diff options
Diffstat (limited to 'thirdparty/bullet/src/LinearMath/btMatrix3x3.h')
-rw-r--r-- | thirdparty/bullet/src/LinearMath/btMatrix3x3.h | 1348 |
1 files changed, 1348 insertions, 0 deletions
diff --git a/thirdparty/bullet/src/LinearMath/btMatrix3x3.h b/thirdparty/bullet/src/LinearMath/btMatrix3x3.h new file mode 100644 index 0000000000..9f642a1779 --- /dev/null +++ b/thirdparty/bullet/src/LinearMath/btMatrix3x3.h @@ -0,0 +1,1348 @@ +/* +Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + + +#ifndef BT_MATRIX3x3_H +#define BT_MATRIX3x3_H + +#include "btVector3.h" +#include "btQuaternion.h" +#include <stdio.h> + +#ifdef BT_USE_SSE +//const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f}; +//const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f}; +#define vMPPP (_mm_set_ps (+0.0f, +0.0f, +0.0f, -0.0f)) +#endif + +#if defined(BT_USE_SSE) +#define v1000 (_mm_set_ps(0.0f,0.0f,0.0f,1.0f)) +#define v0100 (_mm_set_ps(0.0f,0.0f,1.0f,0.0f)) +#define v0010 (_mm_set_ps(0.0f,1.0f,0.0f,0.0f)) +#elif defined(BT_USE_NEON) +const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f}; +const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f}; +const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f}; +#endif + +#ifdef BT_USE_DOUBLE_PRECISION +#define btMatrix3x3Data btMatrix3x3DoubleData +#else +#define btMatrix3x3Data btMatrix3x3FloatData +#endif //BT_USE_DOUBLE_PRECISION + + +/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3. +* Make sure to only include a pure orthogonal matrix without scaling. */ +ATTRIBUTE_ALIGNED16(class) btMatrix3x3 { + + ///Data storage for the matrix, each vector is a row of the matrix + btVector3 m_el[3]; + +public: + /** @brief No initializaion constructor */ + btMatrix3x3 () {} + + // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); } + + /**@brief Constructor from Quaternion */ + explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); } + /* + template <typename btScalar> + Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) + { + setEulerYPR(yaw, pitch, roll); + } + */ + /** @brief Constructor with row major formatting */ + btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz, + const btScalar& yx, const btScalar& yy, const btScalar& yz, + const btScalar& zx, const btScalar& zy, const btScalar& zz) + { + setValue(xx, xy, xz, + yx, yy, yz, + zx, zy, zz); + } + +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON) + SIMD_FORCE_INLINE btMatrix3x3 (const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2 ) + { + m_el[0].mVec128 = v0; + m_el[1].mVec128 = v1; + m_el[2].mVec128 = v2; + } + + SIMD_FORCE_INLINE btMatrix3x3 (const btVector3& v0, const btVector3& v1, const btVector3& v2 ) + { + m_el[0] = v0; + m_el[1] = v1; + m_el[2] = v2; + } + + // Copy constructor + SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs) + { + m_el[0].mVec128 = rhs.m_el[0].mVec128; + m_el[1].mVec128 = rhs.m_el[1].mVec128; + m_el[2].mVec128 = rhs.m_el[2].mVec128; + } + + // Assignment Operator + SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m) + { + m_el[0].mVec128 = m.m_el[0].mVec128; + m_el[1].mVec128 = m.m_el[1].mVec128; + m_el[2].mVec128 = m.m_el[2].mVec128; + + return *this; + } + +#else + + /** @brief Copy constructor */ + SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other) + { + m_el[0] = other.m_el[0]; + m_el[1] = other.m_el[1]; + m_el[2] = other.m_el[2]; + } + + /** @brief Assignment Operator */ + SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other) + { + m_el[0] = other.m_el[0]; + m_el[1] = other.m_el[1]; + m_el[2] = other.m_el[2]; + return *this; + } + +#endif + + /** @brief Get a column of the matrix as a vector + * @param i Column number 0 indexed */ + SIMD_FORCE_INLINE btVector3 getColumn(int i) const + { + return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]); + } + + + /** @brief Get a row of the matrix as a vector + * @param i Row number 0 indexed */ + SIMD_FORCE_INLINE const btVector3& getRow(int i) const + { + btFullAssert(0 <= i && i < 3); + return m_el[i]; + } + + /** @brief Get a mutable reference to a row of the matrix as a vector + * @param i Row number 0 indexed */ + SIMD_FORCE_INLINE btVector3& operator[](int i) + { + btFullAssert(0 <= i && i < 3); + return m_el[i]; + } + + /** @brief Get a const reference to a row of the matrix as a vector + * @param i Row number 0 indexed */ + SIMD_FORCE_INLINE const btVector3& operator[](int i) const + { + btFullAssert(0 <= i && i < 3); + return m_el[i]; + } + + /** @brief Multiply by the target matrix on the right + * @param m Rotation matrix to be applied + * Equivilant to this = this * m */ + btMatrix3x3& operator*=(const btMatrix3x3& m); + + /** @brief Adds by the target matrix on the right + * @param m matrix to be applied + * Equivilant to this = this + m */ + btMatrix3x3& operator+=(const btMatrix3x3& m); + + /** @brief Substractss by the target matrix on the right + * @param m matrix to be applied + * Equivilant to this = this - m */ + btMatrix3x3& operator-=(const btMatrix3x3& m); + + /** @brief Set from the rotational part of a 4x4 OpenGL