7;
+ if (MAX_THREAD_USED_BLOCK_SLOTS >= 8 && bytesEstimated > 16*mainAllocOverhead*growSize) { growSize *= 2; } /* if the overhead is tiny, double the growSize */
+
+ /* set the thread local alloc block size */
+ size_t defaultBlockSizeSwitch = PAGE_SIZE+maxAlignment;
+
+ /* for sufficiently large scene we can increase the defaultBlockSize over the defaultBlockSizeSwitch size */
+#if 0 // we do not do this as a block size of 4160 if for some reason best for KNL
+ const size_t threadCount = TaskScheduler::threadCount();
+ const size_t single_mode_factor = use_single_mode ? 1 : 2;
+ const size_t singleThreadBytes = single_mode_factor*threadLocalAllocOverhead*defaultBlockSizeSwitch;
+ if (bytesEstimated+(singleThreadBytes-1))/singleThreadBytes >= threadCount)
+ defaultBlockSize = min(max(defaultBlockSizeSwitch,bytesEstimated/(single_mode_factor*threadLocalAllocOverhead*threadCount)),growSize);
+
+ /* otherwise we grow the defaultBlockSize up to defaultBlockSizeSwitch */
+ else
+#endif
+ defaultBlockSize = clamp(blockSize,size_t(1024),defaultBlockSizeSwitch);
+
+ if (bytesEstimated == 0) {
+ maxGrowSize = maxAllocationSize; // special mode if builder cannot estimate tree size
+ defaultBlockSize = defaultBlockSizeSwitch;
+ }
+ log2_grow_size_scale = 0;
+
+ if (device->alloc_main_block_size != 0) growSize = device->alloc_main_block_size;
+ if (device->alloc_num_main_slots >= 1 ) slotMask = 0x0;
+ if (device->alloc_num_main_slots >= 2 ) slotMask = 0x1;
+ if (device->alloc_num_main_slots >= 4 ) slotMask = 0x3;
+ if (device->alloc_num_main_slots >= 8 ) slotMask = 0x7;
+ if (device->alloc_thread_block_size != 0) defaultBlockSize = device->alloc_thread_block_size;
+ if (device->alloc_single_thread_alloc != -1) use_single_mode = device->alloc_single_thread_alloc;
+ }
+
+ /*! initializes the allocator */
+ void init(size_t bytesAllocate, size_t bytesReserve, size_t bytesEstimate)
+ {
+ internal_fix_used_blocks();
+ /* distribute the allocation to multiple thread block slots */
+ slotMask = MAX_THREAD_USED_BLOCK_SLOTS-1; // FIXME: remove
+ if (usedBlocks.load() || freeBlocks.load()) { reset(); return; }
+ if (bytesReserve == 0) bytesReserve = bytesAllocate;
+ freeBlocks = Block::create(device,bytesAllocate,bytesReserve,nullptr,atype);
+ estimatedSize = bytesEstimate;
+ initGrowSizeAndNumSlots(bytesEstimate,true);
+ }
+
+ /*! initializes the allocator */
+ void init_estimate(size_t bytesEstimate)
+ {
+ internal_fix_used_blocks();
+ if (usedBlocks.load() || freeBlocks.load()) { reset(); return; }
+ /* single allocator mode ? */
+ estimatedSize = bytesEstimate;
+ //initGrowSizeAndNumSlots(bytesEstimate,false);
+ initGrowSizeAndNumSlots(bytesEstimate,false);
+
+ }
+
+ /*! frees state not required after build */
+ __forceinline void cleanup()
+ {
+ internal_fix_used_blocks();
+
+ /* unbind all thread local allocators */
+ for (auto alloc : thread_local_allocators) alloc->unbind(this);
+ thread_local_allocators.clear();
+ }
+
