diff options
Diffstat (limited to 'thirdparty/embree-aarch64/common/math/affinespace.h')
-rw-r--r-- | thirdparty/embree-aarch64/common/math/affinespace.h | 361 |
1 files changed, 361 insertions, 0 deletions
diff --git a/thirdparty/embree-aarch64/common/math/affinespace.h b/thirdparty/embree-aarch64/common/math/affinespace.h new file mode 100644 index 0000000000..32452fbe72 --- /dev/null +++ b/thirdparty/embree-aarch64/common/math/affinespace.h @@ -0,0 +1,361 @@ +// Copyright 2009-2020 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "linearspace2.h" +#include "linearspace3.h" +#include "quaternion.h" +#include "bbox.h" +#include "vec4.h" + +namespace embree +{ + #define VectorT typename L::Vector + #define ScalarT typename L::Vector::Scalar + + //////////////////////////////////////////////////////////////////////////////// + // Affine Space + //////////////////////////////////////////////////////////////////////////////// + + template<typename L> + struct AffineSpaceT + { + L l; /*< linear part of affine space */ + VectorT p; /*< affine part of affine space */ + + //////////////////////////////////////////////////////////////////////////////// + // Constructors, Assignment, Cast, Copy Operations + //////////////////////////////////////////////////////////////////////////////// + + __forceinline AffineSpaceT ( ) { } + __forceinline AffineSpaceT ( const AffineSpaceT& other ) { l = other.l; p = other.p; } + __forceinline AffineSpaceT ( const L & other ) { l = other ; p = VectorT(zero); } + __forceinline AffineSpaceT& operator=( const AffineSpaceT& other ) { l = other.l; p = other.p; return *this; } + + __forceinline AffineSpaceT( const VectorT& vx, const VectorT& vy, const VectorT& vz, const VectorT& p ) : l(vx,vy,vz), p(p) {} + __forceinline AffineSpaceT( const L& l, const VectorT& p ) : l(l), p(p) {} + + template<typename L1> __forceinline AffineSpaceT( const AffineSpaceT<L1>& s ) : l(s.l), p(s.p) {} + + //////////////////////////////////////////////////////////////////////////////// + // Constants + //////////////////////////////////////////////////////////////////////////////// + + __forceinline AffineSpaceT( ZeroTy ) : l(zero), p(zero) {} + __forceinline AffineSpaceT( OneTy ) : l(one), p(zero) {} + + /*! return matrix for scaling */ + static __forceinline AffineSpaceT scale(const VectorT& s) { return L::scale(s); } + + /*! return matrix for translation */ + static __forceinline AffineSpaceT translate(const VectorT& p) { return AffineSpaceT(one,p); } + + /*! return matrix for rotation, only in 2D */ + static __forceinline AffineSpaceT rotate(const ScalarT& r) { return L::rotate(r); } + + /*! return matrix for rotation around arbitrary point (2D) or axis (3D) */ + static __forceinline AffineSpaceT rotate(const VectorT& u, const ScalarT& r) { return L::rotate(u,r); } + + /*! return matrix for rotation around arbitrary axis and point, only in 3D */ + static __forceinline AffineSpaceT rotate(const VectorT& p, const VectorT& u, const ScalarT& r) { return translate(+p) * rotate(u,r) * translate(-p); } + + /*! return matrix for looking at given point, only in 3D */ + static __forceinline AffineSpaceT lookat(const VectorT& eye, const VectorT& point, const VectorT& up) { + VectorT Z = normalize(point-eye); + VectorT U = normalize(cross(up,Z)); + VectorT V = normalize(cross(Z,U)); + return AffineSpaceT(L(U,V,Z),eye); + } + + }; + + // template specialization to get correct identity matrix for type AffineSpace3fa + template<> + __forceinline AffineSpaceT<LinearSpace3ff>::AffineSpaceT( OneTy ) : l(one), p(0.f, 0.f, 0.f, 1.f) {} + + //////////////////////////////////////////////////////////////////////////////// + // Unary Operators + //////////////////////////////////////////////////////////////////////////////// + + template<typename L> __forceinline