matrix + * @param m A pointer to the beginning of the array of scalars*/ + void setFromOpenGLSubMatrix(const btScalar *m) + { + m_el[0].setValue(m[0],m[4],m[8]); + m_el[1].setValue(m[1],m[5],m[9]); + m_el[2].setValue(m[2],m[6],m[10]); + + } + /** @brief Set the values of the matrix explicitly (row major) + * @param xx Top left + * @param xy Top Middle + * @param xz Top Right + * @param yx Middle Left + * @param yy Middle Middle + * @param yz Middle Right + * @param zx Bottom Left + * @param zy Bottom Middle + * @param zz Bottom Right*/ + void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz, + const btScalar& yx, const btScalar& yy, const btScalar& yz, + const btScalar& zx, const btScalar& zy, const btScalar& zz) + { + m_el[0].setValue(xx,xy,xz); + m_el[1].setValue(yx,yy,yz); + m_el[2].setValue(zx,zy,zz); + } + + /** @brief Set the matrix from a quaternion + * @param q The Quaternion to match */ + void setRotation(const btQuaternion& q) + { + btScalar d = q.length2(); + btFullAssert(d != btScalar(0.0)); + btScalar s = btScalar(2.0) / d; + + #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 vs, Q = q.get128(); + __m128i Qi = btCastfTo128i(Q); + __m128 Y, Z; + __m128 V1, V2, V3; + __m128 V11, V21, V31; + __m128 NQ = _mm_xor_ps(Q, btvMzeroMask); + __m128i NQi = btCastfTo128i(NQ); + + V1 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,2,3))); // Y X Z W + V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0,0,1,3)); // -X -X Y W + V3 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(2,1,0,3))); // Z Y X W + V1 = _mm_xor_ps(V1, vMPPP); // change the sign of the first element + + V11 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,1,0,3))); // Y Y X W + V21 = _mm_unpackhi_ps(Q, Q); // Z Z W W + V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0,2,0,3)); // X Z -X -W + + V2 = V2 * V1; // + V1 = V1 * V11; // + V3 = V3 * V31; // + + V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2,3,1,3)); // -Z -W Y W + V11 = V11 * V21; // + V21 = _mm_xor_ps(V21, vMPPP); // change the sign of the first element + V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3,3,1,3)); // W W -Y -W + V31 = _mm_xor_ps(V31, vMPPP); // change the sign of the first element + Y = btCastiTo128f(_mm_shuffle_epi32 (NQi, BT_SHUFFLE(3,2,0,3))); // -W -Z -X -W + Z = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,1,3))); // Y X Y W + + vs = _mm_load_ss(&s); + V21 = V21 * Y; + V31 = V31 * Z; + + V1 = V1 + V11; + V2 = V2 + V21; + V3 = V3 + V31; + + vs = bt_splat3_ps(vs, 0); + // s ready + V1 = V1 * vs; + V2 = V2 * vs; + V3 = V3 * vs; + + V1 = V1 + v1000; + V2 = V2 + v0100; + V3 = V3 + v0010; + + m_el[0] = V1; + m_el[1] = V2; + m_el[2] = V3; + #else + btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s; + btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs; + btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs; + btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs; + setValue( + btScalar(1.0) - (yy + zz), xy - wz, xz + wy, + xy + wz, btScalar(1.0) - (xx + zz), yz - wx, + xz - wy, yz + wx, btScalar(1.0) - (xx + yy)); + #endif + } + + + /** @brief Set the matrix from euler angles using YPR around YXZ respectively + * @param yaw Yaw about Y axis + * @param pitch Pitch about X axis + * @param roll Roll about Z axis + */ + void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) + { + setEulerZYX(roll, pitch, yaw); + } + + /** @brief Set the matrix from euler angles YPR around ZYX axes + * @param eulerX Roll about X axis + * @param eulerY Pitch around Y axis + * @param eulerZ Yaw aboud Z axis + * + * These angles are used to produce a rotation matrix. The euler + * angles are applied in ZYX order. I.e a vector is first rotated + * about X then Y and then Z + **/ + void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) { + ///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code + btScalar ci ( btCos(eulerX)); + btScalar cj ( btCos(eulerY)); + btScalar ch ( btCos(eulerZ)); + btScalar si ( btSin(eulerX)); + btScalar sj ( btSin(eulerY)); + btScalar sh ( btSin(eulerZ)); + btScalar cc = ci * ch; + btScalar cs = ci * sh; + btScalar sc = si * ch; + btScalar ss = si * sh; + + setValue(cj * ch, sj * sc - cs, sj * cc + ss, + cj * sh, sj * ss + cc, sj * cs - sc, + -sj, cj * si, cj * ci); + } + + /**@brief Set the matrix to the identity */ + void setIdentity() + { +#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON) + m_el[0] = v1000; + m_el[1] = v0100; + m_el[2] = v0010; +#else + setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0), + btScalar(0.0), btScalar(1.0), btScalar(0.0), + btScalar(0.0), btScalar(0.0), btScalar(1.0)); +#endif + } + + static const btMatrix3x3& getIdentity() + { +#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON) + static const btMatrix3x3 + identityMatrix(v1000, v0100, v0010); +#else + static const btMatrix3x3 + identityMatrix( + btScalar(1.0), btScalar(0.0), btScalar(0.0), + btScalar(0.0), btScalar(1.0), btScalar(0.0), + btScalar(0.0), btScalar(0.0), btScalar(1.0)); +#endif + return identityMatrix; + } + + /**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective + * @param m The array to be filled */ + void getOpenGLSubMatrix(btScalar *m) const + { +#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 v0 = m_el[0].mVec128; + __m128 v1 = m_el[1].mVec128; + __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2 + __m128 *vm = (__m128 *)m; + __m128 vT; + + v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0 + + vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * * + v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1 + + v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) ); // y0 y1 y2 0 + v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) ); // x0 x1 x2 0 + v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0 + + vm[0] = v0; + vm[1] = v1; + vm[2] = v2; +#elif defined(BT_USE_NEON) + // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions. + static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 }; + float32x4_t *vm = (float32x4_t *)m; + float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 ); // {x0 x1 z0 z1}, {y0 y1 w0 w1} + float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) ); // {x2 0 }, {y2 0} + float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] ); + float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] ); + float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask ); + float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q ); // z0 z1 z2 0 + + vm[0] = v0; + vm[1] = v1; + vm[2] = v2; +#else + m[0] = btScalar(m_el[0].x()); + m[1] = btScalar(m_el[1].x()); + m[2] = btScalar(m_el[2].x()); + m[3] = btScalar(0.0); + m[4] = btScalar(m_el[0].y()); + m[5] = btScalar(m_el[1].y()); + m[6] = btScalar(m_el[2].y()); + m[7] = btScalar(0.0); + m[8] = btScalar(m_el[0].z()); + m[9] = btScalar(m_el[1].z()); + m[10] = btScalar(m_el[2].z()); + m[11] = btScalar(0.0); +#endif + } + + /**@brief Get the matrix represented as a quaternion + * @param q The quaternion which will be set */ + void getRotation(btQuaternion& q) const + { +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON) + btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); + btScalar s, x; + + union { + btSimdFloat4 vec; + btScalar f[4]; + } temp; + + if (trace > btScalar(0.0)) + { + x = trace + btScalar(1.0); + + temp.f[0]=m_el[2].y() - m_el[1].z(); + temp.f[1]=m_el[0].z() - m_el[2].x(); + temp.f[2]=m_el[1].x() - m_el[0].y(); + temp.f[3]=x; + //temp.f[3]= s * btScalar(0.5); + } + else + { + int i, j, k; + if(m_el[0].x() < m_el[1].y()) + { + if( m_el[1].y() < m_el[2].z() ) + { i = 2; j = 0; k = 1; } + else + { i = 1; j = 2; k = 0; } + } + else + { + if( m_el[0].x() < m_el[2].z()) + { i = 2; j = 0; k = 1; } + else + { i = 0; j = 1; k = 2; } + } + + x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0); + + temp.f[3] = (m_el[k][j] - m_el[j][k]); + temp.f[j] = (m_el[j][i] + m_el[i][j]); + temp.f[k] = (m_el[k][i] + m_el[i][k]); + temp.f[i] = x; + //temp.f[i] = s * btScalar(0.5); + } + + s = btSqrt(x); + q.set128(temp.vec); + s = btScalar(0.5) / s; + + q *= s; +#else + btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); + + btScalar temp[4]; + + if (trace > btScalar(0.0)) + { + btScalar s = btSqrt(trace + btScalar(1.0)); + temp[3]=(s * btScalar(0.5)); + s = btScalar(0.5) / s; + + temp[0]=((m_el[2].y() - m_el[1].z()) * s); + temp[1]=((m_el[0].z() - m_el[2].x()) * s); + temp[2]=((m_el[1].x() - m_el[0].y()) * s); + } + else + { + int i = m_el[0].x() < m_el[1].y() ? + (m_el[1].y() < m_el[2].z() ? 2 : 1) : + (m_el[0].x() < m_el[2].z() ? 2 : 0); + int j = (i + 1) % 3; + int k = (i + 2) % 3; + + btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0)); + temp[i] = s * btScalar(0.5); + s = btScalar(0.5) / s; + + temp[3] = (m_el[k][j] - m_el[j][k]) * s; + temp[j] = (m_el[j][i] + m_el[i][j]) * s; + temp[k] = (m_el[k][i] + m_el[i][k]) * s; + } + q.setValue(temp[0],temp[1],temp[2],temp[3]); +#endif + } + + /**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR + * @param yaw Yaw around Y axis + * @param pitch Pitch around X axis + * @param roll around Z axis */ + void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const + { + + // first use the normal calculus + yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x())); + pitch = btScalar(btAsin(-m_el[2].x())); + roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z())); + + // on pitch = +/-HalfPI + if (btFabs(pitch)==SIMD_HALF_PI) + { + if (yaw>0) + yaw-=SIMD_PI; + else + yaw+=SIMD_PI; + + if (roll>0) + roll-=SIMD_PI; + else + roll+=SIMD_PI; + } + }; + + + /**@brief Get the matrix represented as euler angles around ZYX + * @param yaw Yaw around X axis + * @param pitch Pitch around Y axis + * @param roll around X axis + * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/ + void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const + { + struct Euler + { + btScalar yaw; + btScalar pitch; + btScalar roll; + }; + + Euler euler_out; + Euler euler_out2; //second solution + //get the pointer to the raw data + + // Check that pitch is not at a singularity + if (btFabs(m_el[2].x()) >= 1) + { + euler_out.yaw = 0; + euler_out2.yaw = 