+ /*! resets the allocator, memory blocks get reused */
+ void reset ()
+ {
+ internal_fix_used_blocks();
+
+ bytesUsed.store(0);
+ bytesFree.store(0);
+ bytesWasted.store(0);
+
+ /* reset all used blocks and move them to begin of free block list */
+ while (usedBlocks.load() != nullptr) {
+ usedBlocks.load()->reset_block();
+ Block* nextUsedBlock = usedBlocks.load()->next;
+ usedBlocks.load()->next = freeBlocks.load();
+ freeBlocks = usedBlocks.load();
+ usedBlocks = nextUsedBlock;
+ }
+
+ /* remove all shared blocks as they are re-added during build */
+ freeBlocks.store(Block::remove_shared_blocks(freeBlocks.load()));
+
+ for (size_t i=0; i<MAX_THREAD_USED_BLOCK_SLOTS; i++)
+ {
+ threadUsedBlocks[i] = nullptr;
+ threadBlocks[i] = nullptr;
+ }
+
+ /* unbind all thread local allocators */
+ for (auto alloc : thread_local_allocators) alloc->unbind(this);
+ thread_local_allocators.clear();
+ }
+
+ /*! frees all allocated memory */
+ __forceinline void clear()
+ {
+ cleanup();
+ bytesUsed.store(0);
+ bytesFree.store(0);
+ bytesWasted.store(0);
+ if (usedBlocks.load() != nullptr) usedBlocks.load()->clear_list(device); usedBlocks = nullptr;
+ if (freeBlocks.load() != nullptr) freeBlocks.load()->clear_list(device); freeBlocks = nullptr;
+ for (size_t i=0; i<MAX_THREAD_USED_BLOCK_SLOTS; i++) {
+ threadUsedBlocks[i] = nullptr;
+ threadBlocks[i] = nullptr;
+ }
+ primrefarray.clear();
+ }
+
+ __forceinline size_t incGrowSizeScale()
+ {
+ size_t scale = log2_grow_size_scale.fetch_add(1)+1;
+ return size_t(1) << min(size_t(16),scale);
+ }
+
+ /*! thread safe allocation of memory */
+ void* malloc(size_t& bytes, size_t align, bool partial)
+ {
+ assert(align <= maxAlignment);
+
+ while (true)
+ {
+ /* allocate using current block */
+ size_t threadID = TaskScheduler::threadID();
+ size_t slot = threadID & slotMask;
+ Block* myUsedBlocks = threadUsedBlocks[slot];
+ if (myUsedBlocks) {
+ void* ptr = myUsedBlocks->malloc(device,bytes,align,partial);
+ if (ptr) return ptr;
+ }
+
+ /* throw error if allocation is too large */
+ if (bytes > maxAllocationSize)
+ throw_RTCError(RTC_ERROR_UNKNOWN,"allocation is too large");
+
+ /* parallel block creation in case of no freeBlocks, avoids single global mutex */
+ if (likely(freeBlocks.load() == nullptr))
+ {
+#if defined(__aarch64__) && defined(BUILD_IOS)
+ std::scoped_lock lock(slotMutex[slot]);
+#else
+ Lock<SpinLock> lock(slotMutex[slot]);
+#endif
+ if (myUsedBlocks == threadUsedBlocks[slot]) {
+ const size_t alignedBytes = (bytes+(align-1)) & ~(align-1);
+ const size_t allocSize = max(min(growSize,maxGrowSize),alignedBytes);
+ assert(allocSize >= bytes);
+ threadBlocks[slot] = threadUsedBlocks[slot] = Block::create(device,allocSize,allocSize,threadBlocks[slot],atype); // FIXME: a large allocation might throw away a block here!
+ // FIXME: a direct allocation should allocate inside the block here, and not in the next loop! a different thread could do some allocation and make the large allocation fail.
