summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/src/BulletInverseDynamics/details
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/src/BulletInverseDynamics/details')
-rw-r--r--thirdparty/bullet/src/BulletInverseDynamics/details/IDEigenInterface.hpp36
-rw-r--r--thirdparty/bullet/src/BulletInverseDynamics/details/IDLinearMathInterface.hpp172
-rw-r--r--thirdparty/bullet/src/BulletInverseDynamics/details/IDMatVec.hpp415
-rw-r--r--thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp1028
-rw-r--r--thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp283
-rw-r--r--thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp113
-rw-r--r--thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp109
7 files changed, 2156 insertions, 0 deletions
diff --git a/thirdparty/bullet/src/BulletInverseDynamics/details/IDEigenInterface.hpp b/thirdparty/bullet/src/BulletInverseDynamics/details/IDEigenInterface.hpp
new file mode 100644
index 0000000000..836395cea2
--- /dev/null
+++ b/thirdparty/bullet/src/BulletInverseDynamics/details/IDEigenInterface.hpp
@@ -0,0 +1,36 @@
+#ifndef INVDYNEIGENINTERFACE_HPP_
+#define INVDYNEIGENINTERFACE_HPP_
+#include "../IDConfig.hpp"
+namespace btInverseDynamics {
+
+#define BT_ID_HAVE_MAT3X
+
+#ifdef BT_USE_DOUBLE_PRECISION
+typedef Eigen::Matrix<double, Eigen::Dynamic, 1, Eigen::DontAlign> vecx;
+typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> vec3;
+typedef Eigen::Matrix<double, 3, 3, Eigen::DontAlign> mat33;
+typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::DontAlign> matxx;
+typedef Eigen::Matrix<double, 3, Eigen::Dynamic, Eigen::DontAlign> mat3x;
+#else
+typedef Eigen::Matrix<float, Eigen::Dynamic, 1, Eigen::DontAlign> vecx;
+typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> vec3;
+typedef Eigen::Matrix<float, 3, 3, Eigen::DontAlign> mat33;
+typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::DontAlign> matxx;
+typedef Eigen::Matrix<float, 3, Eigen::Dynamic, Eigen::DontAlign> mat3x;
+#endif
+
+inline void resize(mat3x &m, Eigen::Index size) {
+ m.resize(3, size);
+ m.setZero();
+}
+
+inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
+ (*m)(row, col) = val;
+}
+
+inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
+ (*m)(row, col) = val;
+}
+
+}
+#endif // INVDYNEIGENINTERFACE_HPP_
diff --git a/thirdparty/bullet/src/BulletInverseDynamics/details/IDLinearMathInterface.hpp b/thirdparty/bullet/src/BulletInverseDynamics/details/IDLinearMathInterface.hpp
new file mode 100644
index 0000000000..5bb4a33bdd
--- /dev/null
+++ b/thirdparty/bullet/src/BulletInverseDynamics/details/IDLinearMathInterface.hpp
@@ -0,0 +1,172 @@
+#ifndef IDLINEARMATHINTERFACE_HPP_
+#define IDLINEARMATHINTERFACE_HPP_
+
+#include <cstdlib>
+
+#include "../IDConfig.hpp"
+
+#include "../../LinearMath/btMatrix3x3.h"
+#include "../../LinearMath/btVector3.h"
+#include "../../LinearMath/btMatrixX.h"
+#define BT_ID_HAVE_MAT3X
+
+namespace btInverseDynamics {
+class vec3;
+class vecx;
+class mat33;
+typedef btMatrixX<idScalar> matxx;
+
+class vec3 : public btVector3 {
+public:
+ vec3() : btVector3() {}
+ vec3(const btVector3& btv) { *this = btv; }
+ idScalar& operator()(int i) { return (*this)[i]; }
+ const idScalar& operator()(int i) const { return (*this)[i]; }
+ int size() const { return 3; }
+ const vec3& operator=(const btVector3& rhs) {
+ *static_cast<btVector3*>(this) = rhs;
+ return *this;
+ }
+};
+
+class mat33 : public btMatrix3x3 {
+public:
+ mat33() : btMatrix3x3() {}
+ mat33(const btMatrix3x3& btm) { *this = btm; }
+ idScalar& operator()(int i, int j) { return (*this)[i][j]; }
+ const idScalar& operator()(int i, int j) const { return (*this)[i][j]; }
+ const mat33& operator=(const btMatrix3x3& rhs) {
+ *static_cast<btMatrix3x3*>(this) = rhs;
+ return *this;
+ }
+ friend mat33 operator*(const idScalar& s, const mat33& a);
+ friend mat33 operator/(const mat33& a, const idScalar& s);
+};
+
+inline mat33 operator/(const mat33& a, const idScalar& s) { return a * (1.0 / s); }
+
+inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; }
+
+class vecx : public btVectorX<idScalar> {
+public:
+ vecx(int size) : btVectorX(size) {}
+ const vecx& operator=(const btVectorX<idScalar>& rhs) {
+ *static_cast<btVectorX*>(this) = rhs;
+ return *this;
+ }
+
+ idScalar& operator()(int i) { return (*this)[i]; }
+ const idScalar& operator()(int i) const { return (*this)[i]; }
+
+ friend vecx operator*(const vecx& a, const idScalar& s);
+ friend vecx operator*(const idScalar& s, const vecx& a);
+
+ friend vecx operator+(const vecx& a, const vecx& b);
+ friend vecx operator-(const vecx& a, const vecx& b);
+ friend vecx operator/(const vecx& a, const idScalar& s);
+};
+
+inline vecx operator*(const vecx& a, const idScalar& s) {
+ vecx result(a.size());
+ for (int i = 0; i < result.size(); i++) {
+ result(i) = a(i) * s;
+ }
+ return result;
+}
+inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; }
+inline vecx operator+(const vecx& a, const vecx& b) {
+ vecx result(a.size());
+ // TODO: error handling for a.size() != b.size()??
+ if (a.size() != b.size()) {
+ error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
+ abort();
+ }
+ for (int i = 0; i < a.size(); i++) {
+ result(i) = a(i) + b(i);
+ }
+
+ return result;
+}
+
+inline vecx operator-(const vecx& a, const vecx& b) {
+ vecx result(a.size());
+ // TODO: error handling for a.size() != b.size()??
+ if (a.size() != b.size()) {
+ error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
+ abort();
+ }
+ for (int i = 0; i < a.size(); i++) {
+ result(i) = a(i) - b(i);
+ }
+ return result;
+}
+inline vecx operator/(const vecx& a, const idScalar& s) {
+ vecx result(a.size());
+ for (int i = 0; i < result.size(); i++) {
+ result(i) = a(i) / s;
+ }
+
+ return result;
+}
+
+// use btMatrixX to implement 3xX matrix
+class mat3x : public matxx {
+public:
+ mat3x(){}
+ mat3x(const mat3x&rhs) {
+ matxx::resize(rhs.rows(), rhs.cols());
+ *this = rhs;
+ }
+ mat3x(int rows, int cols): matxx(3,cols) {
+ }
+ void operator=(const mat3x& rhs) {
+ if (m_cols != rhs.m_cols) {
+ error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
+ abort();
+ }
+ for(int i=0;i<rows();i++) {
+ for(int k=0;k<cols();k++) {
+ setElem(i,k,rhs(i,k));
+ }
+ }
+ }
+ void setZero() {
+ matxx::setZero();
+ }
+};
+
+
+inline vec3 operator*(const mat3x& a, const vecx& b) {
+ vec3 result;
+ if (a.cols() != b.size()) {
+ error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
+ abort();
+ }
+ result(0)=0.0;
+ result(1)=0.0;
+ result(2)=0.0;
+ for(int i=0;i<b.size();i++) {
+ for(int k=0;k<3;k++) {
+ result(k)+=a(k,i)*b(i);
+ }
+ }
+ return result;
+}
+
+
+inline void resize(mat3x &m, idArrayIdx size) {
+ m.resize(3, size);
+ m.setZero();
+}
+
+inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
+ m->setElem(row, col, val);
+}
+
+inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
+ m->setElem(row, col, val);
+}
+
+}
+
+#endif // IDLINEARMATHINTERFACE_HPP_
diff --git a/thirdparty/bullet/src/BulletInverseDynamics/details/IDMatVec.hpp b/thirdparty/bullet/src/BulletInverseDynamics/details/IDMatVec.hpp
new file mode 100644
index 0000000000..4d3f6c87e9
--- /dev/null
+++ b/thirdparty/bullet/src/BulletInverseDynamics/details/IDMatVec.hpp
@@ -0,0 +1,415 @@
+/// @file Built-In Matrix-Vector functions
+#ifndef IDMATVEC_HPP_
+#define IDMATVEC_HPP_
+
+#include <cstdlib>
+
+#include "../IDConfig.hpp"
+#define BT_ID_HAVE_MAT3X
+
+namespace btInverseDynamics {
+class vec3;
+class vecx;
+class mat33;
+class matxx;
+class mat3x;
+
+/// This is a very basic implementation to enable stand-alone use of the library.
+/// The implementation is not really optimized and misses many features that you would
+/// want from a "fully featured" linear math library.