0; + + // From difference of angles formula + btScalar delta = btAtan2(m_el[0].x(),m_el[0].z()); + if (m_el[2].x() > 0) //gimbal locked up + { + euler_out.pitch = SIMD_PI / btScalar(2.0); + euler_out2.pitch = SIMD_PI / btScalar(2.0); + euler_out.roll = euler_out.pitch + delta; + euler_out2.roll = euler_out.pitch + delta; + } + else // gimbal locked down + { + euler_out.pitch = -SIMD_PI / btScalar(2.0); + euler_out2.pitch = -SIMD_PI / btScalar(2.0); + euler_out.roll = -euler_out.pitch + delta; + euler_out2.roll = -euler_out.pitch + delta; + } + } + else + { + euler_out.pitch = - btAsin(m_el[2].x()); + euler_out2.pitch = SIMD_PI - euler_out.pitch; + + euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch), + m_el[2].z()/btCos(euler_out.pitch)); + euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch), + m_el[2].z()/btCos(euler_out2.pitch)); + + euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch), + m_el[0].x()/btCos(euler_out.pitch)); + euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch), + m_el[0].x()/btCos(euler_out2.pitch)); + } + + if (solution_number == 1) + { + yaw = euler_out.yaw; + pitch = euler_out.pitch; + roll = euler_out.roll; + } + else + { + yaw = euler_out2.yaw; + pitch = euler_out2.pitch; + roll = euler_out2.roll; + } + } + + /**@brief Create a scaled copy of the matrix + * @param s Scaling vector The elements of the vector will scale each column */ + + btMatrix3x3 scaled(const btVector3& s) const + { +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON) + return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s); +#else + return btMatrix3x3( + m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(), + m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(), + m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z()); +#endif + } + + /**@brief Return the determinant of the matrix */ + btScalar determinant() const; + /**@brief Return the adjoint of the matrix */ + btMatrix3x3 adjoint() const; + /**@brief Return the matrix with all values non negative */ + btMatrix3x3 absolute() const; + /**@brief Return the transpose of the matrix */ + btMatrix3x3 transpose() const; + /**@brief Return the inverse of the matrix */ + btMatrix3x3 inverse() const; + + /// Solve A * x = b, where b is a column vector. This is more efficient + /// than computing the inverse in one-shot cases. + ///Solve33 is from Box2d, thanks to Erin Catto, + btVector3 solve33(const btVector3& b) const + { + btVector3 col1 = getColumn(0); + btVector3 col2 = getColumn(1); + btVector3 col3 = getColumn(2); + + btScalar det = btDot(col1, btCross(col2, col3)); + if (btFabs(det)>SIMD_EPSILON) + { + det = 1.0f / det; + } + btVector3 x; + x[0] = det * btDot(b, btCross(col2, col3)); + x[1] = det * btDot(col1, btCross(b, col3)); + x[2] = det * btDot(col1, btCross(col2, b)); + return x; + } + + btMatrix3x3 transposeTimes(const btMatrix3x3& m) const; + btMatrix3x3 timesTranspose(const btMatrix3x3& m) const; + + SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const + { + return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z(); + } + SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const + { + return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z(); + } + SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const + { + return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z(); + } + + ///extractRotation is from "A robust method to extract the rotational part of deformations" + ///See http://dl.acm.org/citation.cfm?doid=2994258.2994269 + SIMD_FORCE_INLINE void extractRotation(btQuaternion &q,btScalar tolerance = 1.0e-9, int maxIter=100) + { + int iter =0; + btScalar w; + const btMatrix3x3& A=*this; + for(iter = 0; iter < maxIter; iter++) + { + btMatrix3x3 R(q); + btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1)) + + R.getColumn(2).cross(A.getColumn(2)) + ) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn + (1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) + + tolerance); + w = omega.norm(); + if(w < tolerance) + break; + q = btQuaternion(btVector3((btScalar(1.0) / w) * omega),w) * + q; + q.normalize(); + } + } + + + + /**@brief diagonalizes this matrix + * @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original + * coordinate system, i.e., old_this = rot * new_this * rot^T. + * @param threshold See iteration + * @param maxIter The iteration stops when we hit the given tolerance or when maxIter have been executed. + */ + void diagonalize(btMatrix3x3& rot, btScalar tolerance = 1.0e-9, int maxIter=100) + { + btQuaternion r; + r = btQuaternion::getIdentity(); + extractRotation(r,tolerance,maxIter); + rot.setRotation(r); + btMatrix3x3 rotInv = btMatrix3x3(r.inverse()); + btMatrix3x3 old = *this; + setValue(old.tdotx( rotInv[0]), old.tdoty( rotInv[0]), old.tdotz( rotInv[0]), + old.tdotx( rotInv[1]), old.tdoty( rotInv[1]), old.tdotz( rotInv[1]), + old.tdotx( rotInv[2]), old.tdoty( rotInv[2]), old.tdotz( rotInv[2])); + } + + + + + /**@brief Calculate the matrix cofactor + * @param r1 The first row to use for calculating the cofactor + * @param c1 The