+ }
+ continue;
+ }
+
+ /* if this fails allocate new block */
+ {
+#if defined(__aarch64__) && defined(BUILD_IOS)
+ std::scoped_lock lock(mutex);
+#else
+ Lock<SpinLock> lock(mutex);
+#endif
+ if (myUsedBlocks == threadUsedBlocks[slot])
+ {
+ if (freeBlocks.load() != nullptr) {
+ Block* nextFreeBlock = freeBlocks.load()->next;
+ freeBlocks.load()->next = usedBlocks;
+ __memory_barrier();
+ usedBlocks = freeBlocks.load();
+ threadUsedBlocks[slot] = freeBlocks.load();
+ freeBlocks = nextFreeBlock;
+ } else {
+ const size_t allocSize = min(growSize*incGrowSizeScale(),maxGrowSize);
+ usedBlocks = threadUsedBlocks[slot] = Block::create(device,allocSize,allocSize,usedBlocks,atype); // FIXME: a large allocation should get delivered directly, like above!
+ }
+ }
+ }
+ }
+ }
+
+ /*! add new block */
+ void addBlock(void* ptr, ssize_t bytes)
+ {
+#if defined(__aarch64__) && defined(BUILD_IOS)
+ std::scoped_lock lock(mutex);
+#else
+ Lock<SpinLock> lock(mutex);
+#endif
+ const size_t sizeof_Header = offsetof(Block,data[0]);
+ void* aptr = (void*) ((((size_t)ptr)+maxAlignment-1) & ~(maxAlignment-1));
+ size_t ofs = (size_t) aptr - (size_t) ptr;
+ bytes -= ofs;
+ if (bytes < 4096) return; // ignore empty or very small blocks
+ freeBlocks = new (aptr) Block(SHARED,bytes-sizeof_Header,bytes-sizeof_Header,freeBlocks,ofs);
+ }
+
+ /* special allocation only used from morton builder only a single time for each build */
+ void* specialAlloc(size_t bytes)
+ {
+ assert(freeBlocks.load() != nullptr && freeBlocks.load()->getBlockAllocatedBytes() >= bytes);
+ return freeBlocks.load()->ptr();
+ }
+
+ struct Statistics
+ {
+ Statistics ()
+ : bytesUsed(0), bytesFree(0), bytesWasted(0) {}
+
+ Statistics (size_t bytesUsed, size_t bytesFree, size_t bytesWasted)
+ : bytesUsed(bytesUsed), bytesFree(bytesFree), bytesWasted(bytesWasted) {}
+
+ Statistics (FastAllocator* alloc, AllocationType atype, bool huge_pages = false)
+ : bytesUsed(0), bytesFree(0), bytesWasted(0)
+ {
+ Block* usedBlocks = alloc->usedBlocks.load();
+ Block* freeBlocks = alloc->freeBlocks.load();
+ if (usedBlocks) bytesUsed += usedBlocks->getUsedBytes(atype,huge_pages);
+ if (freeBlocks) bytesFree += freeBlocks->getAllocatedBytes(atype,huge_pages);
+ if (usedBlocks) bytesFree += usedBlocks->getFreeBytes(atype,huge_pages);
+ if (freeBlocks) bytesWasted += freeBlocks->getWastedBytes(atype,huge_pages);
+ if (usedBlocks) bytesWasted += usedBlocks->getWastedBytes(atype,huge_pages);
+ }
+
+ std::string str(size_t numPrimitives)
+ {
+ std::stringstream str;
+ str.setf(std::ios::fixed, std::ios::floatfield);
+ str << "used = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesUsed << " MB, "
+ << "free = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesFree << " MB, "
+ << "wasted = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesWasted << " MB, "
+ << "total = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesAllocatedTotal() << " MB, "
+ << "#bytes/prim = " << std::setw(6) << std::setprecision(2) << double(bytesAllocatedTotal())/double(numPrimitives);
+ return str.str();
+ }
+
+ friend Statistics operator+ ( const Statistics& a, const Statistics& b)