AffineSpaceT<L> operator -( const AffineSpaceT<L>& a ) { return AffineSpaceT<L>(-a.l,-a.p); } + template<typename L> __forceinline AffineSpaceT<L> operator +( const AffineSpaceT<L>& a ) { return AffineSpaceT<L>(+a.l,+a.p); } + template<typename L> __forceinline AffineSpaceT<L> rcp( const AffineSpaceT<L>& a ) { L il = rcp(a.l); return AffineSpaceT<L>(il,-(il*a.p)); } + + //////////////////////////////////////////////////////////////////////////////// + // Binary Operators + //////////////////////////////////////////////////////////////////////////////// + + template<typename L> __forceinline const AffineSpaceT<L> operator +( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l+b.l,a.p+b.p); } + template<typename L> __forceinline const AffineSpaceT<L> operator -( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l-b.l,a.p-b.p); } + + template<typename L> __forceinline const AffineSpaceT<L> operator *( const ScalarT & a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a*b.l,a*b.p); } + template<typename L> __forceinline const AffineSpaceT<L> operator *( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l*b.l,a.l*b.p+a.p); } + template<typename L> __forceinline const AffineSpaceT<L> operator /( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a * rcp(b); } + template<typename L> __forceinline const AffineSpaceT<L> operator /( const AffineSpaceT<L>& a, const ScalarT & b ) { return a * rcp(b); } + + template<typename L> __forceinline AffineSpaceT<L>& operator *=( AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a = a * b; } + template<typename L> __forceinline AffineSpaceT<L>& operator *=( AffineSpaceT<L>& a, const ScalarT & b ) { return a = a * b; } + template<typename L> __forceinline AffineSpaceT<L>& operator /=( AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a = a / b; } + template<typename L> __forceinline AffineSpaceT<L>& operator /=( AffineSpaceT<L>& a, const ScalarT & b ) { return a = a / b; } + + template<typename L> __forceinline VectorT xfmPoint (const AffineSpaceT<L>& m, const VectorT& p) { return madd(VectorT(p.x),m.l.vx,madd(VectorT(p.y),m.l.vy,madd(VectorT(p.z),m.l.vz,m.p))); } + template<typename L> __forceinline VectorT xfmVector(const AffineSpaceT<L>& m, const VectorT& v) { return xfmVector(m.l,v); } + template<typename L> __forceinline VectorT xfmNormal(const AffineSpaceT<L>& m, const VectorT& n) { return xfmNormal(m.l,n); } + + __forceinline const BBox<Vec3fa> xfmBounds(const AffineSpaceT<LinearSpace3<Vec3fa> >& m, const BBox<Vec3fa>& b) + { + BBox3fa dst = empty; + const Vec3fa p0(b.lower.x,b.lower.y,b.lower.z); dst.extend(xfmPoint(m,p0)); + const Vec3fa p1(b.lower.x,b.lower.y,b.upper.z); dst.extend(xfmPoint(m,p1)); + const Vec3fa p2(b.lower.x,b.upper.y,b.lower.z); dst.extend(xfmPoint(m,p2)); + const Vec3fa p3(b.lower.x,b.upper.y,b.upper.z); dst.extend(xfmPoint(m,p3)); + const Vec3fa p4(b.upper.x,b.lower.y,b.lower.z); dst.extend(xfmPoint(m,p4)); + const Vec3fa p5(b.upper.x,b.lower.y,b.upper.z); dst.extend(xfmPoint(m,p5)); + const Vec3fa p6(b.upper.x,b.upper.y,b.lower.z); dst.extend(xfmPoint(m,p6)); + const Vec3fa p7(b.upper.x,b.upper.y,b.upper.z); dst.extend(xfmPoint(m,p7)); + return dst; + } + + //////////////////////////////////////////////////////////////////////////////// + /// Comparison Operators + //////////////////////////////////////////////////////////////////////////////// + + template<typename L> __forceinline bool operator ==( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a.l == b.l && a.p == b.p; } + template<typename L> __forceinline bool operator !=( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a.l != b.l || a.p != b.p; } + + //////////////////////////////////////////////////////////////////////////////// + /// Select + //////////////////////////////////////////////////////////////////////////////// + + template<typename L> __forceinline AffineSpaceT<L> select ( const typename L::Vector::Scalar::Bool& s, const AffineSpaceT<L>& t, const AffineSpaceT<L>& f ) { + return AffineSpaceT<L>(select(s,t.l,f.l),select(s,t.p,f.p)); + } + + //////////////////////////////////////////////////////////////////////////////// + // Output Operators + //////////////////////////////////////////////////////////////////////////////// + + template<typename L> static embree_ostream operator<<(embree_ostream cout, const AffineSpaceT<L>& m) { + return cout << "{ l = " << m.l << ", p = " << m.p << " }"; + } + + //////////////////////////////////////////////////////////////////////////////// + // Template Instantiations + //////////////////////////////////////////////////////////////////////////////// + + typedef AffineSpaceT<LinearSpace2f> AffineSpace2f; + typedef AffineSpaceT<LinearSpace3f> AffineSpace3f; + typedef AffineSpaceT<LinearSpace3fa> AffineSpace3fa; + typedef AffineSpaceT<LinearSpace3fx> AffineSpace3fx; + typedef AffineSpaceT<LinearSpace3ff> AffineSpace3ff; + typedef AffineSpaceT<Quaternion3f > OrthonormalSpace3f; + + template<int N> using AffineSpace3vf = AffineSpaceT<LinearSpace3<Vec3<vfloat<N>>>>; + typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<4>>>> AffineSpace3vf4; + typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<8>>>> AffineSpace3vf8; + typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<16>>>> AffineSpace3vf16; + + template<int N> using AffineSpace3vff = AffineSpaceT<LinearSpace3<Vec4<vfloat<N>>>>; + typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<4>>>> AffineSpace3vfa4; + typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<8>>>> AffineSpace3vfa8; + typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<16>>>> AffineSpace3vfa16; + + ////////////////////////////////////////////////////////////////////////////// + /// Interpolation + ////////////////////////////////////////////////////////////////////////////// + template<typename T, typename R> + __forceinline AffineSpaceT<T> lerp(const AffineSpaceT<T>& M0, + const AffineSpaceT<T>& M1, + const R& t) + { + return AffineSpaceT<T>(lerp(M0.l,M1.l,t),lerp(M0.p,M1.p,t)); + } + + // slerp interprets the 16 floats of the matrix M = D * R * S as components of + // three matrizes (D, R, S) that are interpolated individually. + template<typename T> __forceinline AffineSpaceT<LinearSpace3<Vec3<T>>> + slerp(const AffineSpaceT<LinearSpace3<Vec4<T>>>& M0, + const AffineSpaceT<LinearSpace3<Vec4<T>>>& M1, + const T& t) + { + QuaternionT<T> q0(M0.p.w, M0.l.vx.w, M0.l.vy.w, M0.l.vz.w); + QuaternionT<T> q1(M1.p.w, M1.l.vx.w, M1.l.vy.w, M1.l.vz.w); + QuaternionT<T> q = slerp(q0, q1, t); + + AffineSpaceT<LinearSpace3<Vec3<T>>> S = lerp(M0, M1, t); + AffineSpaceT<LinearSpace3<Vec3<T>>> D(one); + D.p.x = S.l.vx.y; + D.p.y = S.l.vx.z; + D.p.z = S.l.vy.z; + S.l.vx.y = 0; + S.l.vx.z = 0; + S.l.vy.z = 0; + + AffineSpaceT<LinearSpace3<Vec3<T>>> R = LinearSpace3<Vec3<T>>(q); + return D * R * S; + } + + // this is a specialized version for Vec3fa because that does + // not play along nicely with the other templated Vec3/Vec4 types + __forceinline AffineSpace3fa slerp(const AffineSpace3ff& M0, + const AffineSpace3ff& M1, + const float& t) + { + Quaternion3f q0(M0.p.w, M0.l.vx.w, M0.l.vy.w, M0.l.vz.w); + Quaternion3f q1(M1.p.w, M1.l.vx.w, M1.l.vy.w, M1.l.vz.w); + Quaternion3f q = slerp(q0, q1, t); + + AffineSpace3fa S = lerp(M0, M1, t); + AffineSpace3fa D(one); + D.p.x = S.l.vx.y; + D.p.y = S.l.vx.z; + D.p.z = S.l.vy.z; + S.l.vx.y = 0; + S.l.vx.z = 0; + S.l.vy.z = 0; + + AffineSpace3fa R = LinearSpace3fa(q); + return D * R * S; + } + + __forceinline AffineSpace3fa quaternionDecompositionToAffineSpace(const AffineSpace3ff& qd) + { + // compute affine transform from quaternion decomposition + Quaternion3f q(qd.p.w, qd.l.vx.w, qd.l.vy.w, qd.l.vz.w); + AffineSpace3fa M = qd; + AffineSpace3fa D(one); + D.p.x = M.l.vx.y; + D.p.y = M.l.vx.z; + D.p.z = M.l.vy.z; + M.l.vx.y = 0; + M.l.vx.z = 0; + M.l.vy.z = 0; + AffineSpace3fa R = LinearSpace3fa(q); + return D * R * M; + } + + __forceinline void quaternionDecomposition(const AffineSpace3ff& qd, Vec3fa& T, Quaternion3f& q, AffineSpace3fa& S) + { + q = Quaternion3f(qd.p.w, qd.l.vx.w, qd.l.vy.w, qd.l.vz.w); + S = qd; + T.x = qd.l.vx.y; + T.y = qd.l.vx.z; + T.z = qd.l.vy.z; + S.l.vx.y = 0; + S.l.vx.z = 0; + S.l.vy.z = 0; + } + + __forceinline AffineSpace3fx quaternionDecomposition(Vec3fa const& T, Quaternion3f const& q, AffineSpace3fa const& S) + { + AffineSpace3ff M = S; + M.l.vx.w = q.i; + M.l.vy.w = q.j; + M.l.vz.w = q.k; + M.p.w = q.r; + M.l.vx.y = T.x; + M.l.vx.z = T.y; + M.l.vy.z = T.z; + return M; + } + + struct __aligned(16) QuaternionDecomposition + { + float scale_x = 1.f; + float scale_y = 1.f; + float scale_z = 1.f; + float skew_xy = 0.f; + float skew_xz = 0.f; + float skew_yz = 0.f; + float shift_x = 0.f; + float shift_y = 0.f; + float shift_z = 0.f; + float quaternion_r = 1.f; + float quaternion_i = 0.f; + float quaternion_j = 0.f; + float quaternion_k = 0.f; + float translation_x = 0.f; + float translation_y = 0.f; + float translation_z = 0.f; + }; + + __forceinline QuaternionDecomposition quaternionDecomposition(AffineSpace3ff const& M) + { + QuaternionDecomposition qd; + qd.scale_x = M.l.vx.x; + qd.scale_y = M.l.vy.y; + qd.scale_z = M.l.vz.z; + qd.shift_x = M.p.x; + qd.shift_y = M.p.y; + qd.shift_z = M.p.z; + qd.translation_x = M.l.vx.y; + qd.translation_y = M.l.vx.z; + qd.translation_z = M.l.vy.z; + qd.skew_xy = M.l.vy.x; + qd.skew_xz = M.l.vz.x; + qd.skew_yz = M.l.vz.y; + qd.quaternion_r = M.p.w; + qd.quaternion_i = M.l.vx.w; + qd.quaternion_j = M.l.vy.w; + qd.quaternion_k = M.l.vz.w; + return qd; + } + + //////////////////////////////////////////////////////////////////////////////// + /* + * ! Template Specialization for 2D: return matrix for rotation around point + * (rotation around arbitrarty vector is not meaningful in 2D) + */ + template<> __forceinline + AffineSpace2f AffineSpace2f::rotate(const Vec2f& p, const float& r) { + return translate(+p)*AffineSpace2f(LinearSpace2f::rotate(r))*translate(-p); + } + + //////////////////////////////////////////////////////////////////////////////// + // Similarity Transform + // + // checks, if M is a similarity transformation, i.e if there exists a factor D + // such that for all x,y: distance(Mx, My) = D * distance(x, y) + //////////////////////////////////////////////////////////////////////////////// + __forceinline bool similarityTransform(const AffineSpace3fa& M, float* D) + { + if (D) *D = 0.f; + if (abs(dot(M.l.vx, M.l.vy)) > 1e-5f) return false; + if (abs(dot(M.l.vx, M.l.vz)) > 1e-5f) return false; + if (abs(dot(M.l.vy, M.l.vz)) > 1e-5f) return false; + + const float D_x = dot(M.l.vx, M.l.vx); + const float D_y = dot(M.l.vy, M.l.vy); + const float D_z = dot(M.l.vz, M.l.vz); + + if (abs(D_x - D_y) > 1e-5f || + abs(D_x - D_z) > 1e-5f || + abs(D_y - D_z) > 1e-5f) + return false; + + if (D) *D = sqrtf(D_x); + return true; + } + + __forceinline void AffineSpace3fa_store_unaligned(const AffineSpace3fa &source, AffineSpace3fa* ptr) + { + Vec3fa::storeu(&ptr->l.vx, source.l.vx); + Vec3fa::storeu(&ptr->l.vy, source.l.vy); + Vec3fa::storeu(&ptr->l.vz, source.l.vz); + Vec3fa::storeu(&ptr->p, source.p); + } + + __forceinline AffineSpace3fa AffineSpace3fa_load_unaligned(AffineSpace3fa* ptr) + { + AffineSpace3fa space; + space.l.vx = Vec3fa::loadu(&ptr->l.vx); + space.l.vy = Vec3fa::loadu(&ptr->l.vy); + space.l.vz = Vec3fa::loadu(&ptr->l.vz); + space.p = Vec3fa::loadu(&ptr->p); + return space; + } + + #undef VectorT + #undef ScalarT +} |