first column to use for calculating the cofactor + * @param r1 The second row to use for calculating the cofactor + * @param c1 The second column to use for calculating the cofactor + * See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details + */ + btScalar cofac(int r1, int c1, int r2, int c2) const + { + return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1]; + } + + void serialize(struct btMatrix3x3Data& dataOut) const; + + void serializeFloat(struct btMatrix3x3FloatData& dataOut) const; + + void deSerialize(const struct btMatrix3x3Data& dataIn); + + void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn); + + void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn); + +}; + + +SIMD_FORCE_INLINE btMatrix3x3& +btMatrix3x3::operator*=(const btMatrix3x3& m) +{ +#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + __m128 rv00, rv01, rv02; + __m128 rv10, rv11, rv12; + __m128 rv20, rv21, rv22; + __m128 mv0, mv1, mv2; + + rv02 = m_el[0].mVec128; + rv12 = m_el[1].mVec128; + rv22 = m_el[2].mVec128; + + mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask); + mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask); + mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask); + + // rv0 + rv00 = bt_splat_ps(rv02, 0); + rv01 = bt_splat_ps(rv02, 1); + rv02 = bt_splat_ps(rv02, 2); + + rv00 = _mm_mul_ps(rv00, mv0); + rv01 = _mm_mul_ps(rv01, mv1); + rv02 = _mm_mul_ps(rv02, mv2); + + // rv1 + rv10 = bt_splat_ps(rv12, 0); + rv11 = bt_splat_ps(rv12, 1); + rv12 = bt_splat_ps(rv12, 2); + + rv10 = _mm_mul_ps(rv10, mv0); + rv11 = _mm_mul_ps(rv11, mv1); + rv12 = _mm_mul_ps(rv12, mv2); + + // rv2 + rv20 = bt_splat_ps(rv22, 0); + rv21 = bt_splat_ps(rv22, 1); + rv22 = bt_splat_ps(rv22, 2); + + rv20 = _mm_mul_ps(rv20, mv0); + rv21 = _mm_mul_ps(rv21, mv1); + rv22 = _mm_mul_ps(rv22, mv2); + + rv00 = _mm_add_ps(rv00, rv01); + rv10 = _mm_add_ps(rv10, rv11); + rv20 = _mm_add_ps(rv20, rv21); + + m_el[0].mVec128 = _mm_add_ps(rv00, rv02); + m_el[1].mVec128 = _mm_add_ps(rv10, rv12); + m_el[2].mVec128 = _mm_add_ps(rv20, rv22); + +#elif defined(BT_USE_NEON) + + float32x4_t rv0, rv1, rv2; + float32x4_t v0, v1, v2; + float32x4_t mv0, mv1, mv2; + + v0 = m_el[0].mVec128; + v1 = m_el[1].mVec128; + v2 = m_el[2].mVec128; + + mv0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask); + mv1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask); + mv2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask); + + rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0); + rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0); + rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0); + + rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1); + rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1); + rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1); + + rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0); + rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0); + rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0); + + m_el[0].mVec128 = rv0; + m_el[1].mVec128 = rv1; + m_el[2].mVec128 = rv2; +#else + setValue( + m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]), + m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]), + m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2])); +#endif + return *this; +} + +SIMD_FORCE_INLINE btMatrix3x3& +btMatrix3x3::operator+=(const btMatrix3x3& m) +{ +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON) + m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128; + m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128; + m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128; +#else + setValue( + m_el[0][0]+m.m_el[0][0], + m_el[0][1]+m.m_el[0][1], + m_el[0][2]+m.m_el[0][2], + m_el[1][0]+m.m_el[1][0], + m_el[1][1]+m.m_el[1][1], + m_el[1][2]+m.m_el[1][2], + m_el[2][0]+m.m_el[2][0], + m_el[2][1]+m.m_el[2][1], + m_el[2][2]+m.m_el[2][2]); +#endif + return *this; +} + +SIMD_FORCE_INLINE btMatrix3x3 +operator*(const btMatrix3x3& m, const btScalar & k) +{ +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) + __m128 vk = bt_splat_ps(_mm_load_ss((float *)&k), 0x80); + return btMatrix3x3( + _mm_mul_ps(m[0].mVec128, vk), + _mm_mul_ps(m[1].mVec128, vk), + _mm_mul_ps(m[2].mVec128, vk)); +#elif defined(BT_USE_NEON) + return btMatrix3x3( + vmulq_n_f32(m[0].mVec128, k), + vmulq_n_f32(m[1].mVec128, k), + vmulq_n_f32(m[2].mVec128, k)); +#else + return btMatrix3x3( + m[0].x()*k,m[0].y()*k,m[0].z()*k, + m[1].x()*k,m[1].y()*k,m[1].z()*k, + m[2].x()*k,m[2].y()*k,m[2].z()*k); +#endif +} + +SIMD_FORCE_INLINE btMatrix3x3 +operator+(const btMatrix3x3& m1, const btMatrix3x3& m2) +{ +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON) + return btMatrix3x3( + m1[0].mVec128 + m2[0].mVec128, + m1[1].mVec128 + m2[1].mVec128, + m1[2].mVec128 + m2[2].mVec128); +#else + return btMatrix3x3( + m1[0][0]+m2[0][0], + m1[0][1]+m2[0][1], + m1[0][2]+m2[0][2], + + m1[1][0]+m2[1][0], + m1[1][1]+m2[1][1], + m1[1][2]+m2[1][2], + + m1[2][0]+m2[2][0], + m1[2][1]+m2[2][1], + m1[2][2]+m2[2][2]); +#endif +} + +SIMD_FORCE_INLINE btMatrix3x3 +operator-(const