+ {
+ return Statistics(a.bytesUsed+b.bytesUsed,
+ a.bytesFree+b.bytesFree,
+ a.bytesWasted+b.bytesWasted);
+ }
+
+ size_t bytesAllocatedTotal() const {
+ return bytesUsed + bytesFree + bytesWasted;
+ }
+
+ public:
+ size_t bytesUsed;
+ size_t bytesFree;
+ size_t bytesWasted;
+ };
+
+ Statistics getStatistics(AllocationType atype, bool huge_pages = false) {
+ return Statistics(this,atype,huge_pages);
+ }
+
+ size_t getUsedBytes() {
+ return bytesUsed;
+ }
+
+ size_t getWastedBytes() {
+ return bytesWasted;
+ }
+
+ struct AllStatistics
+ {
+ AllStatistics (FastAllocator* alloc)
+
+ : bytesUsed(alloc->bytesUsed),
+ bytesFree(alloc->bytesFree),
+ bytesWasted(alloc->bytesWasted),
+ stat_all(alloc,ANY_TYPE),
+ stat_malloc(alloc,ALIGNED_MALLOC),
+ stat_4K(alloc,EMBREE_OS_MALLOC,false),
+ stat_2M(alloc,EMBREE_OS_MALLOC,true),
+ stat_shared(alloc,SHARED) {}
+
+ AllStatistics (size_t bytesUsed,
+ size_t bytesFree,
+ size_t bytesWasted,
+ Statistics stat_all,
+ Statistics stat_malloc,
+ Statistics stat_4K,
+ Statistics stat_2M,
+ Statistics stat_shared)
+
+ : bytesUsed(bytesUsed),
+ bytesFree(bytesFree),
+ bytesWasted(bytesWasted),
+ stat_all(stat_all),
+ stat_malloc(stat_malloc),
+ stat_4K(stat_4K),
+ stat_2M(stat_2M),
+ stat_shared(stat_shared) {}
+
+ friend AllStatistics operator+ (const AllStatistics& a, const AllStatistics& b)
+ {
+ return AllStatistics(a.bytesUsed+b.bytesUsed,
+ a.bytesFree+b.bytesFree,
+ a.bytesWasted+b.bytesWasted,
+ a.stat_all + b.stat_all,
+ a.stat_malloc + b.stat_malloc,
+ a.stat_4K + b.stat_4K,
+ a.stat_2M + b.stat_2M,
+ a.stat_shared + b.stat_shared);
+ }
+
+ void print(size_t numPrimitives)
+ {
+ std::stringstream str0;
+ str0.setf(std::ios::fixed, std::ios::floatfield);
+ str0 << " alloc : "
+ << "used = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesUsed << " MB, "
+ << " "
+ << "#bytes/prim = " << std::setw(6) << std::setprecision(2) << double(bytesUsed)/double(numPrimitives);
+ std::cout << str0.str() << std::endl;
+
+ std::stringstream str1;
+ str1.setf(std::ios::fixed, std::ios::floatfield);
+ str1 << " alloc : "
+ << "used = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesUsed << " MB, "
+ << "free = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesFree << " MB, "
+ << "wasted = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesWasted << " MB, "
+ << "total = " << std::setw(7) << std::setprecision(3) << 1E-6f*(bytesUsed+bytesFree+bytesWasted) << " MB, "
+ << "#bytes/prim = " << std::setw(6) << std::setprecision(2) << double(bytesUsed+bytesFree+bytesWasted)/double(numPrimitives);
+ std::cout << str1.str() << std::endl;
+
+ std::cout << " total : " << stat_all.str(numPrimitives) << std::endl;
+ std::cout << " 4K : " << stat_4K.str(numPrimitives) << std::endl;
+ std::cout << " 2M : " << stat_2M.str(numPrimitives) << std::endl;
+ std::cout << " malloc: " << stat_malloc.str(numPrimitives) << std::endl;
+ std::cout << " shared: " << stat_shared.str(numPrimitives) << std::endl;
+ }
+
+ private:
+ size_t bytesUsed;
+ size_t bytesFree;
+ size_t bytesWasted;
+ Statistics stat_all;