+class vec3 {
+public:
+ idScalar& operator()(int i) { return m_data[i]; }
+ const idScalar& operator()(int i) const { return m_data[i]; }
+ const int size() const { return 3; }
+ const vec3& operator=(const vec3& rhs);
+ const vec3& operator+=(const vec3& b);
+ const vec3& operator-=(const vec3& b);
+ vec3 cross(const vec3& b) const;
+ idScalar dot(const vec3& b) const;
+
+ friend vec3 operator*(const mat33& a, const vec3& b);
+ friend vec3 operator*(const vec3& a, const idScalar& s);
+ friend vec3 operator*(const idScalar& s, const vec3& a);
+
+ friend vec3 operator+(const vec3& a, const vec3& b);
+ friend vec3 operator-(const vec3& a, const vec3& b);
+ friend vec3 operator/(const vec3& a, const idScalar& s);
+
+private:
+ idScalar m_data[3];
+};
+
+class mat33 {
+public:
+ idScalar& operator()(int i, int j) { return m_data[3 * i + j]; }
+ const idScalar& operator()(int i, int j) const { return m_data[3 * i + j]; }
+ const mat33& operator=(const mat33& rhs);
+ mat33 transpose() const;
+ const mat33& operator+=(const mat33& b);
+ const mat33& operator-=(const mat33& b);
+
+ friend mat33 operator*(const mat33& a, const mat33& b);
+ friend vec3 operator*(const mat33& a, const vec3& b);
+ friend mat33 operator*(const mat33& a, const idScalar& s);
+ friend mat33 operator*(const idScalar& s, const mat33& a);
+ friend mat33 operator+(const mat33& a, const mat33& b);
+ friend mat33 operator-(const mat33& a, const mat33& b);
+ friend mat33 operator/(const mat33& a, const idScalar& s);
+
+private:
+ // layout is [0,1,2;3,4,5;6,7,8]
+ idScalar m_data[9];
+};
+
+class vecx {
+public:
+ vecx(int size) : m_size(size) {
+ m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * size));
+ }
+ ~vecx() { idFree(m_data); }
+ const vecx& operator=(const vecx& rhs);
+ idScalar& operator()(int i) { return m_data[i]; }
+ const idScalar& operator()(int i) const { return m_data[i]; }
+ const int& size() const { return m_size; }
+
+ friend vecx operator*(const vecx& a, const idScalar& s);
+ friend vecx operator*(const idScalar& s, const vecx& a);
+
+ friend vecx operator+(const vecx& a, const vecx& b);
+ friend vecx operator-(const vecx& a, const vecx& b);
+ friend vecx operator/(const vecx& a, const idScalar& s);
+
+private:
+ int m_size;
+ idScalar* m_data;
+};
+
+class matxx {
+public:
+ matxx() {
+ m_data = 0x0;
+ m_cols=0;
+ m_rows=0;
+ }
+ matxx(int rows, int cols) : m_rows(rows), m_cols(cols) {
+ m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * rows * cols));
+ }
+ ~matxx() { idFree(m_data); }
+ idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
+ const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
+ const int& rows() const { return m_rows; }
+ const int& cols() const { return m_cols; }
+
+private:
+ int m_rows;
+ int m_cols;
+ idScalar* m_data;
+};
+
+class mat3x {
+public:
+ mat3x() {
+ m_data = 0x0;
+ m_cols=0;
+ }
+ mat3x(const mat3x&rhs) {
+ m_cols=rhs.m_cols;
+ allocate();
+ *this = rhs;
+ }
+ mat3x(int rows, int cols): m_cols(cols) {
+ allocate();
+ };
+ void operator=(const mat3x& rhs) {
+ if (m_cols != rhs.m_cols) {
+ error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
+ abort();
+ }
+ for(int i=0;i<3*m_cols;i++) {
+ m_data[i] = rhs.m_data[i];
+ }
+ }
+
+ ~mat3x() {
+ free();
+ }
+ idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
+ const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
+ int rows() const { return m_rows; }
+ const int& cols() const { return m_cols; }
+ void resize(int rows, int cols) {
+ m_cols=cols;
+ free();
+ allocate();
+ }
+ void setZero() {
+ memset(m_data,0x0,sizeof(idScalar)*m_rows*m_cols);
+ }
+ // avoid operators that would allocate -- use functions sub/add/mul in IDMath.hpp instead
+private:
+ void allocate(){m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * m_rows * m_cols));}
+ void free() { idFree(m_data);}
+ enum {m_rows=3};
+ int m_cols;
+ idScalar* m_data;
+};
+
+inline void resize(mat3x &m, idArrayIdx size) {
+ m.resize(3, size);
+ m.setZero();
+}
+
+//////////////////////////////////////////////////
+// Implementations
+inline const vec3& vec3::operator=(const vec3& rhs) {
+ if (&rhs != this) {
+ memcpy(m_data, rhs.m_data, 3 * sizeof(idScalar));
+ }
+ return *this;
+}
+
+inline vec3 vec3::cross(const vec3& b) const {
+ vec3 result;
+ result.m_data[0] = m_data[1] * b.m_data[2] - m_data[2] * b.m_data[1];
+ result.m_data[1] = m_data[2] * b.m_data[0] - m_data[0] * b.m_data[2];
+ result.m_data[2] = m_data[0] * b.m_data[1] - m_data[1] * b.m_data[0];
+
+ return result;
+}
+
+inline idScalar vec3::dot(const vec3& b) const {
+ return m_data[0] * b.m_data[0] + m_data[1] * b.m_data[1] + m_data[2] * b.m_data[2];
+}
+
+inline const mat33& mat33::operator=(const mat33& rhs) {
+ if (&rhs != this) {
+ memcpy(m_data, rhs.m_data, 9 * sizeof(idScalar));
+ }
+ return *this;
+}
+inline mat33 mat33::transpose() const {
+ mat33 result;
+ result.m_data[0] = m_data[0];
+ result.m_data[1] = m_data[3];
+ result.m_data[2] = m_data[6];
+ result.m_data[3] = m_data[1];
+ result.m_data[4] = m_data[4];
+ result.m_data[5] = m_data[7];
+ result.m_data[6] = m_data[2];
+ result.m_data[7] = m_data[5];
+ result.m_data[8] = m_data[8];
+
+ return result;
+}
+
+inline mat33 operator*(const mat33& a, const mat33& b) {
+ mat33 result;
+ result.m_data[0] =
+ a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[3] + a.m_data[2] * b.m_data[6];
+ result.m_data[1] =
+ a.m_data[0] * b.m_data[1] + a.m_data[1] * b.m_data[4] + a.m_data[2] * b.m_data[7];
+ result.m_data[2] =
+ a.m_data[0] * b.m_data[2] + a.m_data[1] * b.m_data[5] + a.m_data[2] * b.m_data[8];
+ result.m_data[3] =
+ a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[3] + a.m_data[5] * b.m_data[6];
+ result.m_data[4] =
+ a.m_data[3] * b.m_data[1] + a.m_data[4] * b.m_data[4] + a.m_data[5] * b.m_data[7];
+ result.m_data[5] =
+ a.m_data[3] * b.m_data[2] + a.m_data[4] * b.m_data[5] + a.m_data[5] * b.m_data[8];
+ result.m_data[6] =
+ a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[3] + a.m_data[8] * b.m_data[6];
+ result.m_data[7] =
+ a.m_data[6] * b.m_data[1] + a.m_data[7] * b.m_data[4] + a.m_data[8] * b.m_data[7];
+ result.m_data[8] =
+ a.m_data[6] * b.m_data[2] + a.m_data[7] * b.m_data[5] + a.m_data[8] * b.m_data[8];
+
+ return result;
+}
+
+inline const mat33& mat33::operator+=(const mat33& b) {
+ for (int i = 0; i < 9; i++) {
+ m_data[i] += b.m_data[i];
+ }
+
+ return *this;
+}
+
+inline const mat33& mat33::operator-=(const mat33& b) {
+ for (int i = 0; i < 9; i++) {
+ m_data[i] -= b.m_data[i];
+ }
+ return *this;
+}
+
+inline vec3 operator*(const mat33& a, const vec3& b) {
+ vec3 result;
+
+ result.m_data[0] =
+ a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[1] + a.m_data[2] * b.m_data[2];
+ result.m_data[1] =
+ a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[1] + a.m_data[5] * b.m_data[2];
+ result.m_data[2] =
+ a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[1] + a.m_data[8] * b.m_data[2];
+
+ return result;
+}
+
+inline const vec3& vec3::operator+=(const vec3& b) {
+ for (int i = 0; i < 3; i++) {
+ m_data[i] += b.m_data[i];
+ }
+ return *this;
+}
+
+inline const vec3& vec3::operator-=(const vec3& b) {
+ for (int i = 0; i < 3; i++) {
+ m_data[i] -= b.m_data[i];
+ }
+ return *this;
+}
+
+inline mat33 operator*(const mat33& a, const idScalar& s) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] * s;
+ }
+ return result;
+}
+
+inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; }
+
+inline vec3 operator*(const vec3& a, const idScalar& s) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] * s;
+ }
+ return result;
+}
+inline vec3 operator*(const idScalar& s, const vec3& a) { return a * s; }
+
+inline mat33 operator+(const mat33& a, const mat33& b) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] + b.m_data[i];
+ }
+ return result;
+}
+inline vec3 operator+(const vec3& a, const vec3& b) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] + b.m_data[i];
+ }
+ return result;
+}
+
+inline mat33 operator-(const mat33& a, const mat33& b) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] - b.m_data[i];
+ }
+ return result;
+}
+inline vec3 operator-(const vec3& a, const vec3& b) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] - b.m_data[i];
+ }
+ return result;
+}
+
+inline mat33 operator/(const mat33& a, const idScalar& s) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] / s;
+ }
+ return result;
+}
+
+inline vec3 operator/(const vec3& a, const idScalar& s) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] / s;
+ }
+ return result;
+}
+
+inline const vecx& vecx::operator=(const vecx& rhs) {
+ if (size() != rhs.size()) {
+ error_message("size missmatch, size()= %d but rhs.size()= %d\n", size(), rhs.size());
+ abort();
+ }
+ if (&rhs != this) {
+ memcpy(m_data, rhs.m_data, rhs.size() * sizeof(idScalar));
+ }
+ return *this;
+}
+inline vecx operator*(const vecx& a, const idScalar& s) {
+ vecx result(a.size());
+ for (int i = 0; i < result.size(); i++) {
+ result.m_data[i] = a.m_data[i] * s;
+ }
+ return result;
+}
+inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; }
+inline vecx operator+(const vecx& a, const vecx& b) {
+ vecx result(a.size());
+ // TODO: error handling for a.size() != b.size()??
