diff options
Diffstat (limited to 'thirdparty/bullet/src/LinearMath/btVector3.h')
-rw-r--r-- | thirdparty/bullet/src/LinearMath/btVector3.h | 1363 |
1 files changed, 0 insertions, 1363 deletions
diff --git a/thirdparty/bullet/src/LinearMath/btVector3.h b/thirdparty/bullet/src/LinearMath/btVector3.h deleted file mode 100644 index c69effa96e..0000000000 --- a/thirdparty/bullet/src/LinearMath/btVector3.h +++ /dev/null @@ -1,1363 +0,0 @@ -/* -Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - - - -#ifndef BT_VECTOR3_H -#define BT_VECTOR3_H - -//#include <stdint.h> -#include "btScalar.h" -#include "btMinMax.h" -#include "btAlignedAllocator.h" - -#ifdef BT_USE_DOUBLE_PRECISION -#define btVector3Data btVector3DoubleData -#define btVector3DataName "btVector3DoubleData" -#else -#define btVector3Data btVector3FloatData -#define btVector3DataName "btVector3FloatData" -#endif //BT_USE_DOUBLE_PRECISION - -#if defined BT_USE_SSE - -//typedef uint32_t __m128i __attribute__ ((vector_size(16))); - -#ifdef _MSC_VER -#pragma warning(disable: 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255' -#endif - - -#define BT_SHUFFLE(x,y,z,w) ((w)<<6 | (z)<<4 | (y)<<2 | (x)) -//#define bt_pshufd_ps( _a, _mask ) (__m128) _mm_shuffle_epi32((__m128i)(_a), (_mask) ) -#define bt_pshufd_ps( _a, _mask ) _mm_shuffle_ps((_a), (_a), (_mask) ) -#define bt_splat3_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i, 3) ) -#define bt_splat_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i,_i) ) - -#define btv3AbsiMask (_mm_set_epi32(0x00000000, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF)) -#define btvAbsMask (_mm_set_epi32( 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF)) -#define btvFFF0Mask (_mm_set_epi32(0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF)) -#define btv3AbsfMask btCastiTo128f(btv3AbsiMask) -#define btvFFF0fMask btCastiTo128f(btvFFF0Mask) -#define btvxyzMaskf btvFFF0fMask -#define btvAbsfMask btCastiTo128f(btvAbsMask) - -//there is an issue with XCode 3.2 (LCx errors) -#define btvMzeroMask (_mm_set_ps(-0.0f, -0.0f, -0.0f, -0.0f)) -#define v1110 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f)) -#define vHalf (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f)) -#define v1_5 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f)) - -//const __m128 ATTRIBUTE_ALIGNED16(btvMzeroMask) = {-0.0f, -0.0f, -0.0f, -0.0f}; -//const __m128 ATTRIBUTE_ALIGNED16(v1110) = {1.0f, 1.0f, 1.0f, 0.0f}; -//const __m128 ATTRIBUTE_ALIGNED16(vHalf) = {0.5f, 0.5f, 0.5f, 0.5f}; -//const __m128 ATTRIBUTE_ALIGNED16(v1_5) = {1.5f, 1.5f, 1.5f, 1.5f}; - -#endif - -#ifdef BT_USE_NEON - -const float32x4_t ATTRIBUTE_ALIGNED16(btvMzeroMask) = (float32x4_t){-0.0f, -0.0f, -0.0f, -0.0f}; -const int32x4_t ATTRIBUTE_ALIGNED16(btvFFF0Mask) = (int32x4_t){static_cast<int32_t>(0xFFFFFFFF), - static_cast<int32_t>(0xFFFFFFFF), static_cast<int32_t>(0xFFFFFFFF), 0x0}; -const int32x4_t ATTRIBUTE_ALIGNED16(btvAbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; -const int32x4_t ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x0}; - -#endif - -/**@brief btVector3 can be used to represent 3D points and vectors. - * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user - * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers - */ -ATTRIBUTE_ALIGNED16(class) btVector3 -{ -public: - - BT_DECLARE_ALIGNED_ALLOCATOR(); - -#if defined (__SPU__) && defined (__CELLOS_LV2__) - btScalar m_floats[4]; -public: - SIMD_FORCE_INLINE const vec_float4& get128() const - { - return *((const vec_float4*)&m_floats[0]); - } -public: -#else //__CELLOS_LV2__ __SPU__ - #if defined (BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM - union { - btSimdFloat4 mVec128; - btScalar m_floats[4]; - }; - SIMD_FORCE_INLINE btSimdFloat4 get128() const - { - return mVec128; - } - SIMD_FORCE_INLINE void set128(btSimdFloat4 v128) - { - mVec128 = v128; - } - #else - btScalar m_floats[4]; - #endif -#endif //__CELLOS_LV2__ __SPU__ - - public: - - /**@brief No initialization constructor */ - SIMD_FORCE_INLINE btVector3() - { - - } - - - - /**@brief Constructor from scalars - * @param x X value - * @param y Y value - * @param z Z value - */ - SIMD_FORCE_INLINE btVector3(const btScalar& _x, const btScalar& _y, const btScalar& _z) - { - m_floats[0] = _x; - m_floats[1] = _y; - m_floats[2] = _z; - m_floats[3] = btScalar(0.f); - } - -#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) )|| defined (BT_USE_NEON) - // Set Vector - SIMD_FORCE_INLINE btVector3( btSimdFloat4 v) - { - mVec128 = v; - } - - // Copy constructor - SIMD_FORCE_INLINE btVector3(const btVector3& rhs) - { - mVec128 = rhs.mVec128; - } - - // Assignment Operator - SIMD_FORCE_INLINE btVector3& - operator=(const btVector3& v) - { - mVec128 = v.mVec128; - - return *this; - } -#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - -/**@brief Add a vector to this one - * @param The vector to add to this one */ - SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v) - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - mVec128 = _mm_add_ps(mVec128, v.mVec128); -#elif defined(BT_USE_NEON) - mVec128 = vaddq_f32(mVec128, v.mVec128); -#else - m_floats[0] += v.m_floats[0]; - m_floats[1] += v.m_floats[1]; - m_floats[2] += v.m_floats[2]; -#endif - return *this; - } - - - /**@brief Subtract a vector from this one - * @param The vector to subtract */ - SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - mVec128 = _mm_sub_ps(mVec128, v.mVec128); -#elif defined(BT_USE_NEON) - mVec128 = vsubq_f32(mVec128, v.mVec128); -#else - m_floats[0] -= v.m_floats[0]; - m_floats[1] -= v.m_floats[1]; - m_floats[2] -= v.m_floats[2]; -#endif - return *this; - } - - /**@brief Scale the vector - * @param s Scale factor */ - SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s) - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 vs = _mm_load_ss(&s); // (S 0 0 0) - vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0) - mVec128 = _mm_mul_ps(mVec128, vs); -#elif defined(BT_USE_NEON) - mVec128 = vmulq_n_f32(mVec128, s); -#else - m_floats[0] *= s; - m_floats[1] *= s; - m_floats[2] *= s; -#endif - return *this; - } - - /**@brief Inversely scale the vector - * @param s Scale factor to divide by */ - SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) - { - btFullAssert(s != btScalar(0.0)); - -#if 0 //defined(BT_USE_SSE_IN_API) -// this code is not faster ! - __m128 vs = _mm_load_ss(&s); - vs = _mm_div_ss(v1110, vs); - vs = bt_pshufd_ps(vs, 0x00); // (S S S S) - - mVec128 = _mm_mul_ps(mVec128, vs); - - return *this; -#else - return *this *= btScalar(1.0) / s; -#endif - } - - /**@brief Return the dot product - * @param v The other vector in the dot product */ - SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const - { -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 vd = _mm_mul_ps(mVec128, v.mVec128); - __m128 z = _mm_movehl_ps(vd, vd); - __m128 y = _mm_shuffle_ps(vd, vd, 0x55); - vd = _mm_add_ss(vd, y); - vd = _mm_add_ss(vd, z); - return _mm_cvtss_f32(vd); -#elif defined(BT_USE_NEON) - float32x4_t vd = vmulq_f32(mVec128, v.mVec128); - float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd)); - x = vadd_f32(x, vget_high_f32(vd)); - return vget_lane_f32(x, 0); -#else - return m_floats[0] * v.m_floats[0] + - m_floats[1] * v.m_floats[1] + - m_floats[2] * v.m_floats[2]; -#endif - } - - /**@brief Return the length of the vector squared */ - SIMD_FORCE_INLINE btScalar length2() const - { - return dot(*this); - } - - /**@brief Return the length of the vector */ - SIMD_FORCE_INLINE btScalar length() const - { - return btSqrt(length2()); - } - - /**@brief Return the norm (length) of the vector */ - SIMD_FORCE_INLINE btScalar norm() const - { - return length(); - } - - /**@brief Return the norm (length) of the vector */ - SIMD_FORCE_INLINE btScalar safeNorm() const - { - btScalar d = length2(); - //workaround for some clang/gcc issue of sqrtf(tiny number) = -INF - if (d>SIMD_EPSILON) - return btSqrt(d); - return btScalar(0); - } - - /**@brief Return the distance squared between the ends of this and another vector - * This is symantically treating the vector like a point */ - SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const; - - /**@brief Return the distance between the ends of this and another vector - * This is symantically treating the vector like a point */ - SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const; - - SIMD_FORCE_INLINE btVector3& safeNormalize() - { - btScalar l2 = length2(); - //triNormal.normalize(); - if (l2 >= SIMD_EPSILON*SIMD_EPSILON) - { - (*this) /= btSqrt(l2); - } - else - { - setValue(1, 0, 0); - } - return *this; - } - - /**@brief Normalize this vector - * x^2 + y^2 + z^2 = 1 */ - SIMD_FORCE_INLINE btVector3& normalize() - { - - btAssert(!fuzzyZero()); - -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - // dot product first - __m128 vd = _mm_mul_ps(mVec128, mVec128); - __m128 z = _mm_movehl_ps(vd, vd); - __m128 y = _mm_shuffle_ps(vd, vd, 0x55); - vd = _mm_add_ss(vd, y); - vd = _mm_add_ss(vd, z); - - #if 0 - vd = _mm_sqrt_ss(vd); - vd = _mm_div_ss(v1110, vd); - vd = bt_splat_ps(vd, 0x80); - mVec128 = _mm_mul_ps(mVec128, vd); - #else - - // NR step 1/sqrt(x) - vd is x, y is output - y = _mm_rsqrt_ss(vd); // estimate - - // one step NR - z = v1_5; - vd = _mm_mul_ss(vd, vHalf); // vd * 0.5 - //x2 = vd; - vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 - vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 * y0 - z = _mm_sub_ss(z, vd); // 1.5 - vd * 0.5 * y0 * y0 - - y = _mm_mul_ss(y, z); // y0 * (1.5 - vd * 0.5 * y0 * y0) - - y = bt_splat_ps(y, 0x80); - mVec128 = _mm_mul_ps(mVec128, y); - - #endif - - - return *this; -#else - return *this /= length(); -#endif - } - - /**@brief Return a normalized version of this vector */ - SIMD_FORCE_INLINE btVector3 normalized() const; - - /**@brief Return a rotated version of this vector - * @param wAxis The axis to rotate about - * @param angle The angle to rotate by */ - SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle ) const; - - /**@brief Return the angle between this and another vector - * @param v The other vector */ - SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const - { - btScalar s = btSqrt(length2() * v.length2()); - btFullAssert(s != btScalar(0.0)); - return btAcos(dot(v) / s); - } - - /**@brief Return a vector with the absolute values of each element */ - SIMD_FORCE_INLINE btVector3 absolute() const - { - -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - return btVector3(_mm_and_ps(mVec128, btv3AbsfMask)); -#elif defined(BT_USE_NEON) - return btVector3(vabsq_f32(mVec128)); -#else - return btVector3( - btFabs(m_floats[0]), - btFabs(m_floats[1]), - btFabs(m_floats[2])); -#endif - } - - /**@brief Return the cross product between this and another vector - * @param v The other vector */ - SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 T, V; - - T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) - V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) - - V = _mm_mul_ps(V, mVec128); - T = _mm_mul_ps(T, v.mVec128); - V = _mm_sub_ps(V, T); - - V = bt_pshufd_ps(V, BT_SHUFFLE(1, 2, 0, 3)); - return btVector3(V); -#elif defined(BT_USE_NEON) - float32x4_t T, V; - // form (Y, Z, X, _) of mVec128 and v.mVec128 - float32x2_t Tlow = vget_low_f32(mVec128); - float32x2_t Vlow = vget_low_f32(v.mVec128); - T = vcombine_f32(vext_f32(Tlow, vget_high_f32(mVec128), 1), Tlow); - V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v.mVec128), 1), Vlow); - - V = vmulq_f32(V, mVec128); - T = vmulq_f32(T, v.mVec128); - V = vsubq_f32(V, T); - Vlow = vget_low_f32(V); - // form (Y, Z, X, _); - V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow); - V = (float32x4_t)vandq_s32((int32x4_t)V, btvFFF0Mask); - - return btVector3(V); -#else - return btVector3( - m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1], - m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2], - m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]); -#endif - } - - SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const - { -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - // cross: - __m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) - __m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) - - V = _mm_mul_ps(V, v1.mVec128); - T = _mm_mul_ps(T, v2.mVec128); - V = _mm_sub_ps(V, T); - - V = _mm_shuffle_ps(V, V, BT_SHUFFLE(1, 2, 0, 3)); - - // dot: - V = _mm_mul_ps(V, mVec128); - __m128 z = _mm_movehl_ps(V, V); - __m128 y = _mm_shuffle_ps(V, V, 0x55); - V = _mm_add_ss(V, y); - V = _mm_add_ss(V, z); - return _mm_cvtss_f32(V); - -#elif defined(BT_USE_NEON) - // cross: - float32x4_t T, V; - // form (Y, Z, X, _) of mVec128 and v.mVec128 - float32x2_t Tlow = vget_low_f32(v1.mVec128); - float32x2_t Vlow = vget_low_f32(v2.mVec128); - T = vcombine_f32(vext_f32(Tlow, vget_high_f32(v1.mVec128), 1), Tlow); - V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v2.mVec128), 1), Vlow); - - V = vmulq_f32(V, v1.mVec128); - T = vmulq_f32(T, v2.mVec128); - V = vsubq_f32(V, T); - Vlow = vget_low_f32(V); - // form (Y, Z, X, _); - V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow); - - // dot: - V = vmulq_f32(mVec128, V); - float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V)); - x = vadd_f32(x, vget_high_f32(V)); - return vget_lane_f32(x, 0); -#else - return - m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + - m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + - m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]); -#endif - } - - /**@brief Return the axis with the smallest value - * Note return values are 0,1,2 for x, y, or z */ - SIMD_FORCE_INLINE int minAxis() const - { - return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2); - } - - /**@brief Return the axis with the largest value - * Note return values are 0,1,2 for x, y, or z */ - SIMD_FORCE_INLINE