btMatrix3x3& m1, const btMatrix3x3& m2) +{ +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON) + return btMatrix3x3( + m1[0].mVec128 - m2[0].mVec128, + m1[1].mVec128 - m2[1].mVec128, + m1[2].mVec128 - m2[2].mVec128); +#else + return btMatrix3x3( + m1[0][0]-m2[0][0], + m1[0][1]-m2[0][1], + m1[0][2]-m2[0][2], + + m1[1][0]-m2[1][0], + m1[1][1]-m2[1][1], + m1[1][2]-m2[1][2], + + m1[2][0]-m2[2][0], + m1[2][1]-m2[2][1], + m1[2][2]-m2[2][2]); +#endif +} + + +SIMD_FORCE_INLINE btMatrix3x3& +btMatrix3x3::operator-=(const btMatrix3x3& m) +{ +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON) + m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128; + m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128; + m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128; +#else + setValue( + m_el[0][0]-m.m_el[0][0], + m_el[0][1]-m.m_el[0][1], + m_el[0][2]-m.m_el[0][2], + m_el[1][0]-m.m_el[1][0], + m_el[1][1]-m.m_el[1][1], + m_el[1][2]-m.m_el[1][2], + m_el[2][0]-m.m_el[2][0], + m_el[2][1]-m.m_el[2][1], + m_el[2][2]-m.m_el[2][2]); +#endif + return *this; +} + + +SIMD_FORCE_INLINE btScalar +btMatrix3x3::determinant() const +{ + return btTriple((*this)[0], (*this)[1], (*this)[2]); +} + + +SIMD_FORCE_INLINE btMatrix3x3 +btMatrix3x3::absolute() const +{ +#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) + return btMatrix3x3( + _mm_and_ps(m_el[0].mVec128, btvAbsfMask), + _mm_and_ps(m_el[1].mVec128, btvAbsfMask), + _mm_and_ps(m_el[2].mVec128, btvAbsfMask)); +#elif defined(BT_USE_NEON) + return btMatrix3x3( + (float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask), + (float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask), + (float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask)); +#else + return btMatrix3x3( + btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()), + btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()), + btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z())); +#endif +} + +SIMD_FORCE_INLINE btMatrix3x3 +btMatrix3x3::transpose() const +{ +#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) + __m128 v0 = m_el[0].mVec128; + __m128 v1 = m_el[1].mVec128; + __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2 + __m128 vT; + + v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0 + + vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * * + v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1 + + v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) ); // y0 y1 y2 0 + v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) ); // x0 x1 x2 0 + v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0 + + + return btMatrix3x3( v0, v1, v2 ); +#elif defined(BT_USE_NEON) + // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions. + static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 }; + float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 ); // {x0 x1 z0 z1}, {y0 y1 w0 w1} + float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) ); // {x2 0 }, {y2 0} + float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] ); + float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] ); + float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask ); + float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q ); // z0 z1 z2 0 + return btMatrix3x3( v0, v1, v2 ); +#else + return btMatrix3x3( m_el[0].x(), m_el[1].x(), m_el[2].x(), + m_el[0].y(), m_el[1].y(), m_el[2].y(), + m_el[0].z(), m_el[1].z(), m_el[2].z()); +#endif +} + +SIMD_FORCE_INLINE btMatrix3x3 +btMatrix3x3::adjoint() const +{ + return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2), + cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0), + cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1)); +} + +SIMD_FORCE_INLINE btMatrix3x3 +btMatrix3x3::inverse() const +{ + btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)); + btScalar det = (*this)[0].dot(co); + //btFullAssert(det != btScalar(0.0)); + btAssert(det != btScalar(0.0)); + btScalar s = btScalar(1.0) / det; + return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, + co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, + co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); +} + +SIMD_FORCE_INLINE btMatrix3x3 +btMatrix3x3::transposeTimes(const btMatrix3x3& m) const +{ +#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) + // zeros w +// static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL }; + __m128 row = m_el[0].mVec128; + __m128 m0 = _mm_and_ps( m.getRow(0).mVec128, btvFFF0fMask ); + __m128 m1 = _mm_and_ps( m.getRow(1).mVec128, btvFFF0fMask); + __m128 m2 = _mm_and_ps( m.getRow(2).mVec128, btvFFF0fMask ); + __m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0)); + __m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55)); + __m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa)); + row = m_el[1].mVec128; + r0 = _mm_add_ps( r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0))); + r1 = _mm_add_ps( r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55))); + r2 = _mm_add_ps( r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa))); + row = m_el[2].mVec128; + r0 = _mm_add_ps( r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0))); + r1 = _mm_add_ps( r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55))); + r2 = _mm_add_ps( r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa))); + return btMatrix3x3( r0, r1, r2 ); + +#elif defined BT_USE_NEON + // zeros w + static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 }; + float32x4_t m0 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(0).mVec128, xyzMask ); + float32x4_t m1 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(1).mVec128, xyzMask ); + float32x4_t m2 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(2).mVec128, xyzMask ); + float32x4_t row = m_el[0].mVec128; + float32x4_t r0 = vmulq_lane_f32( m0, vget_low_f32(row), 0); + float32x4_t r1 = vmulq_lane_f32( m0, vget_low_f32(row), 1); + float32x4_t r2 = vmulq_lane_f32( m0, vget_high_f32(row), 0); + row = m_el[1].mVec128; + r0 = vmlaq_lane_f32( r0, m1, vget_low_f32(row), 0); + r1 = vmlaq_lane_f32( r1, m1, vget_low_f32(row), 1); + r2 = vmlaq_lane_f32( r2, m1, vget_high_f32(row), 0); + row = m_el[2].mVec128; + r0 = vmlaq_lane_f32( r0, m2, vget_low_f32(row), 0); + r1 = vmlaq_lane_f32( r1, m2, vget_low_f32(row), 1); + r2 = vmlaq_lane_f32( r2, m2, vget_high_f32(row), 0); + return btMatrix3x3( r0, r1, r2 ); +#else + return btMatrix3x3( + m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(), + m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(), + m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(), + m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(), + m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(), + m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(), + m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(), + m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(), + m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z()); +#endif +} + +SIMD_FORCE_INLINE btMatrix3x3 +btMatrix3x3::timesTranspose(const btMatrix3x3& m) const +{ +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) + __m128 a0 = m_el[0].mVec128; + __m128 a1 = m_el[1].mVec128; + __m128 a2 = m_el[2].mVec128; + + btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here + __m128 mx = mT[0].mVec128; + __m128 my = mT[1].mVec128; + __m128 mz = mT[2].mVec128; + + __m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00)); + __m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00)); + __m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00)); + r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55))); + r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55))); + r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55))); + r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa))); + r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa))); + r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa))); + return btMatrix3x3( r0, r1, r2); + +#elif defined BT_USE_NEON + float32x4_t a0 = m_el[0].mVec128; + float32x4_t a1 = m_el[1].mVec128; + float32x4_t a2 = m_el[2].mVec128; + + btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here + float32x4_t mx = mT[0].mVec128; + float32x4_t my = mT[1].mVec128; + float32x4_t mz = mT[2].mVec128; + + float32x4_t r0 = vmulq_lane_f32( mx, vget_low_f32(a0), 0); + float32x4_t r1 = vmulq_lane_f32( mx, vget_low_f32(a1), 0); + float32x4_t r2 = vmulq_lane_f32( mx, vget_low_f32(a2), 0); + r0 = vmlaq_lane_f32( r0, my, vget_low_f32(a0), 1); + r1 = vmlaq_lane_f32( r1, my, vget_low_f32(a1), 1); + r2 = vmlaq_lane_f32( r2, my, vget_low_f32(a2), 1); + r0 = vmlaq_lane_f32( r0, mz, vget_high_f32(a0), 0); + r1 = vmlaq_lane_f32( r1, mz, vget_high_f32(a1), 0); + r2 = vmlaq_lane_f32( r2, mz, vget_high_f32(a2), 0); + return btMatrix3x3( r0, r1, r2 ); + +#else + return btMatrix3x3( + m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]), + m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]), + m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2])); +#endif +} + +SIMD_FORCE_INLINE btVector3 +operator*(const btMatrix3x3& m, const btVector3& v) +{ +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON) + return v.dot3(m[0], m[1], m[2]); +#else + return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v)); +#endif +} + + +SIMD_FORCE_INLINE btVector3 +operator*(const btVector3& v, const btMatrix3x3& m) +{ +#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) + + const __m128 vv = v.mVec128; + + __m128 c0 = bt_splat_ps( vv, 0); + __m128 c1 = bt_splat_ps( vv, 1); + __m128 c2 = bt_splat_ps( vv, 2); + + c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask) ); + c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask) ); + c0 = _mm_add_ps(c0, c1); + c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask) ); + + return btVector3(_mm_add_ps(c0, c2)); +#elif defined(BT_USE_NEON) + const float32x4_t vv = v.mVec128; + const float32x2_t vlo = vget_low_f32(vv); + const float32x2_t vhi = vget_high_f32(vv); + + float32x4_t c0, c1, c2; + + c0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask); + c1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask); + c2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask); + + c0 = vmulq_lane_f32(c0, vlo, 0); + c1 = vmulq_lane_f32(c1, vlo, 1); + c2 = vmulq_lane_f32(c2, vhi, 0); + c0 = vaddq_f32(c0, c1); + c0 = vaddq_f32(c0, c2); + + return btVector3(c0); +#else + return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v)); +#endif +} + +SIMD_FORCE_INLINE btMatrix3x3 +operator*(const btMatrix3x3& m1, const btMatrix3x3& m2) +{ +#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) + + __m128 m10 = m1[0].mVec128; + __m128 m11 = m1[1].mVec128; + __m128 m12 = m1[2].mVec128; + + __m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask); + + __m128 c0 = bt_splat_ps( m10, 0); + __m128 c1 = bt_splat_ps( m11, 0); + __m128 c2 = bt_splat_ps( m12, 0); + + c0 = _mm_mul_ps(c0, m2v); + c1 = _mm_mul_ps(c1, m2v); + c2 = _mm_mul_ps(c2, m2v); + + m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask); + + __m128 c0_1 = bt_splat_ps( m10, 1); + __m128 c1_1 = bt_splat_ps( m11, 1); + __m128 c2_1 = bt_splat_ps( m12, 1); + + c0_1 = _mm_mul_ps(c0_1, m2v); + c1_1 = _mm_mul_ps(c1_1, m2v); + c2_1 = _mm_mul_ps(c2_1, m2v); + + m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask); + + c0 = _mm_add_ps(c0, c0_1); + c1 = _mm_add_ps(c1, c1_1); + c2 = _mm_add_ps(c2, c2_1); + + m10 = bt_splat_ps( m10, 2); + m11 = bt_splat_ps( m11, 2); + m12 = bt_splat_ps( m12, 2); + + m10 = _mm_mul_ps(m10, m2v); + m11 = _mm_mul_ps(m11, m2v); + m12 = _mm_mul_ps(m12, m2v); + + c0 = _mm_add_ps(c0, m10); + c1 = _mm_add_ps(c1, m11); + c2 = _mm_add_ps(c2, m12); + + return btMatrix3x3(c0, c1, c2); + +#elif defined(BT_USE_NEON) + + float32x4_t rv0, rv1, rv2; + float32x4_t v0, v1, v2; + float32x4_t mv0, mv1, mv2; + + v0 = m1[0].mVec128; + v1 = m1[1].mVec128; + v2 = m1[2].mVec128; + + mv0 = (float32x4_t) vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask); + mv1 = (float32x4_t) vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask); + mv2 = (float32x4_t) vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask); + + rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0); + rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0); + rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0); + + rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1); + rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1); + rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1); + + rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0); + rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0); + rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0); + + return btMatrix3x3(rv0, rv1, rv2); + +#else + return btMatrix3x3( + m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]), + m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]), + m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2])); +#endif +} + +/* +SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) { +return btMatrix3x3( +m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0], +m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1], +m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2], +m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0], +m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1], +m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2], +m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0], +m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1], +m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]); +} +*/ + +/**@brief Equality operator between two matrices +* It will test all elements are equal. */ +SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2) +{ +#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) + + __m128 c0, c1, c2; + + c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128); + c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128); + c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128); + + c0 = _mm_and_ps(c0, c1); + c0 = _mm_and_ps(c0, c2); + + int m = _mm_movemask_ps((__m128)c0); + return (0x7 == (m & 0x7)); + +#else + return + ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] && + m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] && + m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] ); +#endif +} + +///for serialization +struct btMatrix3x3FloatData +{ + btVector3FloatData m_el[3]; +}; + +///for serialization +struct btMatrix3x3DoubleData +{ + btVector3DoubleData m_el[3]; +}; + + + + +SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const +{ + for (int i=0;i<3;i++) + m_el[i].serialize(dataOut.m_el[i]); +} + +SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const +{ + for (int i=0;i<3;i++) + m_el[i].serializeFloat(dataOut.m_el[i]); +} + + +SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn) +{ + for (int i=0;i<3;i++) + m_el[i].deSerialize(dataIn.m_el[i]); +} + +SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn) +{ + for (int i=0;i<3;i++) + m_el[i].deSerializeFloat(dataIn.m_el[i]); +} + +SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn) +{ + for (int i=0;i<3;i++) + m_el[i].deSerializeDouble(dataIn.m_el[i]); +} + +#endif //BT_MATRIX3x3_H + |