+ if (a.size() != b.size()) {
+ error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
+ abort();
+ }
+ for (int i = 0; i < a.size(); i++) {
+ result.m_data[i] = a.m_data[i] + b.m_data[i];
+ }
+
+ return result;
+}
+inline vecx operator-(const vecx& a, const vecx& b) {
+ vecx result(a.size());
+ // TODO: error handling for a.size() != b.size()??
+ if (a.size() != b.size()) {
+ error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
+ abort();
+ }
+ for (int i = 0; i < a.size(); i++) {
+ result.m_data[i] = a.m_data[i] - b.m_data[i];
+ }
+ return result;
+}
+inline vecx operator/(const vecx& a, const idScalar& s) {
+ vecx result(a.size());
+ for (int i = 0; i < result.size(); i++) {
+ result.m_data[i] = a.m_data[i] / s;
+ }
+
+ return result;
+}
+
+inline vec3 operator*(const mat3x& a, const vecx& b) {
+ vec3 result;
+ if (a.cols() != b.size()) {
+ error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
+ abort();
+ }
+ result(0)=0.0;
+ result(1)=0.0;
+ result(2)=0.0;
+ for(int i=0;i<b.size();i++) {
+ for(int k=0;k<3;k++) {
+ result(k)+=a(k,i)*b(i);
+ }
+ }
+ return result;
+}
+
+inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
+ (*m)(row, col) = val;
+}
+
+inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
+ (*m)(row, col) = val;
+}
+
+} // namespace btInverseDynamcis
+#endif
diff --git a/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp b/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp
new file mode 100644
index 0000000000..b35c55df61
--- /dev/null
+++ b/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp
@@ -0,0 +1,1028 @@
+#include "MultiBodyTreeImpl.hpp"
+
+namespace btInverseDynamics {
+
+MultiBodyTree::MultiBodyImpl::MultiBodyImpl(int num_bodies_, int num_dofs_)
+ : m_num_bodies(num_bodies_), m_num_dofs(num_dofs_)
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ ,m_m3x(3,m_num_dofs)
+#endif
+{
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ resize(m_m3x,m_num_dofs);
+#endif
+ m_body_list.resize(num_bodies_);
+ m_parent_index.resize(num_bodies_);
+ m_child_indices.resize(num_bodies_);
+ m_user_int.resize(num_bodies_);
+ m_user_ptr.resize(num_bodies_);
+
+ m_world_gravity(0) = 0.0;
+ m_world_gravity(1) = 0.0;
+ m_world_gravity(2) = -9.8;
+}
+
+const char *MultiBodyTree::MultiBodyImpl::jointTypeToString(const JointType &type) const {
+ switch (type) {
+ case FIXED:
+ return "fixed";
+ case REVOLUTE:
+ return "revolute";
+ case PRISMATIC:
+ return "prismatic";
+ case FLOATING:
+ return "floating";
+ }
+ return "error: invalid";
+}
+
+inline void indent(const int &level) {
+ for (int j = 0; j < level; j++)
+ id_printf(" "); // indent
+}
+
+void MultiBodyTree::MultiBodyImpl::printTree() {
+ id_printf("body %.2d[%s]: root\n", 0, jointTypeToString(m_body_list[0].m_joint_type));
+ printTree(0, 0);
+}
+
+void MultiBodyTree::MultiBodyImpl::printTreeData() {
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ id_printf("body: %d\n", static_cast<int>(i));
+ id_printf("type: %s\n", jointTypeToString(body.m_joint_type));
+ id_printf("q_index= %d\n", body.m_q_index);
+ id_printf("Jac_JR= [%f;%f;%f]\n", body.m_Jac_JR(0), body.m_Jac_JR(1), body.m_Jac_JR(2));
+ id_printf("Jac_JT= [%f;%f;%f]\n", body.m_Jac_JT(0), body.m_Jac_JT(1), body.m_Jac_JT(2));
+
+ id_printf("mass = %f\n", body.m_mass);
+ id_printf("mass * com = [%f %f %f]\n", body.m_body_mass_com(0), body.m_body_mass_com(1),
+ body.m_body_mass_com(2));
+ id_printf("I_o= [%f %f %f;\n"
+ " %f %f %f;\n"
+ " %f %f %f]\n",
+ body.m_body_I_body(0, 0), body.m_body_I_body(0, 1), body.m_body_I_body(0, 2),
+ body.m_body_I_body(1, 0), body.m_body_I_body(1, 1), body.m_body_I_body(1, 2),
+ body.m_body_I_body(2, 0), body.m_body_I_body(2, 1), body.m_body_I_body(2, 2));
+
+ id_printf("parent_pos_parent_body_ref= [%f %f %f]\n", body.m_parent_pos_parent_body_ref(0),
+ body.m_parent_pos_parent_body_ref(1), body.m_parent_pos_parent_body_ref(2));
+ }
+}
+int MultiBodyTree::MultiBodyImpl::bodyNumDoFs(const JointType &type) const {
+ switch (type) {
+ case FIXED:
+ return 0;
+ case REVOLUTE:
+ case PRISMATIC:
+ return 1;
+ case FLOATING:
+ return 6;
+ }
+ error_message("unknown joint type %d\n", type);
+ return 0;
+}
+
+void MultiBodyTree::MultiBodyImpl::printTree(int index, int indentation) {
+ // this is adapted from URDF2Bullet.
+ // TODO: fix this and print proper graph (similar to git --log --graph)
+ int num_children = m_child_indices[index].size();
+
+ indentation += 2;
+ int count = 0;
+
+ for (int i = 0; i < num_children; i++) {
+ int child_index = m_child_indices[index][i];
+ indent(indentation);
+ id_printf("body %.2d[%s]: %.2d is child no. %d (qi= %d .. %d) \n", index,
+ jointTypeToString(m_body_list[index].m_joint_type), child_index, (count++) + 1,
+ m_body_list[index].m_q_index,
+ m_body_list[index].m_q_index + bodyNumDoFs(m_body_list[index].m_joint_type));
+ // first grandchild
+ printTree(child_index, indentation);
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::setGravityInWorldFrame(const vec3 &gravity) {
+ m_world_gravity = gravity;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::generateIndexSets() {
+ m_body_revolute_list.resize(0);
+ m_body_prismatic_list.resize(0);
+ int q_index = 0;
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ body.m_q_index = -1;
+ switch (body.m_joint_type) {
+ case REVOLUTE:
+ m_body_revolute_list.push_back(i);
+ body.m_q_index = q_index;
+ q_index++;
+ break;
+ case PRISMATIC:
+ m_body_prismatic_list.push_back(i);
+ body.m_q_index = q_index;
+ q_index++;
+ break;
+ case FIXED:
+ // do nothing
+ break;
+ case FLOATING:
+ m_body_floating_list.push_back(i);
+ body.m_q_index = q_index;
+ q_index += 6;
+ break;
+ default:
+ error_message("unsupported joint type %d\n", body.m_joint_type);
+ return -1;
+ }
+ }
+ // sanity check
+ if (q_index != m_num_dofs) {
+ error_message("internal error, q_index= %d but num_dofs %d\n", q_index, m_num_dofs);
+ return -1;
+ }
+
+ m_child_indices.resize(m_body_list.size());
+
+ for (idArrayIdx child = 1; child < m_parent_index.size(); child++) {
+ const int &parent = m_parent_index[child];
+ if (parent >= 0 && parent < (static_cast<int>(m_parent_index.size()) - 1)) {
+ m_child_indices[parent].push_back(child);
+ } else {
+ if (-1 == parent) {
+ // multiple bodies are directly linked to the environment, ie, not a single root
+ error_message("building index sets parent(%zu)= -1 (multiple roots)\n", child);
+ } else {
+ // should never happen
+ error_message(
+ "building index sets. parent_index[%zu]= %d, but m_parent_index.size()= %d\n",
+ child, parent, static_cast<int>(m_parent_index.size()));
+ }
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+void MultiBodyTree::MultiBodyImpl::calculateStaticData() {
+ // relative kinematics that are not a function of q, u, dot_u
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ switch (body.m_joint_type) {
+ case REVOLUTE:
+ body.m_parent_vel_rel(0) = 0;
+ body.m_parent_vel_rel(1) = 0;
+ body.m_parent_vel_rel(2) = 0;
+ body.m_parent_acc_rel(0) = 0;
+ body.m_parent_acc_rel(1) = 0;
+ body.m_parent_acc_rel(2) = 0;
+ body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref;
+ break;
+ case PRISMATIC:
+ body.m_body_T_parent = body.m_body_T_parent_ref;
+ body.m_parent_Jac_JT = body.m_body_T_parent_ref.transpose() * body.m_Jac_JT;
+ body.m_body_ang_vel_rel(0) = 0;
+ body.m_body_ang_vel_rel(1) = 0;
+ body.m_body_ang_vel_rel(2) = 0;
+ body.m_body_ang_acc_rel(0) = 0;
+ body.m_body_ang_acc_rel(1) = 0;
+ body.m_body_ang_acc_rel(2) = 0;
+ break;
+ case FIXED:
+ body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref;
+ body.m_body_T_parent = body.m_body_T_parent_ref;
+ body.m_body_ang_vel_rel(0) = 0;
+ body.m_body_ang_vel_rel(1) = 0;
+ body.m_body_ang_vel_rel(2) = 0;
+ body.m_parent_vel_rel(0) = 0;
+ body.m_parent_vel_rel(1) = 0;
+ body.m_parent_vel_rel(2) = 0;
+ body.m_body_ang_acc_rel(0) = 0;
+ body.m_body_ang_acc_rel(1) = 0;
+ body.m_body_ang_acc_rel(2) = 0;
+ body.m_parent_acc_rel(0) = 0;
+ body.m_parent_acc_rel(1) = 0;
+ body.m_parent_acc_rel(2) = 0;
+ break;
+ case FLOATING:
+ // no static data
+ break;
+ }
+
+ // resize & initialize jacobians to zero.