+ Statistics stat_malloc;
+ Statistics stat_4K;
+ Statistics stat_2M;
+ Statistics stat_shared;
+ };
+
+ void print_blocks()
+ {
+ std::cout << " estimatedSize = " << estimatedSize << ", slotMask = " << slotMask << ", use_single_mode = " << use_single_mode << ", maxGrowSize = " << maxGrowSize << ", defaultBlockSize = " << defaultBlockSize << std::endl;
+
+ std::cout << " used blocks = ";
+ if (usedBlocks.load() != nullptr) usedBlocks.load()->print_list();
+ std::cout << "[END]" << std::endl;
+
+ std::cout << " free blocks = ";
+ if (freeBlocks.load() != nullptr) freeBlocks.load()->print_list();
+ std::cout << "[END]" << std::endl;
+ }
+
+ private:
+
+ struct Block
+ {
+ static Block* create(MemoryMonitorInterface* device, size_t bytesAllocate, size_t bytesReserve, Block* next, AllocationType atype)
+ {
+ /* We avoid using os_malloc for small blocks as this could
+ * cause a risk of fragmenting the virtual address space and
+ * reach the limit of vm.max_map_count = 65k under Linux. */
+ if (atype == EMBREE_OS_MALLOC && bytesAllocate < maxAllocationSize)
+ atype = ALIGNED_MALLOC;
+
+ /* we need to additionally allocate some header */
+ const size_t sizeof_Header = offsetof(Block,data[0]);
+ bytesAllocate = sizeof_Header+bytesAllocate;
+ bytesReserve = sizeof_Header+bytesReserve;
+
+ /* consume full 4k pages with using os_malloc */
+ if (atype == EMBREE_OS_MALLOC) {
+ bytesAllocate = ((bytesAllocate+PAGE_SIZE-1) & ~(PAGE_SIZE-1));
+ bytesReserve = ((bytesReserve +PAGE_SIZE-1) & ~(PAGE_SIZE-1));
+ }
+
+ /* either use alignedMalloc or os_malloc */
+ void *ptr = nullptr;
+ if (atype == ALIGNED_MALLOC)
+ {
+ /* special handling for default block size */
+ if (bytesAllocate == (2*PAGE_SIZE_2M))
+ {
+ const size_t alignment = maxAlignment;
+ if (device) device->memoryMonitor(bytesAllocate+alignment,false);
+ ptr = alignedMalloc(bytesAllocate,alignment);
+
+ /* give hint to transparently convert these pages to 2MB pages */
+ const size_t ptr_aligned_begin = ((size_t)ptr) & ~size_t(PAGE_SIZE_2M-1);
+ os_advise((void*)(ptr_aligned_begin + 0),PAGE_SIZE_2M); // may fail if no memory mapped before block
+ os_advise((void*)(ptr_aligned_begin + 1*PAGE_SIZE_2M),PAGE_SIZE_2M);
+ os_advise((void*)(ptr_aligned_begin + 2*PAGE_SIZE_2M),PAGE_SIZE_2M); // may fail if no memory mapped after block
+
+ return new (ptr) Block(ALIGNED_MALLOC,bytesAllocate-sizeof_Header,bytesAllocate-sizeof_Header,next,alignment);
+ }
+ else
+ {
+ const size_t alignment = maxAlignment;
+ if (device) device->memoryMonitor(bytesAllocate+alignment,false);
+ ptr = alignedMalloc(bytesAllocate,alignment);
+ return new (ptr) Block(ALIGNED_MALLOC,bytesAllocate-sizeof_Header,bytesAllocate-sizeof_Header,next,alignment);
+ }
+ }
+ else if (atype == EMBREE_OS_MALLOC)
+ {
+ if (device) device->memoryMonitor(bytesAllocate,false);
+ bool huge_pages; ptr = os_malloc(bytesReserve,huge_pages);
+ return new (ptr) Block(EMBREE_OS_MALLOC,bytesAllocate-sizeof_Header,bytesReserve-sizeof_Header,next,0,huge_pages);
+ }
+ else
+ assert(false);
+
+ return NULL;
+ }
+
+ Block (AllocationType atype, size_t bytesAllocate, size_t bytesReserve, Block* next, size_t wasted, bool huge_pages = false)