int maxAxis() const - { - return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0); - } - - SIMD_FORCE_INLINE int furthestAxis() const - { - return absolute().minAxis(); - } - - SIMD_FORCE_INLINE int closestAxis() const - { - return absolute().maxAxis(); - } - - - SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt) - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 vrt = _mm_load_ss(&rt); // (rt 0 0 0) - btScalar s = btScalar(1.0) - rt; - __m128 vs = _mm_load_ss(&s); // (S 0 0 0) - vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0) - __m128 r0 = _mm_mul_ps(v0.mVec128, vs); - vrt = bt_pshufd_ps(vrt, 0x80); // (rt rt rt 0.0) - __m128 r1 = _mm_mul_ps(v1.mVec128, vrt); - __m128 tmp3 = _mm_add_ps(r0,r1); - mVec128 = tmp3; -#elif defined(BT_USE_NEON) - float32x4_t vl = vsubq_f32(v1.mVec128, v0.mVec128); - vl = vmulq_n_f32(vl, rt); - mVec128 = vaddq_f32(vl, v0.mVec128); -#else - btScalar s = btScalar(1.0) - rt; - m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0]; - m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1]; - m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2]; - //don't do the unused w component - // m_co[3] = s * v0[3] + rt * v1[3]; -#endif - } - - /**@brief Return the linear interpolation between this and another vector - * @param v The other vector - * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */ - SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 vt = _mm_load_ss(&t); // (t 0 0 0) - vt = bt_pshufd_ps(vt, 0x80); // (rt rt rt 0.0) - __m128 vl = _mm_sub_ps(v.mVec128, mVec128); - vl = _mm_mul_ps(vl, vt); - vl = _mm_add_ps(vl, mVec128); - - return btVector3(vl); -#elif defined(BT_USE_NEON) - float32x4_t vl = vsubq_f32(v.mVec128, mVec128); - vl = vmulq_n_f32(vl, t); - vl = vaddq_f32(vl, mVec128); - - return btVector3(vl); -#else - return - btVector3( m_floats[0] + (v.m_floats[0] - m_floats[0]) * t, - m_floats[1] + (v.m_floats[1] - m_floats[1]) * t, - m_floats[2] + (v.m_floats[2] - m_floats[2]) * t); -#endif - } - - /**@brief Elementwise multiply this vector by the other - * @param v The other vector */ - SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v) - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - mVec128 = _mm_mul_ps(mVec128, v.mVec128); -#elif defined(BT_USE_NEON) - mVec128 = vmulq_f32(mVec128, v.mVec128); -#else - m_floats[0] *= v.m_floats[0]; - m_floats[1] *= v.m_floats[1]; - m_floats[2] *= v.m_floats[2]; -#endif - return *this; - } - - /**@brief Return the x value */ - SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; } - /**@brief Return the y value */ - SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; } - /**@brief Return the z value */ - SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; } - /**@brief Set the x value */ - SIMD_FORCE_INLINE void setX(btScalar _x) { m_floats[0] = _x;}; - /**@brief Set the y value */ - SIMD_FORCE_INLINE void setY(btScalar _y) { m_floats[1] = _y;}; - /**@brief Set the z value */ - SIMD_FORCE_INLINE void setZ(btScalar _z) { m_floats[2] = _z;}; - /**@brief Set the w value */ - SIMD_FORCE_INLINE void setW(btScalar _w) { m_floats[3] = _w;}; - /**@brief Return the x value */ - SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; } - /**@brief Return the y value */ - SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; } - /**@brief Return the z value */ - SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; } - /**@brief Return the w value */ - SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; } - - //SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; } - //SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; } - ///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons. - SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; } - SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; } - - SIMD_FORCE_INLINE bool operator==(const btVector3& other) const - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128))); -#else - return ((m_floats[3]==other.m_floats[3]) && - (m_floats[2]==other.m_floats[2]) && - (m_floats[1]==other.m_floats[1]) && - (m_floats[0]==other.m_floats[0])); -#endif - } - - SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const - { - return !