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ body.m_body_dot_Jac_T_u(0) = 0.0;
+ body.m_body_dot_Jac_T_u(1) = 0.0;
+ body.m_body_dot_Jac_T_u(2) = 0.0;
+ body.m_body_dot_Jac_R_u(0) = 0.0;
+ body.m_body_dot_Jac_R_u(1) = 0.0;
+ body.m_body_dot_Jac_R_u(2) = 0.0;
+ resize(body.m_body_Jac_T,m_num_dofs);
+ resize(body.m_body_Jac_R,m_num_dofs);
+ body.m_body_Jac_T.setZero();
+ body.m_body_Jac_R.setZero();
+#endif //
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateInverseDynamics(const vecx &q, const vecx &u,
+ const vecx &dot_u, vecx *joint_forces) {
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ||
+ joint_forces->size() != m_num_dofs) {
+ error_message("wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d, dim(joint_forces)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
+ static_cast<int>(dot_u.size()), static_cast<int>(joint_forces->size()));
+ return -1;
+ }
+ // 1. relative kinematics
+ if(-1 == calculateKinematics(q,u,dot_u, POSITION_VELOCITY_ACCELERATION)) {
+ error_message("error in calculateKinematics\n");
+ return -1;
+ }
+ // 2. update contributions to equations of motion for every body.
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ // 3.4 update dynamic terms (rate of change of angular & linear momentum)
+ body.m_eom_lhs_rotational =
+ body.m_body_I_body * body.m_body_ang_acc + body.m_body_mass_com.cross(body.m_body_acc) +
+ body.m_body_ang_vel.cross(body.m_body_I_body * body.m_body_ang_vel) -
+ body.m_body_moment_user;
+ body.m_eom_lhs_translational =
+ body.m_body_ang_acc.cross(body.m_body_mass_com) + body.m_mass * body.m_body_acc +
+ body.m_body_ang_vel.cross(body.m_body_ang_vel.cross(body.m_body_mass_com)) -
+ body.m_body_force_user;
+ }
+
+ // 3. calculate full set of forces at parent joint
+ // (not directly calculating the joint force along the free direction
+ // simplifies inclusion of fixed joints.
+ // An alternative would be to fuse bodies in a pre-processing step,
+ // but that would make changing masses online harder (eg, payload masses
+ // added with fixed joints to a gripper)
+ // Also, this enables adding zero weight bodies as a way to calculate frame poses
+ // for force elements, etc.
+
+ for (int body_idx = m_body_list.size() - 1; body_idx >= 0; body_idx--) {
+ // sum of forces and moments acting on this body from its children
+ vec3 sum_f_children;
+ vec3 sum_m_children;
+ setZero(sum_f_children);
+ setZero(sum_m_children);
+ for (idArrayIdx child_list_idx = 0; child_list_idx < m_child_indices[body_idx].size();
+ child_list_idx++) {
+ const RigidBody &child = m_body_list[m_child_indices[body_idx][child_list_idx]];
+ vec3 child_joint_force_in_this_frame =
+ child.m_body_T_parent.transpose() * child.m_force_at_joint;
+ sum_f_children -= child_joint_force_in_this_frame;
+ sum_m_children -= child.m_body_T_parent.transpose() * child.m_moment_at_joint +
+ child.m_parent_pos_parent_body.cross(child_joint_force_in_this_frame);
+ }
+ RigidBody &body = m_body_list[body_idx];
+
+ body.m_force_at_joint = body.m_eom_lhs_translational - sum_f_children;
+ body.m_moment_at_joint = body.m_eom_lhs_rotational - sum_m_children;
+ }
+
+ // 4. Calculate Joint forces.
+ // These are the components of force_at_joint/moment_at_joint
+ // in the free directions given by Jac_JT/Jac_JR
+ // 4.1 revolute joints
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_revolute_list[i]];
+ // (*joint_forces)(body.m_q_index) = body.m_Jac_JR.transpose() * body.m_moment_at_joint;
+ (*joint_forces)(body.m_q_index) = body.m_Jac_JR.dot(body.m_moment_at_joint);
+ }
+ // 4.2 for prismatic joints
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_prismatic_list[i]];
+ // (*joint_forces)(body.m_q_index) = body.m_Jac_JT.transpose() * body.m_force_at_joint;
+ (*joint_forces)(body.m_q_index) = body.m_Jac_JT.dot(body.m_force_at_joint);
+ }
+ // 4.3 floating bodies (6-DoF joints)
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_floating_list[i]];
+ (*joint_forces)(body.m_q_index + 0) = body.m_moment_at_joint(0);
+ (*joint_forces)(body.m_q_index + 1) = body.m_moment_at_joint(1);
+ (*joint_forces)(body.m_q_index + 2) = body.m_moment_at_joint(2);
+
+ (*joint_forces)(body.m_q_index + 3) = body.m_force_at_joint(0);
+ (*joint_forces)(body.m_q_index + 4) = body.m_force_at_joint(1);
+ (*joint_forces)(body.m_q_index + 5) = body.m_force_at_joint(2);
+ }
+
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateKinematics(const vecx &q, const vecx &u, const vecx& dot_u,
+ const KinUpdateType type) {
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ) {
+ error_message("wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
+ static_cast<int>(dot_u.size()));
+ return -1;
+ }
+ if(type != POSITION_ONLY && type != POSITION_VELOCITY && type != POSITION_VELOCITY_ACCELERATION) {
+ error_message("invalid type %d\n", type);
+ return -1;
+ }
+
+ // 1. update relative kinematics
+ // 1.1 for revolute
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_revolute_list[i]];
+ mat33 T;
+ bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &T);
+ body.m_body_T_parent = T * body.m_body_T_parent_ref;
+ if(type >= POSITION_VELOCITY) {
+ body.m_body_ang_vel_rel = body.m_Jac_JR * u(body.m_q_index);
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ body.m_body_ang_acc_rel = body.m_Jac_JR * dot_u(body.m_q_index);
+ }
+ }
+ // 1.2 for prismatic
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_prismatic_list[i]];
+ body.m_parent_pos_parent_body =
+ body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index);
+ if(type >= POSITION_VELOCITY) {
+ body.m_parent_vel_rel =
+ body.m_body_T_parent_ref.transpose() * body.m_Jac_JT * u(body.m_q_index);
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ body.m_parent_acc_rel = body.m_parent_Jac_JT * dot_u(body.m_q_index);
+ }
+ }
+ // 1.3 fixed joints: nothing to do
+ // 1.4 6dof joints:
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_floating_list[i]];
+
+ body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
+ transformY(q(body.m_q_index + 1)) * transformX(q(body.m_q_index));
+ body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3);
+ body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4);
+ body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5);
+ body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
+
+ if(type >= POSITION_VELOCITY) {
+ body.m_body_ang_vel_rel(0) = u(body.m_q_index + 0);
+ body.m_body_ang_vel_rel(1) = u(body.m_q_index + 1);
+ body.m_body_ang_vel_rel(2) = u(body.m_q_index + 2);
+
+ body.m_parent_vel_rel(0) = u(body.m_q_index + 3);
+ body.m_parent_vel_rel(1) = u(body.m_q_index + 4);
+ body.m_parent_vel_rel(2) = u(body.m_q_index + 5);
+
+ body.m_parent_vel_rel = body.m_body_T_parent.transpose() * body.m_parent_vel_rel;
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ body.m_body_ang_acc_rel(0) = dot_u(body.m_q_index + 0);
+ body.m_body_ang_acc_rel(1) = dot_u(body.m_q_index + 1);
+ body.m_body_ang_acc_rel(2) = dot_u(body.m_q_index + 2);
+
+ body.m_parent_acc_rel(0) = dot_u(body.m_q_index + 3);
+ body.m_parent_acc_rel(1) = dot_u(body.m_q_index + 4);
+ body.m_parent_acc_rel(2) = dot_u(body.m_q_index + 5);
+
+ body.m_parent_acc_rel = body.m_body_T_parent.transpose() * body.m_parent_acc_rel;
+ }
+ }
+
+ // 2. absolute kinematic quantities (vector valued)
+ // NOTE: this should be optimized by specializing for different body types
+ // (e.g., relative rotation is always zero for prismatic joints, etc.)