+ : cur(0), allocEnd(bytesAllocate), reserveEnd(bytesReserve), next(next), wasted(wasted), atype(atype), huge_pages(huge_pages)
+ {
+ assert((((size_t)&data[0]) & (maxAlignment-1)) == 0);
+ }
+
+ static Block* remove_shared_blocks(Block* head)
+ {
+ Block** prev_next = &head;
+ for (Block* block = head; block; block = block->next) {
+ if (block->atype == SHARED) *prev_next = block->next;
+ else prev_next = &block->next;
+ }
+ return head;
+ }
+
+ void clear_list(MemoryMonitorInterface* device)
+ {
+ Block* block = this;
+ while (block) {
+ Block* next = block->next;
+ block->clear_block(device);
+ block = next;
+ }
+ }
+
+ void clear_block (MemoryMonitorInterface* device)
+ {
+ const size_t sizeof_Header = offsetof(Block,data[0]);
+ const ssize_t sizeof_Alloced = wasted+sizeof_Header+getBlockAllocatedBytes();
+
+ if (atype == ALIGNED_MALLOC) {
+ alignedFree(this);
+ if (device) device->memoryMonitor(-sizeof_Alloced,true);
+ }
+
+ else if (atype == EMBREE_OS_MALLOC) {
+ size_t sizeof_This = sizeof_Header+reserveEnd;
+ os_free(this,sizeof_This,huge_pages);
+ if (device) device->memoryMonitor(-sizeof_Alloced,true);
+ }
+
+ else /* if (atype == SHARED) */ {
+ }
+ }
+
+ void* malloc(MemoryMonitorInterface* device, size_t& bytes_in, size_t align, bool partial)
+ {
+ size_t bytes = bytes_in;
+ assert(align <= maxAlignment);
+ bytes = (bytes+(align-1)) & ~(align-1);
+ if (unlikely(cur+bytes > reserveEnd && !partial)) return nullptr;
+ const size_t i = cur.fetch_add(bytes);
+ if (unlikely(i+bytes > reserveEnd && !partial)) return nullptr;
+ if (unlikely(i > reserveEnd)) return nullptr;
+ bytes_in = bytes = min(bytes,reserveEnd-i);
+
+ if (i+bytes > allocEnd) {
+ if (device) device->memoryMonitor(i+bytes-max(i,allocEnd),true);
+ }
+ return &data[i];
+ }
+
+ void* ptr() {
+ return &data[cur];
+ }
+
+ void reset_block ()
+ {
+ allocEnd = max(allocEnd,(size_t)cur);
+ cur = 0;
+ }
+
+ size_t getBlockUsedBytes() const {
+ return min(size_t(cur),reserveEnd);
+ }
+
+ size_t getBlockFreeBytes() const {
+ return getBlockAllocatedBytes() - getBlockUsedBytes();
+ }
+
+ size_t getBlockAllocatedBytes() const {
+ return min(max(allocEnd,size_t(cur)),reserveEnd);
+ }
+
+ size_t getBlockWastedBytes() const {
+ const size_t sizeof_Header = offsetof(Block,data[0]);
+ return sizeof_Header + wasted;
+ }
+
+ size_t getBlockReservedBytes() const {
+ return reserveEnd;
+ }
+
+ bool hasType(AllocationType atype_i, bool huge_pages_i) const
+ {
+ if (atype_i == ANY_TYPE ) return true;
+ else if (atype == EMBREE_OS_MALLOC) return atype_i == atype && huge_pages_i == huge_pages;
+ else return atype_i == atype;
+ }
+
+ size_t getUsedBytes(AllocationType atype, bool huge_pages = false) const {
+ size_t bytes = 0;
+ for (const Block* block = this; block; block = block->next) {
+ if (!block->hasType(atype,huge_pages)) continue;
+ bytes += block->getBlockUsedBytes();
+ }
+ return bytes;
+ }
+
+ size_t getFreeBytes(AllocationType atype, bool huge_pages = false) const {
+ size_t bytes = 0;
+ for (const Block* block = this; block; block = block->next) {