(*this == other); - } - - /**@brief Set each element to the max of the current values and the values of another btVector3 - * @param other The other btVector3 to compare with - */ - SIMD_FORCE_INLINE void setMax(const btVector3& other) - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - mVec128 = _mm_max_ps(mVec128, other.mVec128); -#elif defined(BT_USE_NEON) - mVec128 = vmaxq_f32(mVec128, other.mVec128); -#else - btSetMax(m_floats[0], other.m_floats[0]); - btSetMax(m_floats[1], other.m_floats[1]); - btSetMax(m_floats[2], other.m_floats[2]); - btSetMax(m_floats[3], other.w()); -#endif - } - - /**@brief Set each element to the min of the current values and the values of another btVector3 - * @param other The other btVector3 to compare with - */ - SIMD_FORCE_INLINE void setMin(const btVector3& other) - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - mVec128 = _mm_min_ps(mVec128, other.mVec128); -#elif defined(BT_USE_NEON) - mVec128 = vminq_f32(mVec128, other.mVec128); -#else - btSetMin(m_floats[0], other.m_floats[0]); - btSetMin(m_floats[1], other.m_floats[1]); - btSetMin(m_floats[2], other.m_floats[2]); - btSetMin(m_floats[3], other.w()); -#endif - } - - SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z) - { - m_floats[0]=_x; - m_floats[1]=_y; - m_floats[2]=_z; - m_floats[3] = btScalar(0.f); - } - - void getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const - { -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - - __m128 V = _mm_and_ps(mVec128, btvFFF0fMask); - __m128 V0 = _mm_xor_ps(btvMzeroMask, V); - __m128 V2 = _mm_movelh_ps(V0, V); - - __m128 V1 = _mm_shuffle_ps(V, V0, 0xCE); - - V0 = _mm_shuffle_ps(V0, V, 0xDB); - V2 = _mm_shuffle_ps(V2, V, 0xF9); - - v0->mVec128 = V0; - v1->mVec128 = V1; - v2->mVec128 = V2; -#else - v0->setValue(0. ,-z() ,y()); - v1->setValue(z() ,0. ,-x()); - v2->setValue(-y() ,x() ,0.); -#endif - } - - void setZero() - { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - mVec128 = (__m128)_mm_xor_ps(mVec128, mVec128); -#elif defined(BT_USE_NEON) - int32x4_t vi = vdupq_n_s32(0); - mVec128 = vreinterpretq_f32_s32(vi); -#else - setValue(btScalar(0.),btScalar(0.),btScalar(0.)); -#endif - } - - SIMD_FORCE_INLINE bool isZero() const - { - return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0); - } - - - SIMD_FORCE_INLINE bool fuzzyZero() const - { - return length2() < SIMD_EPSILON*SIMD_EPSILON; - } - - SIMD_FORCE_INLINE void serialize(struct btVector3Data& dataOut) const; - - SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data& dataIn); - - SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData& dataOut) const; - - SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn); - - SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData& dataOut) const; - - SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn); - - /**@brief returns index of maximum dot product between this and vectors in array[] - * @param array The other vectors - * @param array_count The number of other vectors - * @param dotOut The maximum dot product */ - SIMD_FORCE_INLINE long maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const; - - /**@brief returns index of minimum dot product between this and vectors in array[] - * @param array The other vectors - * @param array_count The number of other vectors - * @param dotOut The minimum dot product */ - SIMD_FORCE_INLINE long minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const; - - /* create a vector as btVector3( this->dot( btVector3 v0 ), this->dot( btVector3 v1), this->dot( btVector3 v2 )) */ - SIMD_FORCE_INLINE btVector3 dot3( const btVector3 &v0, const btVector3 &v1, const btVector3 &v2 ) const - { -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - - __m128 a0 = _mm_mul_ps( v0.mVec128, this->mVec128 ); - __m128 a1 = _mm_mul_ps( v1.mVec128, this->mVec128 ); - __m128 a2 = _mm_mul_ps( v2.mVec128, this->mVec128 ); - __m128 b0 = _mm_unpacklo_ps( a0, a1 ); - __m128 b1 = _mm_unpackhi_ps( a0, a1 ); - __m128 b2 = _mm_unpacklo_ps( a2, _mm_setzero_ps() ); - __m128 r = _mm_movelh_ps( b0, b2 ); - r = _mm_add_ps( r, _mm_movehl_ps( b2, b0 )); - a2 = _mm_and_ps( a2, btvxyzMaskf); - r = _mm_add_ps( r, btCastdTo128f (_mm_move_sd( btCastfTo128d(a2), btCastfTo128d(b1) ))); - return btVector3(r); - -#elif defined(BT_USE_NEON) - static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 }; - float32x4_t a0 = vmulq_f32( v0.mVec128, this->mVec128); - float32x4_t a1 = vmulq_f32( v1.mVec128, this->mVec128); - float32x4_t a2 = vmulq_f32( v2.mVec128, this->mVec128); - float32x2x2_t zLo = vtrn_f32( vget_high_f32(a0), vget_high_f32(a1)); - a2 = (float32x4_t) vandq_u32((uint32x4_t) a2, xyzMask ); - float32x2_t b0 = vadd_f32( vpadd_f32( vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0] ); - float32x2_t b1 = vpadd_f32( vpadd_f32( vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f)); - return btVector3( vcombine_f32(b0, b1) ); -#else - return btVector3( dot(v0), dot(v1), dot(v2)); -#endif - } -}; - -/**@brief Return the sum of two vectors (Point symantics)*/ -SIMD_FORCE_INLINE btVector3 -operator+(const btVector3& v1, const btVector3& v2) -{ -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - return btVector3(_mm_add_ps(v1.mVec128, v2.mVec128)); -#elif defined(BT_USE_NEON) - return btVector3(vaddq_f32(v1.mVec128, v2.mVec128)); -#else - return btVector3( - v1.m_floats[0] + v2.m_floats[0], - v1.m_floats[1] + v2.m_floats[1], - v1.m_floats[2] + v2.m_floats[2]); -#endif -} - -/**@brief Return the elementwise product of two vectors */ -SIMD_FORCE_INLINE btVector3 -operator*(const btVector3& v1, const btVector3& v2) -{ -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - return btVector3(_mm_mul_ps(v1.mVec128, v2.mVec128)); -#elif defined(BT_USE_NEON) - return btVector3(vmulq_f32(v1.mVec128, v2.mVec128)); -#else - return btVector3( - v1.m_floats[0] * v2.m_floats[0], - v1.m_floats[1] * v2.m_floats[1], - v1.m_floats[2] * v2.m_floats[2]); -#endif -} - -/**@brief Return the difference between two vectors */ -SIMD_FORCE_INLINE btVector3 -operator-(const btVector3& v1, const btVector3& v2) -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - - // without _mm_and_ps this code causes slowdown in Concave moving - __m128 r = _mm_sub_ps(v1.mVec128, v2.mVec128); - return btVector3(_mm_and_ps(r, btvFFF0fMask)); -#elif defined(BT_USE_NEON) - float32x4_t r = vsubq_f32(v1.mVec128, v2.mVec128); - return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask)); -#else - return btVector3( - v1.m_floats[0] - v2.m_floats[0], - v1.m_floats[1] - v2.m_floats[1], - v1.m_floats[2] - v2.m_floats[2]); -#endif -} - -/**@brief Return the negative of the vector */ -SIMD_FORCE_INLINE btVector3 -operator-(const btVector3& v) -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) - __m128 r = _mm_xor_ps(v.mVec128, btvMzeroMask); - return btVector3(_mm_and_ps(r, btvFFF0fMask)); -#elif defined(BT_USE_NEON) - return btVector3((btSimdFloat4)veorq_s32((int32x4_t)v.mVec128, (int32x4_t)btvMzeroMask)); -#else - return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]); -#endif -} - -/**@brief Return the vector scaled by s */ -SIMD_FORCE_INLINE btVector3 -operator*(const btVector3& v, const btScalar& s) -{ -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 vs = _mm_load_ss(&s); // (S 0 0 0) - vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0) - return btVector3(_mm_mul_ps(v.mVec128, vs)); -#elif defined(BT_USE_NEON) - float32x4_t r = vmulq_n_f32(v.mVec128, s); - return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask)); -#else - return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s); -#endif -} - -/**@brief Return the vector scaled by s */ -SIMD_FORCE_INLINE btVector3 -operator*(const btScalar& s, const btVector3& v) -{ - return v * s; -} - -/**@brief Return the vector inversely scaled by s */ -SIMD_FORCE_INLINE btVector3 -operator/(const btVector3& v, const btScalar& s) -{ - btFullAssert(s != btScalar(0.0)); -#if 0 //defined(BT_USE_SSE_IN_API) -// this code is not faster ! - __m128 vs = _mm_load_ss(&s); - vs = _mm_div_ss(v1110, vs); - vs = bt_pshufd_ps(vs, 0x00); // (S S S S) - - return btVector3(_mm_mul_ps(v.mVec128, vs)); -#else - return v * (btScalar(1.0) / s); -#endif -} - -/**@brief Return the vector inversely scaled by s */ -SIMD_FORCE_INLINE btVector3 -operator/(const btVector3& v1, const btVector3& v2) -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) - __m128 vec = _mm_div_ps(v1.mVec128, v2.mVec128); - vec = _mm_and_ps(vec, btvFFF0fMask); - return btVector3(vec); -#elif defined(BT_USE_NEON) - float32x4_t x, y, v, m; - - x = v1.mVec128; - y = v2.mVec128; - - v = vrecpeq_f32(y); // v ~ 1/y - m = vrecpsq_f32(y, v); // m = (2-v*y) - v = vmulq_f32(v, m); // vv = v*m ~~ 1/y - m = vrecpsq_f32(y, v); // mm = (2-vv*y) - v = vmulq_f32(v, x); // x*vv - v = vmulq_f32(v, m); // (x*vv)*(2-vv*y) = x*(vv(2-vv*y)) ~~~ x/y - - return btVector3(v); -#else - return btVector3( - v1.m_floats[0] / v2.m_floats[0], - v1.m_floats[1] / v2.m_floats[1], - v1.m_floats[2] / v2.m_floats[2]); -#endif -} - -/**@brief Return the dot product between two vectors */ -SIMD_FORCE_INLINE btScalar -btDot(const btVector3& v1, const btVector3& v2) -{ - return v1.dot(v2); -} - - -/**@brief Return the distance squared between two vectors */ -SIMD_FORCE_INLINE btScalar -btDistance2(const btVector3& v1, const btVector3& v2) -{ - return v1.distance2(v2); -} - - -/**@brief Return the distance between two vectors */ -SIMD_FORCE_INLINE btScalar -btDistance(const btVector3& v1, const btVector3& v2) -{ - return v1.distance(v2); -} - -/**@brief Return the angle between two vectors */ -SIMD_FORCE_INLINE btScalar -btAngle(const btVector3& v1, const