+
+ // calculations for root body
+ {
+ RigidBody &body = m_body_list[0];
+ // 3.1 update absolute positions and orientations:
+ // will be required if we add force elements (eg springs between bodies,
+ // or contacts)
+ // not required right now, added here for debugging purposes
+ body.m_body_pos = body.m_body_T_parent * body.m_parent_pos_parent_body;
+ body.m_body_T_world = body.m_body_T_parent;
+
+ if(type >= POSITION_VELOCITY) {
+ // 3.2 update absolute velocities
+ body.m_body_ang_vel = body.m_body_ang_vel_rel;
+ body.m_body_vel = body.m_parent_vel_rel;
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ // 3.3 update absolute accelerations
+ // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
+ body.m_body_ang_acc = body.m_body_ang_acc_rel;
+ body.m_body_acc = body.m_body_T_parent * body.m_parent_acc_rel;
+ // add gravitational acceleration to root body
+ // this is an efficient way to add gravitational terms,
+ // but it does mean that the kinematics are no longer
+ // correct at the acceleration level
+ // NOTE: To get correct acceleration kinematics, just set world_gravity to zero
+ body.m_body_acc = body.m_body_acc - body.m_body_T_parent * m_world_gravity;
+ }
+ }
+
+ for (idArrayIdx i = 1; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ RigidBody &parent = m_body_list[m_parent_index[i]];
+ // 2.1 update absolute positions and orientations:
+ // will be required if we add force elements (eg springs between bodies,
+ // or contacts) not required right now added here for debugging purposes
+ body.m_body_pos =
+ body.m_body_T_parent * (parent.m_body_pos + body.m_parent_pos_parent_body);
+ body.m_body_T_world = body.m_body_T_parent * parent.m_body_T_world;
+
+ if(type >= POSITION_VELOCITY) {
+ // 2.2 update absolute velocities
+ body.m_body_ang_vel =
+ body.m_body_T_parent * parent.m_body_ang_vel + body.m_body_ang_vel_rel;
+
+ body.m_body_vel =
+ body.m_body_T_parent *
+ (parent.m_body_vel + parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body) +
+ body.m_parent_vel_rel);
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ // 2.3 update absolute accelerations
+ // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
+ body.m_body_ang_acc =
+ body.m_body_T_parent * parent.m_body_ang_acc -
+ body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel) +
+ body.m_body_ang_acc_rel;
+ body.m_body_acc =
+ body.m_body_T_parent *
+ (parent.m_body_acc + parent.m_body_ang_acc.cross(body.m_parent_pos_parent_body) +
+ parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
+ 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel) + body.m_parent_acc_rel);
+ }
+ }
+
+ return 0;
+}
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+
+void MultiBodyTree::MultiBodyImpl::addRelativeJacobianComponent(RigidBody&body) {
+ const int& idx=body.m_q_index;
+ switch(body.m_joint_type) {
+ case FIXED:
+ break;
+ case REVOLUTE:
+ setMat3xElem(0,idx, body.m_Jac_JR(0), &body.m_body_Jac_R);
+ setMat3xElem(1,idx, body.m_Jac_JR(1), &body.m_body_Jac_R);
+ setMat3xElem(2,idx, body.m_Jac_JR(2), &body.m_body_Jac_R);
+ break;
+ case PRISMATIC:
+ setMat3xElem(0,idx, body.m_body_T_parent_ref(0,0)*body.m_Jac_JT(0)
+ +body.m_body_T_parent_ref(1,0)*body.m_Jac_JT(1)
+ +body.m_body_T_parent_ref(2,0)*body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ setMat3xElem(1,idx,body.m_body_T_parent_ref(0,1)*body.m_Jac_JT(0)
+ +body.m_body_T_parent_ref(1,1)*body.m_Jac_JT(1)
+ +body.m_body_T_parent_ref(2,1)*body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ setMat3xElem(2,idx, body.m_body_T_parent_ref(0,2)*body.m_Jac_JT(0)
+ +body.m_body_T_parent_ref(1,2)*body.m_Jac_JT(1)
+ +body.m_body_T_parent_ref(2,2)*body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ break;
+ case FLOATING:
+ setMat3xElem(0,idx+0, 1.0, &body.m_body_Jac_R);
+ setMat3xElem(1,idx+1, 1.0, &body.m_body_Jac_R);
+ setMat3xElem(2,idx+2, 1.0, &body.m_body_Jac_R);
+ // body_Jac_T = body_T_parent.transpose();
+ setMat3xElem(0,idx+3, body.m_body_T_parent(0,0), &body.m_body_Jac_T);
+ setMat3xElem(0,idx+4, body.m_body_T_parent(1,0), &body.m_body_Jac_T);
+ setMat3xElem(0,idx+5, body.m_body_T_parent(2,0), &body.m_body_Jac_T);
+
+ setMat3xElem(1,idx+3, body.m_body_T_parent(0,1), &body.m_body_Jac_T);
+ setMat3xElem(1,idx+4, body.m_body_T_parent(1,1), &body.m_body_Jac_T);
+ setMat3xElem(1,idx+5, body.m_body_T_parent(2,1), &body.m_body_Jac_T);
+
+ setMat3xElem(2,idx+3, body.m_body_T_parent(0,2), &body.m_body_Jac_T);
+ setMat3xElem(2,idx+4, body.m_body_T_parent(1,2), &body.m_body_Jac_T);
+ setMat3xElem(2,idx+5, body.m_body_T_parent(2,2), &body.m_body_Jac_T);
+
+ break;
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateJacobians(const vecx& q, const vecx& u, const KinUpdateType type) {
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs) {
+ error_message("wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()));
+ return -1;
+ }
+ if(type != POSITION_ONLY && type != POSITION_VELOCITY) {
+ error_message("invalid type %d\n", type);
+ return -1;
+ }
+
+ addRelativeJacobianComponent(m_body_list[0]);
+ for (idArrayIdx i = 1; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ RigidBody &parent = m_body_list[m_parent_index[i]];
+
+ mul(body.m_body_T_parent, parent.m_body_Jac_R,& body.m_body_Jac_R);
+ body.m_body_Jac_T = parent.m_body_Jac_T;
+ mul(tildeOperator(body.m_parent_pos_parent_body),parent.m_body_Jac_R,&m_m3x);
+ sub(body.m_body_Jac_T,m_m3x, &body.m_body_Jac_T);
+
+ addRelativeJacobianComponent(body);
+ mul(body.m_body_T_parent, body.m_body_Jac_T,&body.m_body_Jac_T);
+
+ if(type >= POSITION_VELOCITY) {
+ body.m_body_dot_Jac_R_u = body.m_body_T_parent * parent.m_body_dot_Jac_R_u -
+ body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel);
+ body.m_body_dot_Jac_T_u = body.m_body_T_parent *
+ (parent.m_body_dot_Jac_T_u + parent.m_body_dot_Jac_R_u.cross(body.m_parent_pos_parent_body) +
+ parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
+ 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel));
+ }
+ }
+ return 0;
+}
+#endif
+
+static inline void setSixDoFJacobians(const int dof, vec3 &Jac_JR, vec3 &Jac_JT) {
+ switch (dof) {
+ // rotational part
+ case 0:
+ Jac_JR(0) = 1;
+ Jac_JR(1) = 0;
+ Jac_JR(2) = 0;
+ setZero(Jac_JT);
+ break;
+ case 1:
+ Jac_JR(0) = 0;
+ Jac_JR(1) = 1;
+ Jac_JR(2) = 0;
+ setZero(Jac_JT);
+ break;
+ case 2:
+ Jac_JR(0) = 0;
+ Jac_JR(1) = 0;
+ Jac_JR(2) = 1;
+ setZero(Jac_JT);
+ break;
+ // translational part
+ case 3:
+ setZero(Jac_JR);
+ Jac_JT(0) = 1;
+ Jac_JT(1) = 0;
+ Jac_JT(2) = 0;
+ break;
+ case 4:
+ setZero(Jac_JR);
+ Jac_JT(0) = 0;
+ Jac_JT(1) = 1;
+ Jac_JT(2) = 0;
+ break;
+ case 5:
+ setZero(Jac_JR);
+ Jac_JT(0) = 0;
+ Jac_JT(1) = 0;
+ Jac_JT(2) = 1;
+ break;
+ }
+}
+
+static inline int jointNumDoFs(const JointType &type) {
+ switch (type) {
+ case FIXED:
+ return 0;
+ case REVOLUTE:
+ case PRISMATIC:
+ return 1;
+ case FLOATING:
+ return 6;
+ }
+ // this should never happen
+ error_message("invalid joint type\n");
+ // TODO add configurable abort/crash function
+ abort();
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool update_kinematics,
+ const bool initialize_matrix,
+ const bool set_lower_triangular_matrix,
+ matxx *mass_matrix) {
+// This calculates the joint space mass matrix for the multibody system.
+// The algorithm is essentially an implementation of "method 3"
+// in "Efficient Dynamic Simulation of Robotic Mechanisms" (Walker and Orin, 1982)
+// (Later named "Composite Rigid Body Algorithm" by Featherstone).
+//
+// This implementation, however, handles branched systems and uses a formulation centered
+// on the origin of the body-fixed frame to avoid re-computing various quantities at the com.
+
+ if (q.size() != m_num_dofs || mass_matrix->rows() != m_num_dofs ||
+ mass_matrix->cols() != m_num_dofs) {
+ error_message("Dimension error. System has %d DOFs,\n"
+ "but dim(q)= %d, dim(mass_matrix)= %d x %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(mass_matrix->rows()),
+ static_cast<int>(mass_matrix->cols()));
+ return -1;
+ }
+
+ // TODO add optimized zeroing function?
