diff options
Diffstat (limited to 'thirdparty/embree-aarch64/common/math/quaternion.h')
-rw-r--r-- | thirdparty/embree-aarch64/common/math/quaternion.h | 254 |
1 files changed, 254 insertions, 0 deletions
diff --git a/thirdparty/embree-aarch64/common/math/quaternion.h b/thirdparty/embree-aarch64/common/math/quaternion.h new file mode 100644 index 0000000000..20c69bc62f --- /dev/null +++ b/thirdparty/embree-aarch64/common/math/quaternion.h @@ -0,0 +1,254 @@ +// Copyright 2009-2020 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "vec3.h" +#include "vec4.h" + +#include "transcendental.h" + +namespace embree +{ + //////////////////////////////////////////////////////////////// + // Quaternion Struct + //////////////////////////////////////////////////////////////// + + template<typename T> + struct QuaternionT + { + typedef Vec3<T> Vector; + + //////////////////////////////////////////////////////////////////////////////// + /// Construction + //////////////////////////////////////////////////////////////////////////////// + + __forceinline QuaternionT () { } + __forceinline QuaternionT ( const QuaternionT& other ) { r = other.r; i = other.i; j = other.j; k = other.k; } + __forceinline QuaternionT& operator=( const QuaternionT& other ) { r = other.r; i = other.i; j = other.j; k = other.k; return *this; } + + __forceinline QuaternionT( const T& r ) : r(r), i(zero), j(zero), k(zero) {} + __forceinline explicit QuaternionT( const Vec3<T>& v ) : r(zero), i(v.x), j(v.y), k(v.z) {} + __forceinline explicit QuaternionT( const Vec4<T>& v ) : r(v.x), i(v.y), j(v.z), k(v.w) {} + __forceinline QuaternionT( const T& r, const T& i, const T& j, const T& k ) : r(r), i(i), j(j), k(k) {} + __forceinline QuaternionT( const T& r, const Vec3<T>& v ) : r(r), i(v.x), j(v.y), k(v.z) {} + + __inline QuaternionT( const Vec3<T>& vx, const Vec3<T>& vy, const Vec3<T>& vz ); + __inline QuaternionT( const T& yaw, const T& pitch, const T& roll ); + + //////////////////////////////////////////////////////////////////////////////// + /// Constants + //////////////////////////////////////////////////////////////////////////////// + + __forceinline QuaternionT( ZeroTy ) : r(zero), i(zero), j(zero), k(zero) {} + __forceinline QuaternionT( OneTy ) : r( one), i(zero), j(zero), k(zero) {} + + /*! return quaternion for rotation around arbitrary axis */ + static __forceinline QuaternionT rotate(const Vec3<T>& u, const T& r) { + return QuaternionT<T>(cos(T(0.5)*r),sin(T(0.5)*r)*normalize(u)); + } + + /*! returns the rotation axis of the quaternion as a vector */ + __forceinline Vec3<T> v( ) const { return Vec3<T>(i, j, k); } + + public: + T r, i, j, k; + }; + + template<typename T> __forceinline QuaternionT<T> operator *( const T & a, const QuaternionT<T>& b ) { return QuaternionT<T>(a * b.r, a * b.i, a * b.j, a * b.k); } + template<typename T> __forceinline QuaternionT<T> operator *( const QuaternionT<T>& a, const T & b ) { return QuaternionT<T>(a.r * b, a.i * b, a.j * b, a.k * b); } + + //////////////////////////////////////////////////////////////// + // Unary Operators + //////////////////////////////////////////////////////////////// + + template<typename T> __forceinline QuaternionT<T> operator +( const QuaternionT<T>& a ) { return QuaternionT<T>(+a.r, +a.i, +a.j, +a.k); } + template<typename T> __forceinline QuaternionT<T> operator -( const QuaternionT<T>& a ) { return QuaternionT<T>(-a.r, -a.i, -a.j, -a.k); } + template<typename T> __forceinline QuaternionT<T> conj ( const QuaternionT<T>& a ) { return QuaternionT<T>(a.r, -a.i, -a.j, -a.k); } + template<typename T> __forceinline T abs ( const QuaternionT<T>& a ) { return sqrt(a.r*a.r + a.i*a.i + a.j*a.j + a.k*a.k); } + template<typename T> __forceinline QuaternionT<T> rcp ( const QuaternionT<T>& a ) { return conj(a)*rcp(a.r*a.r + a.i*a.i + a.j*a.j + a.k*a.k); } + template<typename T> __forceinline QuaternionT<T> normalize ( const QuaternionT<T>& a ) { return a*rsqrt(a.r*a.r + a.i*a.i + a.j*a.j + a.k*a.k); } + + // evaluates a*q-r + template<typename T> __forceinline QuaternionT<T> + msub(const T& a, const QuaternionT<T>& q, const