diff options
Diffstat (limited to 'thirdparty/bullet/src/LinearMath/btQuaternion.h')
-rw-r--r-- | thirdparty/bullet/src/LinearMath/btQuaternion.h | 1016 |
1 files changed, 1016 insertions, 0 deletions
diff --git a/thirdparty/bullet/src/LinearMath/btQuaternion.h b/thirdparty/bullet/src/LinearMath/btQuaternion.h new file mode 100644 index 0000000000..7bd39e6a33 --- /dev/null +++ b/thirdparty/bullet/src/LinearMath/btQuaternion.h @@ -0,0 +1,1016 @@ +/* +Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + + + +#ifndef BT_SIMD__QUATERNION_H_ +#define BT_SIMD__QUATERNION_H_ + + +#include "btVector3.h" +#include "btQuadWord.h" + + +#ifdef BT_USE_DOUBLE_PRECISION +#define btQuaternionData btQuaternionDoubleData +#define btQuaternionDataName "btQuaternionDoubleData" +#else +#define btQuaternionData btQuaternionFloatData +#define btQuaternionDataName "btQuaternionFloatData" +#endif //BT_USE_DOUBLE_PRECISION + + + +#ifdef BT_USE_SSE + +//const __m128 ATTRIBUTE_ALIGNED16(vOnes) = {1.0f, 1.0f, 1.0f, 1.0f}; +#define vOnes (_mm_set_ps(1.0f, 1.0f, 1.0f, 1.0f)) + +#endif + +#if defined(BT_USE_SSE) + +#define vQInv (_mm_set_ps(+0.0f, -0.0f, -0.0f, -0.0f)) +#define vPPPM (_mm_set_ps(-0.0f, +0.0f, +0.0f, +0.0f)) + +#elif defined(BT_USE_NEON) + +const btSimdFloat4 ATTRIBUTE_ALIGNED16(vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f}; +const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f}; + +#endif + +/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */ +class btQuaternion : public btQuadWord { +public: + /**@brief No initialization constructor */ + btQuaternion() {} + +#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))|| defined(BT_USE_NEON) + // Set Vector + SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec) + { + mVec128 = vec; + } + + // Copy constructor + SIMD_FORCE_INLINE btQuaternion(const btQuaternion& rhs) + { + mVec128 = rhs.mVec128; + } + + // Assignment Operator + SIMD_FORCE_INLINE btQuaternion& + operator=(const btQuaternion& v) + { + mVec128 = v.mVec128; + + return *this; + } + +#endif + + // template <typename btScalar> + // explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {} + /**@brief Constructor from scalars */ + btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w) + : btQuadWord(_x, _y, _z, _w) + {} + /**@brief Axis angle Constructor + * @param axis The axis which the rotation is around + * @param angle The magnitude of the rotation around the angle (Radians) */ + btQuaternion(const btVector3& _axis, const btScalar& _angle) + { + setRotation(_axis, _angle); + } + /**@brief Constructor from Euler angles + * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z + * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y + * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */ + btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) + { +#ifndef BT_EULER_DEFAULT_ZYX + setEuler(yaw, pitch, roll); +#else + setEulerZYX(yaw, pitch, roll); +#endif + } + /**@brief Set the rotation using axis angle notation + * @param axis The axis around which to rotate + * @param angle The magnitude of the rotation in Radians */ + void setRotation(const btVector3& axis, const btScalar& _angle) + { + btScalar d = axis.length(); + btAssert(d != btScalar(0.0)); + btScalar s = btSin(_angle * btScalar(0.5)) / d; + setValue(axis.x() * s, axis.y() * s, axis.z() * s, + btCos(_angle * btScalar(0.5))); + } + /**@brief Set the quaternion using Euler angles + * @param yaw Angle around Y + * @param pitch Angle around X + * @param roll Angle around Z */ + void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) + { + btScalar halfYaw = btScalar(yaw) * btScalar(0.5); + btScalar halfPitch = btScalar(pitch) * btScalar(0.5); + btScalar halfRoll = btScalar(roll) * btScalar(0.5); + btScalar cosYaw = btCos(halfYaw); + btScalar sinYaw = btSin(halfYaw); + btScalar cosPitch = btCos(halfPitch); + btScalar sinPitch = btSin(halfPitch); + btScalar cosRoll = btCos(halfRoll); + btScalar sinRoll = btSin(halfRoll); + setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, + cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, + sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, + cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); + } + /**@brief