+ if (initialize_matrix) {
+ for (int i = 0; i < m_num_dofs; i++) {
+ for (int j = 0; j < m_num_dofs; j++) {
+ setMatxxElem(i, j, 0.0, mass_matrix);
+ }
+ }
+ }
+
+ if (update_kinematics) {
+ // 1. update relative kinematics
+ // 1.1 for revolute joints
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_revolute_list[i]];
+ // from reference orientation (q=0) of body-fixed frame to current orientation
+ mat33 body_T_body_ref;
+ bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &body_T_body_ref);
+ body.m_body_T_parent = body_T_body_ref * body.m_body_T_parent_ref;
+ }
+ // 1.2 for prismatic joints
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_prismatic_list[i]];
+ // body.m_body_T_parent= fixed
+ body.m_parent_pos_parent_body =
+ body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index);
+ }
+ // 1.3 fixed joints: nothing to do
+ // 1.4 6dof joints:
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_floating_list[i]];
+
+ body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
+ transformY(q(body.m_q_index + 1)) *
+ transformX(q(body.m_q_index));
+ body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3);
+ body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4);
+ body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5);
+
+ body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
+ }
+ }
+ for (int i = m_body_list.size() - 1; i >= 0; i--) {
+ RigidBody &body = m_body_list[i];
+ // calculate mass, center of mass and inertia of "composite rigid body",
+ // ie, sub-tree starting at current body
+ body.m_subtree_mass = body.m_mass;
+ body.m_body_subtree_mass_com = body.m_body_mass_com;
+ body.m_body_subtree_I_body = body.m_body_I_body;
+
+ for (idArrayIdx c = 0; c < m_child_indices[i].size(); c++) {
+ RigidBody &child = m_body_list[m_child_indices[i][c]];
+ mat33 body_T_child = child.m_body_T_parent.transpose();
+
+ body.m_subtree_mass += child.m_subtree_mass;
+ body.m_body_subtree_mass_com += body_T_child * child.m_body_subtree_mass_com +
+ child.m_parent_pos_parent_body * child.m_subtree_mass;
+ body.m_body_subtree_I_body +=
+ body_T_child * child.m_body_subtree_I_body * child.m_body_T_parent;
+
+ if (child.m_subtree_mass > 0) {
+ // Shift the reference point for the child subtree inertia using the
+ // Huygens-Steiner ("parallel axis") theorem.
+ // (First shift from child origin to child com, then from there to this body's
+ // origin)
+ vec3 r_com = body_T_child * child.m_body_subtree_mass_com / child.m_subtree_mass;
+ mat33 tilde_r_child_com = tildeOperator(r_com);
+ mat33 tilde_r_body_com = tildeOperator(child.m_parent_pos_parent_body + r_com);
+ body.m_body_subtree_I_body +=
+ child.m_subtree_mass *
+ (tilde_r_child_com * tilde_r_child_com - tilde_r_body_com * tilde_r_body_com);
+ }
+ }
+ }
+
+ for (int i = m_body_list.size() - 1; i >= 0; i--) {
+ const RigidBody &body = m_body_list[i];
+
+ // determine DoF-range for body
+ const int q_index_min = body.m_q_index;
+ const int q_index_max = q_index_min + jointNumDoFs(body.m_joint_type) - 1;
+ // loop over the DoFs used by this body
+ // local joint jacobians (ok as is for 1-DoF joints)
+ vec3 Jac_JR = body.m_Jac_JR;
+ vec3 Jac_JT = body.m_Jac_JT;
+ for (int col = q_index_max; col >= q_index_min; col--) {
+ // set jacobians for 6-DoF joints
+ if (FLOATING == body.m_joint_type) {
+ setSixDoFJacobians(col - q_index_min, Jac_JR, Jac_JT);
+ }
+
+ vec3 body_eom_rot =
+ body.m_body_subtree_I_body * Jac_JR + body.m_body_subtree_mass_com.cross(Jac_JT);
+ vec3 body_eom_trans =
+ body.m_subtree_mass * Jac_JT - body.m_body_subtree_mass_com.cross(Jac_JR);
+ setMatxxElem(col, col, Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans), mass_matrix);
+
+ // rest of the mass matrix column upwards
+ {
+ // 1. for multi-dof joints, rest of the dofs of this body
+ for (int row = col - 1; row >= q_index_min; row--) {
+ if (FLOATING != body.m_joint_type) {
+ error_message("??\n");
+ return -1;
+ }
+ setSixDoFJacobians(row - q_index_min, Jac_JR, Jac_JT);
+ const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
+ setMatxxElem(col, row, Mrc, mass_matrix);
+ }
+ // 2. ancestor dofs
+ int child_idx = i;
+ int parent_idx = m_parent_index[i];
+ while (parent_idx >= 0) {
+ const RigidBody &child_body = m_body_list[child_idx];
+ const RigidBody &parent_body = m_body_list[parent_idx];
+
+ const mat33 parent_T_child = child_body.m_body_T_parent.transpose();
+ body_eom_rot = parent_T_child * body_eom_rot;
+ body_eom_trans = parent_T_child * body_eom_trans;
+ body_eom_rot += child_body.m_parent_pos_parent_body.cross(body_eom_trans);
+
+ const int parent_body_q_index_min = parent_body.m_q_index;
+ const int parent_body_q_index_max =
+ parent_body_q_index_min + jointNumDoFs(parent_body.m_joint_type) - 1;
+ vec3 Jac_JR = parent_body.m_Jac_JR;
+ vec3 Jac_JT = parent_body.m_Jac_JT;
+ for (int row = parent_body_q_index_max; row >= parent_body_q_index_min; row--) {
+ // set jacobians for 6-DoF joints
+ if (FLOATING == parent_body.m_joint_type) {
+ setSixDoFJacobians(row - parent_body_q_index_min, Jac_JR, Jac_JT);
+ }
+ const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
+ setMatxxElem(col, row, Mrc, mass_matrix);
+ }
+
+ child_idx = parent_idx;
+ parent_idx = m_parent_index[child_idx];
+ }
+ }
+ }
+ }
+
+ if (set_lower_triangular_matrix) {
+ for (int col = 0; col < m_num_dofs; col++) {
+ for (int row = 0; row < col; row++) {
+ setMatxxElem(row, col, (*mass_matrix)(col, row), mass_matrix);
+ }
+ }
+ }
+ return 0;
+}
+
+// utility macro
+#define CHECK_IF_BODY_INDEX_IS_VALID(index) \
+ do { \
+ if (index < 0 || index >= m_num_bodies) { \
+ error_message("invalid index %d (num_bodies= %d)\n", index, m_num_bodies); \
+ return -1; \
+ } \
+ } while (0)
+
+int MultiBodyTree::MultiBodyImpl::getParentIndex(const int body_index, int *p) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *p = m_parent_index[body_index];
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getUserInt(const int body_index, int *user_int) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *user_int = m_user_int[body_index];
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getUserPtr(const int body_index, void **user_ptr) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *user_ptr = m_user_ptr[body_index];
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setUserInt(const int body_index, const int user_int) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_user_int[body_index] = user_int;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setUserPtr(const int body_index, void *const user_ptr) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_user_ptr[body_index] = user_ptr;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyOrigin(int body_index, vec3 *world_origin) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_origin = body.m_body_T_world.transpose() * body.m_body_pos;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyCoM(int body_index, vec3 *world_com) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ if (body.m_mass > 0) {
+ *world_com = body.m_body_T_world.transpose() *
+ (body.m_body_pos + body.m_body_mass_com / body.m_mass);
+ } else {
+ *world_com = body.m_body_T_world.transpose() * (body.m_body_pos);
+ }
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyTransform(int body_index, mat33 *world_T_body) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_T_body = body.m_body_T_world.transpose();
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyAngularVelocity(int body_index, vec3 *world_omega) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_omega = body.m_body_T_world.transpose() * body.m_body_ang_vel;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocity(int body_index,
+ vec3 *world_velocity) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_velocity = body.m_body_T_world.transpose() * body.m_body_vel;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocityCoM(int body_index,
+ vec3 *world_velocity) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ vec3 com;
+ if (body.m_mass > 0) {
+ com = body.m_body_mass_com / body.m_mass;
+ } else {
+ com(0) = 0;
+ com(1) = 0;
+ com(2) = 0;
+ }
+
+ *world_velocity =
+ body.m_body_T_world.transpose() * (body.m_body_vel + body.m_body_ang_vel.cross(com));
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyAngularAcceleration(int body_index,
+ vec3 *world_dot_omega) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_omega = body.m_body_T_world.transpose() * body.m_body_ang_acc;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyLinearAcceleration(int body_index,
+ vec3 *world_acceleration) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_acceleration = body.m_body_T_world.transpose() * body.m_body_acc;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getJointType(const int body_index, JointType *joint_type) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *joint_type = m_body_list[body_index].m_joint_type;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getJointTypeStr(const int body_index,
+ const char **joint_type) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *joint_type = jointTypeToString(m_body_list[body_index].m_joint_type);
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getParentRParentBodyRef(const int body_index, vec3* r) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *r=m_body_list[body_index].m_parent_pos_parent_body_ref;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyTParentRef(const int body_index, mat33* T) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *T=m_body_list[body_index].m_body_T_parent_ref;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyAxisOfMotion(const int body_index, vec3* axis) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ if(m_body_list[body_index].m_joint_type == REVOLUTE) {
+ *axis = m_body_list[body_index].m_Jac_JR;
+ return 0;
+ }
+ if(m_body_list[body_index].m_joint_type == PRISMATIC) {
+ *axis = m_body_list[body_index].m_Jac_JT;
+ return 0;
+ }
+ setZero(*axis);
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getDoFOffset(const int body_index, int *q_index) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *q_index = m_body_list[body_index].m_q_index;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setBodyMass(const int body_index, const idScalar mass) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_mass = mass;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setBodyFirstMassMoment(const int body_index,
+ const vec3& first_mass_moment) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_mass_com = first_mass_moment;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::setBodySecondMassMoment(const int body_index,
+ const mat33& second_mass_moment) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_I_body = second_mass_moment;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyMass(const int body_index, idScalar *mass) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *mass = m_body_list[body_index].m_mass;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyFirstMassMoment(const int body_index,
+ vec3 *first_mass_moment) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *first_mass_moment = m_body_list[body_index].m_body_mass_com;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodySecondMassMoment(const int body_index,
+ mat33 *second_mass_moment) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *second_mass_moment = m_body_list[body_index].m_body_I_body;
+ return 0;
+}
+
+void MultiBodyTree::MultiBodyImpl::clearAllUserForcesAndMoments() {
+ for (int index = 0; index < m_num_bodies; index++) {
+ RigidBody &body = m_body_list[index];
+ setZero(body.m_body_force_user);
+ setZero(body.m_body_moment_user);
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::addUserForce(const int body_index, const vec3 &body_force) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_force_user += body_force;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::addUserMoment(const int body_index, const vec3 &body_moment) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_moment_user += body_moment;
+ return 0;
+}
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_jac_trans_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_T_u;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_jac_rot_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_R_u;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ mul(body.m_body_T_world.transpose(), body.m_body_Jac_T, world_jac_trans);
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ mul(body.m_body_T_world.transpose(), body.m_body_Jac_R,world_jac_rot);
+ return 0;
+}
+
+#endif
+}
diff --git a/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp b/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp
new file mode 100644
index 0000000000..3efe9d0492
--- /dev/null
+++ b/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp
@@ -0,0 +1,283 @@
+// The structs and classes defined here provide a basic inverse fynamics implementation used
+// by MultiBodyTree
+// User interaction should be through MultiBodyTree
+
+#ifndef MULTI_BODY_REFERENCE_IMPL_HPP_
+#define MULTI_BODY_REFERENCE_IMPL_HPP_
+
+#include "../IDConfig.hpp"
+#include "../MultiBodyTree.hpp"
+
+namespace btInverseDynamics {
+
+/// Structure for for rigid body mass properties, connectivity and kinematic state
+/// all vectors and matrices are in body-fixed frame, if not indicated otherwise.