QuaternionT<T>& p) + { + return QuaternionT<T>(msub(a, q.r, p.r), + msub(a, q.i, p.i), + msub(a, q.j, p.j), + msub(a, q.k, p.k)); + } + // evaluates a*q-r + template<typename T> __forceinline QuaternionT<T> + madd (const T& a, const QuaternionT<T>& q, const QuaternionT<T>& p) + { + return QuaternionT<T>(madd(a, q.r, p.r), + madd(a, q.i, p.i), + madd(a, q.j, p.j), + madd(a, q.k, p.k)); + } + + //////////////////////////////////////////////////////////////// + // Binary Operators + //////////////////////////////////////////////////////////////// + + template<typename T> __forceinline QuaternionT<T> operator +( const T & a, const QuaternionT<T>& b ) { return QuaternionT<T>(a + b.r, b.i, b.j, b.k); } + template<typename T> __forceinline QuaternionT<T> operator +( const QuaternionT<T>& a, const T & b ) { return QuaternionT<T>(a.r + b, a.i, a.j, a.k); } + template<typename T> __forceinline QuaternionT<T> operator +( const QuaternionT<T>& a, const QuaternionT<T>& b ) { return QuaternionT<T>(a.r + b.r, a.i + b.i, a.j + b.j, a.k + b.k); } + template<typename T> __forceinline QuaternionT<T> operator -( const T & a, const QuaternionT<T>& b ) { return QuaternionT<T>(a - b.r, -b.i, -b.j, -b.k); } + template<typename T> __forceinline QuaternionT<T> operator -( const QuaternionT<T>& a, const T & b ) { return QuaternionT<T>(a.r - b, a.i, a.j, a.k); } + template<typename T> __forceinline QuaternionT<T> operator -( const QuaternionT<T>& a, const QuaternionT<T>& b ) { return QuaternionT<T>(a.r - b.r, a.i - b.i, a.j - b.j, a.k - b.k); } + + template<typename T> __forceinline Vec3<T> operator *( const QuaternionT<T>& a, const Vec3<T> & b ) { return (a*QuaternionT<T>(b)*conj(a)).v(); } + template<typename T> __forceinline QuaternionT<T> operator *( const QuaternionT<T>& a, const QuaternionT<T>& b ) { + return QuaternionT<T>(a.r*b.r - a.i*b.i - a.j*b.j - a.k*b.k, + a.r*b.i + a.i*b.r + a.j*b.k - a.k*b.j, + a.r*b.j - a.i*b.k + a.j*b.r + a.k*b.i, + a.r*b.k + a.i*b.j - a.j*b.i + a.k*b.r); + } + template<typename T> __forceinline QuaternionT<T> operator /( const T & a, const QuaternionT<T>& b ) { return a*rcp(b); } + template<typename T> __forceinline QuaternionT<T> operator /( const QuaternionT<T>& a, const T & b ) { return a*rcp(b); } + template<typename T> __forceinline QuaternionT<T> operator /( const QuaternionT<T>& a, const QuaternionT<T>& b ) { return a*rcp(b); } + + template<typename T> __forceinline QuaternionT<T>& operator +=( QuaternionT<T>& a, const T & b ) { return a = a+b; } + template<typename T> __forceinline QuaternionT<T>& operator +=( QuaternionT<T>& a, const QuaternionT<T>& b ) { return a = a+b; } + template<typename T> __forceinline QuaternionT<T>& operator -=( QuaternionT<T>& a, const T & b ) { return a = a-b; } + template<typename T> __forceinline QuaternionT<T>& operator -=( QuaternionT<T>& a, const QuaternionT<T>& b ) { return a = a-b; } + template<typename T> __forceinline QuaternionT<T>& operator *=( QuaternionT<T>& a, const T & b ) { return a = a*b; } + template<typename T> __forceinline QuaternionT<T>& operator *=( QuaternionT<T>& a, const QuaternionT<T>& b ) { return a = a*b; } + template<typename T> __forceinline QuaternionT<T>& operator /=( QuaternionT<T>& a, const T & b ) { return a = a*rcp(b); } + template<typename T> __forceinline QuaternionT<T>& operator /=( QuaternionT<T>& a, const QuaternionT<T>& b ) { return a = a*rcp(b); } + + template<typename T, typename M> __forceinline QuaternionT<T> + select(const M& m, const QuaternionT<T>& q, const QuaternionT<T>& p) + { + return QuaternionT<T>(select(m, q.r, p.r), + select(m, q.i, p.i), + select(m, q.j, p.j), + select(m, q.k, p.k)); + } + + + template<typename T> __forceinline Vec3<T> xfmPoint ( const QuaternionT<T>& a, const Vec3<T>& b ) { return (a*QuaternionT<T>(b)*conj(a)).v(); } + template<typename T> __forceinline Vec3<T> xfmVector( const QuaternionT<T>& a, const Vec3<T>& b ) { return (a*QuaternionT<T>(b)*conj(a)).v(); } + template<typename T> __forceinline Vec3<T> xfmNormal( const QuaternionT<T>& a, const Vec3<T>& b ) { return (a*QuaternionT<T>(b)*conj(a)).v(); } + + template<typename T> __forceinline T dot(const QuaternionT<T>& a, const QuaternionT<T>& b) { return a.r*b.r + a.i*b.i + a.j*b.j + a.k*b.k; } + + //////////////////////////////////////////////////////////////////////////////// + /// Comparison Operators + //////////////////////////////////////////////////////////////////////////////// + + template<typename T> __forceinline bool operator ==( const QuaternionT<T>& a, const QuaternionT<T>& b ) { return a.r == b.r && a.i == b.i && a.j == b.j && a.k == b.k; } + template<typename T> __forceinline bool operator !