btVector3& v2) -{ - return v1.angle(v2); -} - -/**@brief Return the cross product of two vectors */ -SIMD_FORCE_INLINE btVector3 -btCross(const btVector3& v1, const btVector3& v2) -{ - return v1.cross(v2); -} - -SIMD_FORCE_INLINE btScalar -btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3) -{ - return v1.triple(v2, v3); -} - -/**@brief Return the linear interpolation between two vectors - * @param v1 One vector - * @param v2 The other vector - * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */ -SIMD_FORCE_INLINE btVector3 -lerp(const btVector3& v1, const btVector3& v2, const btScalar& t) -{ - return v1.lerp(v2, t); -} - - - -SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const -{ - return (v - *this).length2(); -} - -SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const -{ - return (v - *this).length(); -} - -SIMD_FORCE_INLINE btVector3 btVector3::normalized() const -{ - btVector3 nrm = *this; - - return nrm.normalize(); -} - -SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar _angle ) const -{ - // wAxis must be a unit lenght vector - -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - - __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128); - btScalar ssin = btSin( _angle ); - __m128 C = wAxis.cross( mVec128 ).mVec128; - O = _mm_and_ps(O, btvFFF0fMask); - btScalar scos = btCos( _angle ); - - __m128 vsin = _mm_load_ss(&ssin); // (S 0 0 0) - __m128 vcos = _mm_load_ss(&scos); // (S 0 0 0) - - __m128 Y = bt_pshufd_ps(O, 0xC9); // (Y Z X 0) - __m128 Z = bt_pshufd_ps(O, 0xD2); // (Z X Y 0) - O = _mm_add_ps(O, Y); - vsin = bt_pshufd_ps(vsin, 0x80); // (S S S 0) - O = _mm_add_ps(O, Z); - vcos = bt_pshufd_ps(vcos, 0x80); // (S S S 0) - - vsin = vsin * C; - O = O * wAxis.mVec128; - __m128 X = mVec128 - O; - - O = O + vsin; - vcos = vcos * X; - O = O + vcos; - - return btVector3(O); -#else - btVector3 o = wAxis * wAxis.dot( *this ); - btVector3 _x = *this - o; - btVector3 _y; - - _y = wAxis.cross( *this ); - - return ( o + _x * btCos( _angle ) + _y * btSin( _angle ) ); -#endif -} - -SIMD_FORCE_INLINE long btVector3::maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const -{ -#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - #if defined _WIN32 || defined (BT_USE_SSE) - const long scalar_cutoff = 10; - long _maxdot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut ); - #elif defined BT_USE_NEON - const long scalar_cutoff = 4; - extern long (*_maxdot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut ); - #endif - if( array_count < scalar_cutoff ) -#endif - { - btScalar maxDot1 = -SIMD_INFINITY; - int i = 0; - int ptIndex = -1; - for( i = 0; i < array_count; i++ ) - { - btScalar dot = array[i].dot(*this); - - if( dot > maxDot1 ) - { - maxDot1 = dot; - ptIndex = i; - } - } - - dotOut = maxDot1; - return ptIndex; - } -#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - return _maxdot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut ); -#endif -} - -SIMD_FORCE_INLINE long btVector3::minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const -{ -#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - #if defined BT_USE_SSE - const long scalar_cutoff = 10; - long _mindot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut ); - #elif defined BT_USE_NEON - const long scalar_cutoff = 4; - extern long (*_mindot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut ); - #else - #error unhandled arch! - #endif - - if( array_count < scalar_cutoff ) -#endif - { - btScalar minDot = SIMD_INFINITY; - int i = 0; - int ptIndex = -1; - - for( i = 0; i < array_count; i++ ) - { - btScalar dot = array[i].dot(*this); - - if( dot < minDot ) - { - minDot = dot; - ptIndex = i; - } - } - - dotOut = minDot; - - return ptIndex; - } -#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - return _mindot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut ); -#endif//BT_USE_SIMD_VECTOR3 -} - - -class btVector4 : public btVector3 -{ -public: - - SIMD_FORCE_INLINE btVector4() {} - - - SIMD_FORCE_INLINE btVector4(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w) - : btVector3(_x,_y,_z) - { - m_floats[3] = _w; - } - -#if (defined (BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined (BT_USE_NEON) - SIMD_FORCE_INLINE btVector4(const btSimdFloat4 vec) - { - mVec128 = vec; - } - - SIMD_FORCE_INLINE btVector4(const btVector3& rhs) - { - mVec128 = rhs.mVec128; - } - - SIMD_FORCE_INLINE btVector4& - operator=(const btVector4& v) - { - mVec128 = v.mVec128; - return *this; - } -#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - - SIMD_FORCE_INLINE btVector4 absolute4() const - { -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - return btVector4(_mm_and_ps(mVec128, btvAbsfMask)); -#elif defined(BT_USE_NEON) - return btVector4(vabsq_f32(mVec128)); -#else - return btVector4( - btFabs(m_floats[0]), - btFabs(m_floats[1]), - btFabs(m_floats[2]), - btFabs(m_floats[3])); -#endif - } - - - btScalar getW() const { return m_floats[3];} - - - SIMD_FORCE_INLINE int maxAxis4() const - { - int maxIndex = -1; - btScalar maxVal = btScalar(-BT_LARGE_FLOAT); - if (m_floats[0] > maxVal) - { - maxIndex = 0; - maxVal = m_floats[0]; - } - if (m_floats[1] > maxVal) - { - maxIndex = 1; - maxVal = m_floats[1]; - } - if (m_floats[2] > maxVal) - { - maxIndex = 2; - maxVal =m_floats[2]; - } - if (m_floats[3] > maxVal) - { - maxIndex = 3; - } - - return maxIndex; - } - - - SIMD_FORCE_INLINE int minAxis4() const - { - int minIndex = -1; - btScalar minVal = btScalar(BT_LARGE_FLOAT); - if (m_floats[0] < minVal) - { - minIndex = 0; - minVal = m_floats[0]; - } - if (m_floats[1] < minVal) - { - minIndex = 1; - minVal = m_floats[1]; - } - if (m_floats[2] < minVal) - { - minIndex = 2; - minVal =m_floats[2]; - } - if (m_floats[3] < minVal) - { - minIndex = 3; - } - - return minIndex; - } - - - SIMD_FORCE_INLINE int closestAxis4() const - { - return absolute4().maxAxis4(); - } - - - - - /**@brief Set x,y,z and zero w - * @param x Value of x - * @param y Value of y - * @param z Value of z - */ - - -/* void getValue(btScalar *m) const - { - m[0] = m_floats[0]; - m[1] = m_floats[1]; - m[2] =m_floats[2]; - } -*/ -/**@brief Set the values - * @param x Value of x - * @param y Value of y - * @param z Value of z - * @param w Value of w - */ - SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w) - { - m_floats[0]=_x; - m_floats[1]=_y; - m_floats[2]=_z; - m_floats[3]=_w; - } - - -}; - - -///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization -SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal) -{ - #ifdef BT_USE_DOUBLE_PRECISION - unsigned char* dest = (unsigned char*) &destVal; - unsigned char* src = (unsigned char*) &sourceVal; - dest[0] = src[7]; - dest[1] = src[6]; - dest[2] = src[5]; - dest[3] = src[4]; - dest[4] = src[3]; - dest[5] = src[2]; - dest[6] = src[1]; - dest[7] = src[0]; -#else - unsigned char* dest = (unsigned char*) &destVal; - unsigned char* src = (unsigned char*) &sourceVal; - dest[0] = src[3]; - dest[1] = src[2]; - dest[2] = src[1]; - dest[3] = src[0]; -#endif //BT_USE_DOUBLE_PRECISION -} -///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization -SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec) -{ - for (int i=0;i<4;i++) - { - btSwapScalarEndian(sourceVec[i],destVec[i]); - } - -} - -///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization -SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector) -{ - - btVector3 swappedVec; - for (int i=0;i<4;i++) - { - btSwapScalarEndian(vector[i],swappedVec[i]); - } - vector = swappedVec; -} - -template <class T> -SIMD_FORCE_INLINE void btPlaneSpace1 (const T& n, T& p, T& q) -{ - if (btFabs(n[2]) > SIMDSQRT12) { - // choose p in y-z plane - btScalar a = n[1]*n[1] + n[2]*n[2]; - btScalar k = btRecipSqrt (a); - p[0] = 0; - p[1] = -n[2]*k; - p[2] = n[1]*k; - // set q = n x p - q[0] = a*k; - q[1] = -n[0]*p[2]; - q[2] = n[0]*p[1]; - } - else { - // choose p in x-y plane - btScalar a = n[0]*n[0] + n[1]*n[1]; - btScalar k = btRecipSqrt (a); - p[0] = -n[1]*k; - p[1] = n[0]*k; - p[2] = 0; - // set q = n x p - q[0] = -n[2]*p[1]; - q[1] = n[2]*p[0]; - q[2] = a*k; - } -} - - -struct btVector3FloatData -{ - float m_floats[4]; -}; - -struct btVector3DoubleData -{ - double m_floats[4]; - -}; - -SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const -{ - ///could also do a memcpy, check if it is worth it - for (int i=0;i<4;i++) - dataOut.m_floats[i] = float(m_floats[i]); -} - -SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn) -{ - for (int i=0;i<4;i++) - m_floats[i] = btScalar(dataIn.m_floats[i]); -} - - -SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const -{ - ///could also do a memcpy, check if it is worth it - for (int i=0;i<4;i++) - dataOut.m_floats[i] = double(m_floats[i]); -} - -SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn) -{ - for (int i=0;i<4;i++) - m_floats[i] = btScalar(dataIn.m_floats[i]); -} - - -SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const -{ - ///could also do a memcpy, check if it is worth it - for (int i=0;i<4;i++) - dataOut.m_floats[i] = m_floats[i]; -} - -SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data& dataIn) -{ - for (int i=0;i<4;i++) - m_floats[i] = dataIn.m_floats[i]; -} - -#endif //BT_VECTOR3_H |