+/// The body-fixed frame is located in the joint connecting the body to its parent.
+struct RigidBody {
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+ // 1 Inertial properties
+ /// Mass
+ idScalar m_mass;
+ /// Mass times center of gravity in body-fixed frame
+ vec3 m_body_mass_com;
+ /// Moment of inertia w.r.t. body-fixed frame
+ mat33 m_body_I_body;
+
+ // 2 dynamic properties
+ /// Left-hand side of the body equation of motion, translational part
+ vec3 m_eom_lhs_translational;
+ /// Left-hand side of the body equation of motion, rotational part
+ vec3 m_eom_lhs_rotational;
+ /// Force acting at the joint when the body is cut from its parent;
+ /// includes impressed joint force in J_JT direction,
+ /// as well as constraint force,
+ /// in body-fixed frame
+ vec3 m_force_at_joint;
+ /// Moment acting at the joint when the body is cut from its parent;
+ /// includes impressed joint moment in J_JR direction, and constraint moment
+ /// in body-fixed frame
+ vec3 m_moment_at_joint;
+ /// external (user provided) force acting at the body-fixed frame's origin, written in that
+ /// frame
+ vec3 m_body_force_user;
+ /// external (user provided) moment acting at the body-fixed frame's origin, written in that
+ /// frame
+ vec3 m_body_moment_user;
+ // 3 absolute kinematic properties
+ /// Position of body-fixed frame relative to world frame
+ /// this is currently only for debugging purposes
+ vec3 m_body_pos;
+ /// Absolute velocity of body-fixed frame
+ vec3 m_body_vel;
+ /// Absolute acceleration of body-fixed frame
+ /// NOTE: if gravitational acceleration is not zero, this is the accelation PLUS gravitational
+ /// acceleration!
+ vec3 m_body_acc;
+ /// Absolute angular velocity
+ vec3 m_body_ang_vel;
+ /// Absolute angular acceleration
+ /// NOTE: if gravitational acceleration is not zero, this is the accelation PLUS gravitational
+ /// acceleration!
+ vec3 m_body_ang_acc;
+
+ // 4 relative kinematic properties.
+ // these are in the parent body frame
+ /// Transform from world to body-fixed frame;
+ /// this is currently only for debugging purposes
+ mat33 m_body_T_world;
+ /// Transform from parent to body-fixed frame
+ mat33 m_body_T_parent;
+ /// Vector from parent to child frame in parent frame
+ vec3 m_parent_pos_parent_body;
+ /// Relative angular velocity
+ vec3 m_body_ang_vel_rel;
+ /// Relative linear velocity
+ vec3 m_parent_vel_rel;
+ /// Relative angular acceleration
+ vec3 m_body_ang_acc_rel;
+ /// Relative linear acceleration
+ vec3 m_parent_acc_rel;
+
+ // 5 Data describing the joint type and geometry
+ /// Type of joint
+ JointType m_joint_type;
+ /// Position of joint frame (body-fixed frame at q=0) relative to the parent frame
+ /// Components are in body-fixed frame of the parent
+ vec3 m_parent_pos_parent_body_ref;
+ /// Orientation of joint frame (body-fixed frame at q=0) relative to the parent frame
+ mat33 m_body_T_parent_ref;
+ /// Joint rotational Jacobian, ie, the partial derivative of the body-fixed frames absolute
+ /// angular velocity w.r.t. the generalized velocity of this body's relative degree of freedom.
+ /// For revolute joints this is the joint axis, for prismatic joints it is a null matrix.
+ /// (NOTE: dimensions will have to be dynamic for additional joint types!)
+ vec3 m_Jac_JR;
+ /// Joint translational Jacobian, ie, the partial derivative of the body-fixed frames absolute
+ /// linear velocity w.r.t. the generalized velocity of this body's relative degree of freedom.
+ /// For prismatic joints this is the joint axis, for revolute joints it is a null matrix.
+ /// (NOTE: dimensions might have to be dynamic for additional joint types!)
+ vec3 m_Jac_JT;
+ /// m_Jac_JT in the parent frame, it, m_body_T_parent_ref.transpose()*m_Jac_JT
+ vec3 m_parent_Jac_JT;
+ /// Start of index range for the position degree(s) of freedom describing this body's motion
+ /// relative to
+ /// its parent. The indices are wrt the multibody system's q-vector of generalized coordinates.
+ int m_q_index;
+
+ // 6 Scratch data for mass matrix computation using "composite rigid body algorithm"
+ /// mass of the subtree rooted in this body
+ idScalar m_subtree_mass;
+ /// center of mass * mass for subtree rooted in this body, in body-fixed frame
+ vec3 m_body_subtree_mass_com;
+ /// moment of inertia of subtree rooted in this body, w.r.t. body origin, in body-fixed frame
+ mat33 m_body_subtree_I_body;
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ /// translational jacobian in body-fixed frame d(m_body_vel)/du
+ mat3x m_body_Jac_T;
+ /// rotationsl jacobian in body-fixed frame d(m_body_ang_vel)/du
+ mat3x m_body_Jac_R;
+ /// components of linear acceleration depending on u
+ /// (same as is d(m_Jac_T)/dt*u)
+ vec3 m_body_dot_Jac_T_u;
+ /// components of angular acceleration depending on u
+ /// (same as is d(m_Jac_T)/dt*u)
+ vec3 m_body_dot_Jac_R_u;
+#endif
+};
+
+/// The MBS implements a tree structured multibody system
+class MultiBodyTree::MultiBodyImpl {
+ friend class MultiBodyTree;
+
+public:
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+
+ enum KinUpdateType {
+ POSITION_ONLY,
+ POSITION_VELOCITY,
+ POSITION_VELOCITY_ACCELERATION
+ };
+
+ /// constructor
+ /// @param num_bodies the number of bodies in the system
+ /// @param num_dofs number of degrees of freedom in the system
+ MultiBodyImpl(int num_bodies_, int num_dofs_);
+
+ /// \copydoc MultiBodyTree::calculateInverseDynamics
+ int calculateInverseDynamics(const vecx& q, const vecx& u, const vecx& dot_u,
+ vecx* joint_forces);
+ ///\copydoc MultiBodyTree::calculateMassMatrix
+ int calculateMassMatrix(const vecx& q, const bool update_kinematics,
+ const bool initialize_matrix, const bool set_lower_triangular_matrix,
+ matxx* mass_matrix);
+ /// calculate kinematics (vector quantities)
+ /// Depending on type, update positions only, positions & velocities, or positions, velocities
+ /// and accelerations.
+ int calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u, const KinUpdateType type);
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ /// calculate jacobians and (if type == POSITION_VELOCITY), also velocity-dependent accelration terms.