=( const QuaternionT<T>& a, const QuaternionT<T>& b ) { return a.r != b.r || a.i != b.i || a.j != b.j || a.k != b.k; } + + + //////////////////////////////////////////////////////////////////////////////// + /// Orientation Functions + //////////////////////////////////////////////////////////////////////////////// + + template<typename T> QuaternionT<T>::QuaternionT( const Vec3<T>& vx, const Vec3<T>& vy, const Vec3<T>& vz ) + { + if ( vx.x + vy.y + vz.z >= T(zero) ) + { + const T t = T(one) + (vx.x + vy.y + vz.z); + const T s = rsqrt(t)*T(0.5f); + r = t*s; + i = (vy.z - vz.y)*s; + j = (vz.x - vx.z)*s; + k = (vx.y - vy.x)*s; + } + else if ( vx.x >= max(vy.y, vz.z) ) + { + const T t = (T(one) + vx.x) - (vy.y + vz.z); + const T s = rsqrt(t)*T(0.5f); + r = (vy.z - vz.y)*s; + i = t*s; + j = (vx.y + vy.x)*s; + k = (vz.x + vx.z)*s; + } + else if ( vy.y >= vz.z ) // if ( vy.y >= max(vz.z, vx.x) ) + { + const T t = (T(one) + vy.y) - (vz.z + vx.x); + const T s = rsqrt(t)*T(0.5f); + r = (vz.x - vx.z)*s; + i = (vx.y + vy.x)*s; + j = t*s; + k = (vy.z + vz.y)*s; + } + else //if ( vz.z >= max(vy.y, vx.x) ) + { + const T t = (T(one) + vz.z) - (vx.x + vy.y); + const T s = rsqrt(t)*T(0.5f); + r = (vx.y - vy.x)*s; + i = (vz.x + vx.z)*s; + j = (vy.z + vz.y)*s; + k = t*s; + } + } + + template<typename T> QuaternionT<T>::QuaternionT( const T& yaw, const T& pitch, const T& roll ) + { + const T cya = cos(yaw *T(0.5f)); + const T cpi = cos(pitch*T(0.5f)); + const T cro = cos(roll *T(0.5f)); + const T sya = sin(yaw *T(0.5f)); + const T spi = sin(pitch*T(0.5f)); + const T sro = sin(roll *T(0.5f)); + r = cro*cya*cpi + sro*sya*spi; + i = cro*cya*spi + sro*sya*cpi; + j = cro*sya*cpi - sro*cya*spi; + k = sro*cya*cpi - cro*sya*spi; + } + + ////////////////////////////////////////////////////////////////////////////// + /// Output Operators + ////////////////////////////////////////////////////////////////////////////// + + template<typename T> static embree_ostream operator<<(embree_ostream cout, const QuaternionT<T>& q) { + return cout << "{ r = " << q.r << ", i = " << q.i << ", j = " << q.j << ", k = " << q.k << " }"; + } + + /*! default template instantiations */ + typedef QuaternionT<float> Quaternion3f; + typedef QuaternionT<double> Quaternion3d; + + template<int N> using Quaternion3vf = QuaternionT<vfloat<N>>; + typedef QuaternionT<vfloat<4>> Quaternion3vf4; + typedef QuaternionT<vfloat<8>> Quaternion3vf8; + typedef QuaternionT<vfloat<16>> Quaternion3vf16; + + ////////////////////////////////////////////////////////////////////////////// + /// Interpolation + ////////////////////////////////////////////////////////////////////////////// + template<typename T> + __forceinline QuaternionT<T>lerp(const QuaternionT<T>& q0, + const QuaternionT<T>& q1, + const T& factor) + { + QuaternionT<T> q; + q.r = lerp(q0.r, q1.r, factor); + q.i = lerp(q0.i, q1.i, factor); + q.j = lerp(q0.j, q1.j, factor); + q.k = lerp(q0.k, q1.k, factor); + return q; + } + + template<typename T> + __forceinline QuaternionT<T> slerp(const QuaternionT<T>& q0, + const QuaternionT<T>& q1_, + const T& t) + { + T cosTheta = dot(q0, q1_); + QuaternionT<T> q1 = select(cosTheta < 0.f, -q1_, q1_); + cosTheta = select(cosTheta < 0.f, -cosTheta, cosTheta); + if (unlikely(all(cosTheta > 0.9995f))) { + return normalize(lerp(q0, q1, t)); + } + const T phi = t * fastapprox::acos(cosTheta); + T sinPhi, cosPhi; + fastapprox::sincos(phi, sinPhi, cosPhi); + QuaternionT<T> qperp = sinPhi * normalize(msub(cosTheta, q0, q1)); + return msub(cosPhi, q0, qperp); + } +} |