+ if (!block->hasType(atype,huge_pages)) continue;
+ bytes += block->getBlockFreeBytes();
+ }
+ return bytes;
+ }
+
+ size_t getWastedBytes(AllocationType atype, bool huge_pages = false) const {
+ size_t bytes = 0;
+ for (const Block* block = this; block; block = block->next) {
+ if (!block->hasType(atype,huge_pages)) continue;
+ bytes += block->getBlockWastedBytes();
+ }
+ return bytes;
+ }
+
+ size_t getAllocatedBytes(AllocationType atype, bool huge_pages = false) const {
+ size_t bytes = 0;
+ for (const Block* block = this; block; block = block->next) {
+ if (!block->hasType(atype,huge_pages)) continue;
+ bytes += block->getBlockAllocatedBytes();
+ }
+ return bytes;
+ }
+
+ void print_list ()
+ {
+ for (const Block* block = this; block; block = block->next)
+ block->print_block();
+ }
+
+ void print_block() const
+ {
+ if (atype == ALIGNED_MALLOC) std::cout << "A";
+ else if (atype == EMBREE_OS_MALLOC) std::cout << "O";
+ else if (atype == SHARED) std::cout << "S";
+ if (huge_pages) std::cout << "H";
+ size_t bytesUsed = getBlockUsedBytes();
+ size_t bytesFree = getBlockFreeBytes();
+ size_t bytesWasted = getBlockWastedBytes();
+ std::cout << "[" << bytesUsed << ", " << bytesFree << ", " << bytesWasted << "] ";
+ }
+
+ public:
+ std::atomic<size_t> cur; //!< current location of the allocator
+ std::atomic<size_t> allocEnd; //!< end of the allocated memory region
+ std::atomic<size_t> reserveEnd; //!< end of the reserved memory region
+ Block* next; //!< pointer to next block in list
+ size_t wasted; //!< amount of memory wasted through block alignment
+ AllocationType atype; //!< allocation mode of the block
+ bool huge_pages; //!< whether the block uses huge pages
+ char align[maxAlignment-5*sizeof(size_t)-sizeof(AllocationType)-sizeof(bool)]; //!< align data to maxAlignment
+ char data[1]; //!< here starts memory to use for allocations
+ };
+
+ private:
+ Device* device;
+ SpinLock mutex;
+ size_t slotMask;
+ std::atomic<Block*> threadUsedBlocks[MAX_THREAD_USED_BLOCK_SLOTS];
+ std::atomic<Block*> usedBlocks;
+ std::atomic<Block*> freeBlocks;
+
+ std::atomic<Block*> threadBlocks[MAX_THREAD_USED_BLOCK_SLOTS];
+#if defined(__aarch64__) && defined(BUILD_IOS)
+ std::mutex slotMutex[MAX_THREAD_USED_BLOCK_SLOTS];
+#else
+ SpinLock slotMutex[MAX_THREAD_USED_BLOCK_SLOTS];
+#endif
+
+ bool use_single_mode;
+ size_t defaultBlockSize;
+ size_t estimatedSize;
+ size_t growSize;
+ size_t maxGrowSize;
+ std::atomic<size_t> log2_grow_size_scale; //!< log2 of scaling factor for grow size // FIXME: remove
+ std::atomic<size_t> bytesUsed;
+ std::atomic<size_t> bytesFree;
+ std::atomic<size_t> bytesWasted;
+ static __thread ThreadLocal2* thread_local_allocator2;
+ static SpinLock s_thread_local_allocators_lock;
+ static std::vector<std::unique_ptr<ThreadLocal2>> s_thread_local_allocators;
+#if defined(__aarch64__) && defined(BUILD_IOS)
+ std::mutex thread_local_allocators_lock;
+#else
+ SpinLock thread_local_allocators_lock;
+#endif
+ std::vector<ThreadLocal2*> thread_local_allocators;
+ AllocationType atype;
+ mvector<PrimRef> primrefarray; //!< primrefarray used to allocate nodes
+ };
+}