Set the quaternion using euler angles + * @param yaw Angle around Z + * @param pitch Angle around Y + * @param roll Angle around X */ + void setEulerZYX(const btScalar& yawZ, const btScalar& pitchY, const btScalar& rollX) + { + btScalar halfYaw = btScalar(yawZ) * btScalar(0.5); + btScalar halfPitch = btScalar(pitchY) * btScalar(0.5); + btScalar halfRoll = btScalar(rollX) * btScalar(0.5); + btScalar cosYaw = btCos(halfYaw); + btScalar sinYaw = btSin(halfYaw); + btScalar cosPitch = btCos(halfPitch); + btScalar sinPitch = btSin(halfPitch); + btScalar cosRoll = btCos(halfRoll); + btScalar sinRoll = btSin(halfRoll); + setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x + cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y + cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z + cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx + } + + /**@brief Get the euler angles from this quaternion + * @param yaw Angle around Z + * @param pitch Angle around Y + * @param roll Angle around X */ + void getEulerZYX(btScalar& yawZ, btScalar& pitchY, btScalar& rollX) const + { + btScalar squ; + btScalar sqx; + btScalar sqy; + btScalar sqz; + btScalar sarg; + sqx = m_floats[0] * m_floats[0]; + sqy = m_floats[1] * m_floats[1]; + sqz = m_floats[2] * m_floats[2]; + squ = m_floats[3] * m_floats[3]; + rollX = btAtan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz); + sarg = btScalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]); + pitchY = sarg <= btScalar(-1.0) ? btScalar(-0.5) * SIMD_PI: (sarg >= btScalar(1.0) ? btScalar(0.5) * SIMD_PI : btAsin(sarg)); + yawZ = btAtan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz); + } + + /**@brief Add two quaternions + * @param q The quaternion to add to this one */ + SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q) + { +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + mVec128 = _mm_add_ps(mVec128, q.mVec128); +#elif defined(BT_USE_NEON) + mVec128 = vaddq_f32(mVec128, q.mVec128); +#else + m_floats[0] += q.x(); + m_floats[1] += q.y(); + m_floats[2] += q.z(); + m_floats[3] += q.m_floats[3]; +#endif + return *this; + } + + /**@brief Subtract out a quaternion + * @param q The quaternion to subtract from this one */ + btQuaternion& operator-=(const btQuaternion& q) + { +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + mVec128 = _mm_sub_ps(mVec128, q.mVec128); +#elif defined(BT_USE_NEON) + mVec128 = vsubq_f32(mVec128, q.mVec128); +#else + m_floats[0] -= q.x(); + m_floats[1] -= q.y(); + m_floats[2] -= q.z(); + m_floats[3] -= q.m_floats[3]; +#endif + return *this; + } + + /**@brief Scale this quaternion + * @param s The scalar to scale by */ + btQuaternion& operator*=(const btScalar& s) + { +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 vs = _mm_load_ss(&s); // (S 0 0 0) + vs = bt_pshufd_ps(vs, 0); // (S S S S) + mVec128 = _mm_mul_ps(mVec128, vs); +#elif defined(BT_USE_NEON) + mVec128 = vmulq_n_f32(mVec128, s); +#else + m_floats[0] *= s; + m_floats[1] *= s; + m_floats[2] *= s; + m_floats[3] *= s; +#endif + return *this; + } + + /**@brief Multiply this quaternion by q on the right + * @param q The other quaternion + * Equivilant to this = this * q */ + btQuaternion& operator*=(const btQuaternion& q) + { +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 vQ2 = q.get128(); + + __m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0,1,2,0)); + __m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); + + A1 = A1 * B1; + + __m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1,2,0,1)); + __m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1)); + + A2 = A2 * B2; + + B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2,0,1,2)); + B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2)); + + B1 = B1 * B2; // A3 *= B3 + + mVec128 = bt_splat_ps(mVec128, 3); // A0 + mVec128 = mVec128 * vQ2; // A0 * B0 + + A1 = A1 + A2; // AB12 + mVec128 = mVec128 - B1; // AB03 = AB0 - AB3 + A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element + mVec128 = mVec128+ A1; // AB03 + AB12 + +#elif defined(BT_USE_NEON) + + float32x4_t vQ1 = mVec128; + float32x4_t vQ2 = q.get128(); + float32x4_t A0, A1, B1, A2, B2, A3, B3; + float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; + + { + float32x2x2_t tmp; + tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y} + vQ1zx = tmp.val[0]; + + tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y} + vQ2zx = tmp.val[0]; + } + vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); + + vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); + + vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); + vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); + + A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x + B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X + + A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); + B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); + + A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z + B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z + + A1 = vmulq_f32(A1, B1); + A2 = vmulq_f32(A2, B2); + A3 = vmulq_f32(A3, B3); // A3 *= B3 + A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0 + + A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 + A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3 + + // change the sign of the last element + A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); + A0 = vaddq_f32(A0, A1); // AB03 + AB12 + + mVec128 = A0; +#else + setValue( + m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(), + m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(), + m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(), + m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z()); +#endif + return *this; + } + /**@brief Return the dot product between this quaternion and another + * @param q The other quaternion */ + btScalar dot(const btQuaternion& q) const + { +#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 vd; + + vd = _mm_mul_ps(mVec128, q.mVec128); + + __m128 t = _mm_movehl_ps(vd, vd); + vd = _mm_add_ps(vd, t); + t = _mm_shuffle_ps(vd, vd, 0x55); + vd = _mm_add_ss(vd, t); + + return _mm_cvtss_f32(vd); +#elif defined(BT_USE_NEON) + float32x4_t vd = vmulq_f32(mVec128, q.mVec128); + float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd)); + x = vpadd_f32(x, x); + return vget_lane_f32(x, 0); +#else + return m_floats[0] * q.x() + + m_floats[1] * q.y() + + m_floats[2] * q.z() + + m_floats[3] * q.m_floats[3]; +#endif + } + + /**@brief Return the length squared of the quaternion */ + btScalar length2() const + { + return dot(*this); + } + + /**@brief Return the length of the quaternion */ + btScalar length() const + { + return btSqrt(length2()); + } + btQuaternion& safeNormalize() + { + btScalar l2 = length2(); + if (l2>SIMD_EPSILON) + { + normalize(); + } + return *this; + } + /**@brief Normalize the quaternion + * Such that x^2 + y^2 + z^2 +w^2 = 1 */ + btQuaternion& normalize() + { +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 vd; + + vd = _mm_mul_ps(mVec128, mVec128); + + __m128 t = _mm_movehl_ps(vd, vd); + vd = _mm_add_ps(vd, t); + t = _mm_shuffle_ps(vd, vd, 0x55); + vd = _mm_add_ss(vd, t); + + vd = _mm_sqrt_ss(vd); + vd = _mm_div_ss(vOnes, vd); + vd = bt_pshufd_ps(vd, 0); // splat + mVec128 = _mm_mul_ps(mVec128, vd); + + return *this; +#else + return *this /= length(); +#endif + } + + /**@brief Return a scaled version of this quaternion + * @param s The scale factor */ + SIMD_FORCE_INLINE btQuaternion + operator*(const btScalar& s) const + { +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 vs = _mm_load_ss(&s); // (S 0 0 0) + vs = bt_pshufd_ps(vs, 0x00); // (S S S S) + + return btQuaternion(_mm_mul_ps(mVec128, vs)); +#elif defined(BT_USE_NEON) + return btQuaternion(vmulq_n_f32(mVec128, s)); +#else + return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s); +#endif + } + + /**@brief Return an inversely scaled versionof this quaternion + * @param s The inverse scale factor */ + btQuaternion operator/(const btScalar& s) const + { + btAssert(s != btScalar(0.0)); + return *this * (btScalar(1.0) / s); + } + + /**@brief Inversely scale this quaternion + * @param s The scale factor */ + btQuaternion& operator/=(const btScalar& s) + { + btAssert(s != btScalar(0.0)); + return *this *= btScalar(1.0) / s; + } + + /**@brief Return a normalized version of this quaternion */ + btQuaternion normalized() const + { + return *this / length(); + } + /**@brief Return the ***half*** angle between this quaternion and the other + * @param q The other quaternion */ + btScalar angle(const btQuaternion& q) const + { + btScalar s = btSqrt(length2() * q.length2()); + btAssert(s != btScalar(0.0)); + return btAcos(dot(q) / s); + } + + /**@brief Return the angle between this quaternion and the other along the shortest path + * @param q The other quaternion */ + btScalar angleShortestPath(const btQuaternion& q) const + { + btScalar s = btSqrt(length2() * q.length2()); + btAssert(s != btScalar(0.0)); + if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp + return btAcos(dot(-q) / s) * btScalar(2.0); + else + return btAcos(dot(q) / s) * btScalar(2.0); + } + + /**@brief Return the angle [0, 2Pi] of rotation represented by this quaternion */ + btScalar getAngle() const + { + btScalar s = btScalar(2.) * btAcos(m_floats[3]); + return s; + } + + /**@brief Return the angle [0, Pi] of rotation represented by this quaternion along the shortest path */ + btScalar getAngleShortestPath() const + { + btScalar s; + if (m_floats[3] >= 0) + s = btScalar(2.) * btAcos(m_floats[3]); + else + s = btScalar(2.) * btAcos(-m_floats[3]); + return s; + } + + + /**@brief Return the axis of the rotation represented by this quaternion */ + btVector3 getAxis() const + { + btScalar s_squared = 1.f-m_floats[3]*m_floats[3]; + + if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero + return btVector3(1.0, 0.0, 0.0); // Arbitrary + btScalar s = 1.f/btSqrt(s_squared); + return btVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s); + } + + /**@brief Return the inverse of this quaternion */ + btQuaternion inverse() const + { +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + return btQuaternion(_mm_xor_ps(mVec128, vQInv)); +#elif defined(BT_USE_NEON) + return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv)); +#else + return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]); +#endif + } + + /**@brief Return the sum of this quaternion and the other + * @param q2 The other quaternion */ + SIMD_FORCE_INLINE btQuaternion + operator+(const btQuaternion& q2) const + { +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + return btQuaternion(_mm_add_ps(mVec128, q2.mVec128)); +#elif defined(BT_USE_NEON) + return btQuaternion(vaddq_f32(mVec128, q2.mVec128)); +#else + const btQuaternion& q1 = *this; + return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]); +#endif + } + + /**@brief Return the difference between this quaternion and the other + * @param q2 The other quaternion */ + SIMD_FORCE_INLINE btQuaternion + operator-(const btQuaternion& q2) const + { +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128)); +#elif defined(BT_USE_NEON) + return btQuaternion(vsubq_f32(mVec128, q2.mVec128)); +#else + const btQuaternion& q1 = *this; + return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]); +#endif + } + + /**@brief Return the negative of this quaternion + * This simply negates each element */ + SIMD_FORCE_INLINE btQuaternion operator-() const + { +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask)); +#elif defined(BT_USE_NEON) + return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask) ); +#else + const btQuaternion& q2 = *this; + return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]); +#endif + } + /**@todo document this and it's use */ + SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const + { + btQuaternion diff,sum; + diff = *this - qd; + sum = *this + qd; + if( diff.dot(diff) > sum.dot(sum) ) + return qd; + return (-qd); + } + + /**@todo document this and it's use */ + SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const + { + btQuaternion diff,sum; + diff = *this - qd; + sum = *this + qd; + if( diff.dot(diff) < sum.dot(sum) ) + return qd; + return (-qd); + } + + + /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion + * @param q The other quaternion to interpolate with + * @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q. + * Slerp interpolates assuming constant velocity. */ + btQuaternion slerp(const btQuaternion& q, const btScalar& t) const + { + + const btScalar magnitude = btSqrt(length2() * q.length2()); + btAssert(magnitude > btScalar(0)); + + const btScalar product = dot(q) / magnitude; + const btScalar absproduct = btFabs(product); + + if(absproduct < btScalar(1.0 - SIMD_EPSILON)) + { + // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp + const btScalar theta = btAcos(absproduct); + const btScalar d = btSin(theta); + btAssert(d > btScalar(0)); + + const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1); + const btScalar s0 = btSin((btScalar(1.0) - t) * theta) / d; + const btScalar s1 = btSin(sign * t * theta) / d; + + return btQuaternion( + (m_floats[0] * s0 + q.x() * s1), + (m_floats[1] * s0 + q.y() * s1), + (m_floats[2] * s0 + q.z() * s1), + (m_floats[3] * s0 + q.w() * s1)); + } + else + { + return *this; + } + } + + static const btQuaternion& getIdentity() + { + static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.)); + return identityQuat; + } + + SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; } + + SIMD_FORCE_INLINE void serialize(struct btQuaternionData& dataOut) const; + + SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionData& dataIn); + + SIMD_FORCE_INLINE void serializeFloat(struct btQuaternionFloatData& dataOut) const; + + SIMD_FORCE_INLINE void deSerializeFloat(const struct btQuaternionFloatData& dataIn); + + SIMD_FORCE_INLINE void serializeDouble(struct btQuaternionDoubleData& dataOut) const; + + SIMD_FORCE_INLINE void deSerializeDouble(const struct btQuaternionDoubleData& dataIn); + +}; + + + + + +/**@brief Return the product of two quaternions */ +SIMD_FORCE_INLINE btQuaternion +operator*(const btQuaternion& q1, const btQuaternion& q2) +{ +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 vQ1 = q1.get128(); + __m128 vQ2 = q2.get128(); + __m128 A0, A1, B1, A2, B2; + + A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y z x // vtrn + B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W W X // vdup vext + + A1 = A1 * B1; + + A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1)); // Y Z X Y // vext + B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1)); // z x Y Y // vtrn vdup + + A2 = A2 * B2; + + B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2)); // z x Y Z // vtrn vext + B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2)); // Y Z x z // vext vtrn + + B1 = B1 * B2; // A3 *= B3 + + A0 = bt_splat_ps(vQ1, 3); // A0 + A0 = A0 * vQ2; // A0 * B0 + + A1 = A1 + A2; // AB12 + A0 = A0 - B1; // AB03 = AB0 - AB3 + + A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element + A0 = A0 + A1; // AB03 + AB12 + + return btQuaternion(A0); + +#elif defined(BT_USE_NEON) + + float32x4_t vQ1 = q1.get128(); + float32x4_t vQ2 = q2.get128(); + float32x4_t A0, A1, B1, A2, B2, A3, B3; + float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; + + { + float32x2x2_t tmp; + tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y} + vQ1zx = tmp.val[0]; + + tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y} + vQ2zx = tmp.val[0]; + } + vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); + + vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); + + vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); + vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); + + A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x + B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X + + A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); + B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); + + A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z + B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z + + A1 = vmulq_f32(A1, B1); + A2 = vmulq_f32(A2, B2); + A3 = vmulq_f32(A3, B3); // A3 *= B3 + A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0 + + A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 + A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3 + + // change the sign of the last element + A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); + A0 = vaddq_f32(A0, A1); // AB03 + AB12 + + return btQuaternion(A0); + +#else + return btQuaternion( + q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(), + q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(), + q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(), + q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); +#endif +} + +SIMD_FORCE_INLINE btQuaternion +operator*(const btQuaternion& q, const btVector3& w) +{ +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 vQ1 = q.get128(); + __m128 vQ2 = w.get128(); + __m128 A1, B1, A2, B2, A3, B3; + + A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3,3,3,0)); + B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0,1,2,0)); + + A1 = A1 * B1; + + A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1)); + B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1)); + + A2 = A2 * B2; + + A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2)); + B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2)); + + A3 = A3 * B3; // A3 *= B3 + + A1 = A1 + A2; // AB12 + A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element + A1 = A1 - A3; // AB123 = AB12 - AB3 + + return btQuaternion(A1); + +#elif defined(BT_USE_NEON) + + float32x4_t vQ1 = q.get128(); + float32x4_t vQ2 = w.get128(); + float32x4_t A1, B1, A2, B2, A3, B3; + float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz; + + vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1); + { + float32x2x2_t tmp; + + tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y} + vQ2zx = tmp.val[0]; + + tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y} + vQ1zx = tmp.val[0]; + } + + vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); + + vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); + vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); + + A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X + B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x + + A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); + B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); + + A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z + B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z + + A1 = vmulq_f32(A1, B1); + A2 = vmulq_f32(A2, B2); + A3 = vmulq_f32(A3, B3); // A3 *= B3 + + A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 + + // change the sign of the last element + A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); + + A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3 + + return btQuaternion(A1); + +#else + return btQuaternion( + q.w() * w.x() + q.y() * w.z() - q.z() * w.y(), + q.w() * w.y() + q.z() * w.x() - q.x() * w.z(), + q.w() * w.z() + q.x() * w.y() - q.y() * w.x(), + -q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); +#endif +} + +SIMD_FORCE_INLINE btQuaternion +operator*(const btVector3& w, const btQuaternion& q) +{ +#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 vQ1 = w.get128(); + __m128 vQ2 = q.get128(); + __m128 A1, B1, A2, B2, A3, B3; + + A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y z x + B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W W X + + A1 = A1 * B1; + + A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1)); + B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1)); + + A2 = A2 *B2; + + A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2)); + B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2)); + + A3 = A3 * B3; // A3 *= B3 + + A1 = A1 + A2; // AB12 + A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element + A1 = A1 - A3; // AB123 = AB12 - AB3 + + return btQuaternion(A1); + +#elif defined(BT_USE_NEON) + + float32x4_t vQ1 = w.get128(); + float32x4_t vQ2 = q.get128(); + float32x4_t A1, B1, A2, B2, A3, B3; + float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; + + { + float32x2x2_t tmp; + + tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y} + vQ1zx = tmp.val[0]; + + tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y} + vQ2zx = tmp.val[0]; + } + vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); + + vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); + + vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); + vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); + + A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x + B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X + + A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); + B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); + + A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z + B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z + + A1 = vmulq_f32(A1, B1); + A2 = vmulq_f32(A2, B2); + A3 = vmulq_f32(A3, B3); // A3 *= B3 + + A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 + + // change the sign of the last element + A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); + + A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3 + + return btQuaternion(A1); + +#else + return btQuaternion( + +w.x() * q.w() + w.y() * q.z() - w.z() * q.y(), + +w.y() * q.w() + w.z() * q.x() - w.x() * q.z(), + +w.z() * q.w() + w.x() * q.y() - w.y() * q.x(), + -w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); +#endif +} + +/**@brief Calculate the dot product between two quaternions */ +SIMD_FORCE_INLINE btScalar +dot(const btQuaternion& q1, const btQuaternion& q2) +{ + return q1.dot(q2); +} + + +/**@brief Return the length of a quaternion */ +SIMD_FORCE_INLINE btScalar +length(const btQuaternion& q) +{ + return q.length(); +} + +/**@brief Return the angle between two quaternions*/ +SIMD_FORCE_INLINE btScalar +btAngle(const btQuaternion& q1, const btQuaternion& q2) +{ + return q1.angle(q2); +} + +/**@brief Return the inverse of a quaternion*/ +SIMD_FORCE_INLINE btQuaternion +inverse(const btQuaternion& q) +{ + return q.inverse(); +} + +/**@brief Return the result of spherical linear interpolation betwen two quaternions + * @param q1 The first quaternion + * @param q2 The second quaternion + * @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2 + * Slerp assumes constant velocity between positions. */ +SIMD_FORCE_INLINE btQuaternion +slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t) +{ + return q1.slerp(q2, t); +} + +SIMD_FORCE_INLINE btVector3 +quatRotate(const btQuaternion& rotation, const btVector3& v) +{ + btQuaternion q = rotation * v; + q *= rotation.inverse(); +#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask)); +#elif defined(BT_USE_NEON) + return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask)); +#else + return btVector3(q.getX(),q.getY(),q.getZ()); +#endif +} + +SIMD_FORCE_INLINE btQuaternion +shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized +{ + btVector3 c = v0.cross(v1); + btScalar d = v0.dot(v1); + + if (d < -1.0 + SIMD_EPSILON) + { + btVector3 n,unused; + btPlaneSpace1(v0,n,unused); + return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0 + } + + btScalar s = btSqrt((1.0f + d) * 2.0f); + btScalar rs = 1.0f / s; + + return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f); +} + +SIMD_FORCE_INLINE btQuaternion +shortestArcQuatNormalize2(btVector3& v0,btVector3& v1) +{ + v0.normalize(); + v1.normalize(); + return shortestArcQuat(v0,v1); +} + + + + +struct btQuaternionFloatData +{ + float m_floats[4]; +}; + +struct btQuaternionDoubleData +{ + double m_floats[4]; + +}; + +SIMD_FORCE_INLINE void btQuaternion::serializeFloat(struct btQuaternionFloatData& dataOut) const +{ + ///could also do a memcpy, check if it is worth it + for (int i=0;i<4;i++) + dataOut.m_floats[i] = float(m_floats[i]); +} + +SIMD_FORCE_INLINE void btQuaternion::deSerializeFloat(const struct btQuaternionFloatData& dataIn) +{ + for (int i=0;i<4;i++) + m_floats[i] = btScalar(dataIn.m_floats[i]); +} + + +SIMD_FORCE_INLINE void btQuaternion::serializeDouble(struct btQuaternionDoubleData& dataOut) const +{ + ///could also do a memcpy, check if it is worth it + for (int i=0;i<4;i++) + dataOut.m_floats[i] = double(m_floats[i]); +} + +SIMD_FORCE_INLINE void btQuaternion::deSerializeDouble(const struct btQuaternionDoubleData& dataIn) +{ + for (int i=0;i<4;i++) + m_floats[i] = btScalar(dataIn.m_floats[i]); +} + + +SIMD_FORCE_INLINE void btQuaternion::serialize(struct btQuaternionData& dataOut) const +{ + ///could also do a memcpy, check if it is worth it + for (int i=0;i<4;i++) + dataOut.m_floats[i] = m_floats[i]; +} + +SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionData& dataIn) +{ + for (int i=0;i<4;i++) + m_floats[i] = dataIn.m_floats[i]; +} + + +#endif //BT_SIMD__QUATERNION_H_ + + + |