+ int calculateJacobians(const vecx& q, const vecx& u, const KinUpdateType type);
+ /// \copydoc MultiBodyTree::getBodyDotJacobianTransU
+ int getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const ;
+ /// \copydoc MultiBodyTree::getBodyDotJacobianRotU
+ int getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const;
+ /// \copydoc MultiBodyTree::getBodyJacobianTrans
+ int getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const ;
+ /// \copydoc MultiBodyTree::getBodyJacobianRot
+ int getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const;
+ /// Add relative Jacobian component from motion relative to parent body
+ /// @param body the body to add the Jacobian component for
+ void addRelativeJacobianComponent(RigidBody&body);
+#endif
+ /// generate additional index sets from the parent_index array
+ /// @return -1 on error, 0 on success
+ int generateIndexSets();
+ /// set gravity acceleration in world frame
+ /// @param gravity gravity vector in the world frame
+ /// @return 0 on success, -1 on error
+ int setGravityInWorldFrame(const vec3& gravity);
+ /// pretty print tree
+ void printTree();
+ /// print tree data
+ void printTreeData();
+ /// initialize fixed data
+ void calculateStaticData();
+ /// \copydoc MultiBodyTree::getBodyFrame
+ int getBodyFrame(const int index, vec3* world_origin, mat33* body_T_world) const;
+ /// \copydoc MultiBodyTree::getParentIndex
+ int getParentIndex(const int body_index, int* m_parent_index);
+ /// \copydoc MultiBodyTree::getJointType
+ int getJointType(const int body_index, JointType* joint_type) const;
+ /// \copydoc MultiBodyTree::getJointTypeStr
+ int getJointTypeStr(const int body_index, const char** joint_type) const;
+ /// \copydoc MultiBodyTree::getParentRParentBodyRef
+ int getParentRParentBodyRef(const int body_index, vec3* r) const;
+ /// \copydoc MultiBodyTree::getBodyTParentRef
+ int getBodyTParentRef(const int body_index, mat33* T) const;
+ /// \copydoc MultiBodyTree::getBodyAxisOfMotion
+ int getBodyAxisOfMotion(const int body_index, vec3* axis) const;
+ /// \copydoc MultiBodyTree:getDoFOffset
+ int getDoFOffset(const int body_index, int* q_index) const;
+ /// \copydoc MultiBodyTree::getBodyOrigin
+ int getBodyOrigin(const int body_index, vec3* world_origin) const;
+ /// \copydoc MultiBodyTree::getBodyCoM
+ int getBodyCoM(const int body_index, vec3* world_com) const;
+ /// \copydoc MultiBodyTree::getBodyTransform
+ int getBodyTransform(const int body_index, mat33* world_T_body) const;
+ /// \copydoc MultiBodyTree::getBodyAngularVelocity
+ int getBodyAngularVelocity(const int body_index, vec3* world_omega) const;
+ /// \copydoc MultiBodyTree::getBodyLinearVelocity
+ int getBodyLinearVelocity(const int body_index, vec3* world_velocity) const;
+ /// \copydoc MultiBodyTree::getBodyLinearVelocityCoM
+ int getBodyLinearVelocityCoM(const int body_index, vec3* world_velocity) const;
+ /// \copydoc MultiBodyTree::getBodyAngularAcceleration
+ int getBodyAngularAcceleration(const int body_index, vec3* world_dot_omega) const;
+ /// \copydoc MultiBodyTree::getBodyLinearAcceleration
+ int getBodyLinearAcceleration(const int body_index, vec3* world_acceleration) const;
+ /// \copydoc MultiBodyTree::getUserInt
+ int getUserInt(const int body_index, int* user_int) const;
+ /// \copydoc MultiBodyTree::getUserPtr
+ int getUserPtr(const int body_index, void** user_ptr) const;
+ /// \copydoc MultiBodyTree::setUserInt
+ int setUserInt(const int body_index, const int user_int);
+ /// \copydoc MultiBodyTree::setUserPtr
+ int setUserPtr(const int body_index, void* const user_ptr);
+ ///\copydoc MultiBodytTree::setBodyMass
+ int setBodyMass(const int body_index, const idScalar mass);
+ ///\copydoc MultiBodytTree::setBodyFirstMassMoment
+ int setBodyFirstMassMoment(const int body_index, const vec3& first_mass_moment);
+ ///\copydoc MultiBodytTree::setBodySecondMassMoment
+ int setBodySecondMassMoment(const int body_index, const mat33& second_mass_moment);
+ ///\copydoc MultiBodytTree::getBodyMass
+ int getBodyMass(const int body_index, idScalar* mass) const;
+ ///\copydoc MultiBodytTree::getBodyFirstMassMoment
+ int getBodyFirstMassMoment(const int body_index, vec3* first_mass_moment) const;
+ ///\copydoc MultiBodytTree::getBodySecondMassMoment
+ int getBodySecondMassMoment(const int body_index, mat33* second_mass_moment) const;
+ /// \copydoc MultiBodyTree::clearAllUserForcesAndMoments
+ void clearAllUserForcesAndMoments();
+ /// \copydoc MultiBodyTree::addUserForce
+ int addUserForce(const int body_index, const vec3& body_force);
+ /// \copydoc MultiBodyTree::addUserMoment
+ int addUserMoment(const int body_index, const vec3& body_moment);
+
+private:
+ // debug function. print tree structure to stdout
+ void printTree(int index, int indentation);
+ // get string representation of JointType (for debugging)
+ const char* jointTypeToString(const JointType& type) const;
+ // get number of degrees of freedom from joint type
+ int bodyNumDoFs(const JointType& type) const;
+ // number of bodies in the system
+ int m_num_bodies;
+ // number of degrees of freedom
+ int m_num_dofs;
+ // Gravitational acceleration (in world frame)
+ vec3 m_world_gravity;
+ // vector of bodies in the system
+ // body 0 is used as an environment body and is allways fixed.
+ // The bodies are ordered such that a parent body always has an index
+ // smaller than its child.
+ idArray<RigidBody>::type m_body_list;
+ // Parent_index[i] is the index for i's parent body in body_list.
+ // This fully describes the tree.
+ idArray<int>::type m_parent_index;
+ // child_indices[i] contains a vector of indices of
+ // all children of the i-th body
+ idArray<idArray<int>::type>::type m_child_indices;
+ // Indices of rotary joints
+ idArray<int>::type m_body_revolute_list;
+ // Indices of prismatic joints
+ idArray<int>::type m_body_prismatic_list;
+ // Indices of floating joints
+ idArray<int>::type m_body_floating_list;
+ // a user-provided integer
+ idArray<int>::type m_user_int;
+ // a user-provided pointer
+ idArray<void*>::type m_user_ptr;
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ mat3x m_m3x;
+#endif
+};
+}
+#endif
diff --git a/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp b/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp
new file mode 100644
index 0000000000..47b4ab3890
--- /dev/null
+++ b/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp
@@ -0,0 +1,113 @@
+#include "MultiBodyTreeInitCache.hpp"
+
+namespace btInverseDynamics {
+
+MultiBodyTree::InitCache::InitCache() {
+ m_inertias.resize(0);
+ m_joints.resize(0);
+ m_num_dofs = 0;
+ m_root_index=-1;
+}
+
+int MultiBodyTree::InitCache::addBody(const int body_index, const int parent_index,
+ const JointType joint_type,
+ const vec3& parent_r_parent_body_ref,
+ const mat33& body_T_parent_ref,
+ const vec3& body_axis_of_motion, const idScalar mass,
+ const vec3& body_r_body_com, const mat33& body_I_body,
+ const int user_int, void* user_ptr) {
+ switch (joint_type) {
+ case REVOLUTE:
+ case PRISMATIC:
+ m_num_dofs += 1;
+ break;
+ case FIXED:
+ // does not add a degree of freedom
+ // m_num_dofs+=0;
+ break;
+ case FLOATING:
+ m_num_dofs += 6;
+ break;
+ default:
+ error_message("unknown joint type %d\n", joint_type);
+ return -1;
+ }
+
+ if(-1 == parent_index) {
+ if(m_root_index>=0) {
+ error_message("trying to add body %d as root, but already added %d as root body\n",
+ body_index, m_root_index);
+ return -1;
+ }
+ m_root_index=body_index;
+ }
+
+ JointData joint;
+ joint.m_child = body_index;
+ joint.m_parent = parent_index;
+ joint.m_type = joint_type;
+ joint.m_parent_pos_parent_child_ref = parent_r_parent_body_ref;
+ joint.m_child_T_parent_ref = body_T_parent_ref;
+ joint.m_child_axis_of_motion = body_axis_of_motion;
+
+ InertiaData body;
+ body.m_mass = mass;
+ body.m_body_pos_body_com = body_r_body_com;
+ body.m_body_I_body = body_I_body;
+
+ m_inertias.push_back(body);
+ m_joints.push_back(joint);
+ m_user_int.push_back(user_int);
+ m_user_ptr.push_back(user_ptr);
+ return 0;
+}
+int MultiBodyTree::InitCache::getInertiaData(const int index, InertiaData* inertia) const {
+ if (index < 0 || index > static_cast<int>(m_inertias.size())) {
+ error_message("index out of range\n");
+ return -1;
+ }
+
+ *inertia = m_inertias[index];
+ return 0;
+}
+
+int MultiBodyTree::InitCache::getUserInt(const int index, int* user_int) const {
+ if (index < 0 || index > static_cast<int>(m_user_int.size())) {
+ error_message("index out of range\n");
+ return -1;
+ }
+ *user_int = m_user_int[index];
+ return 0;
+}
+
+int MultiBodyTree::InitCache::getUserPtr(const int index, void** user_ptr) const {
+ if (index < 0 || index > static_cast<int>(m_user_ptr.size())) {
+ error_message("index out of range\n");
+ return -1;
+ }
+ *user_ptr = m_user_ptr[index];
+ return 0;
+}
+
+int MultiBodyTree::InitCache::getJointData(const int index, JointData* joint) const {
+ if (index < 0 || index > static_cast<int>(m_joints.size())) {
+ error_message("index out of range\n");
+ return -1;
+ }
+ *joint = m_joints[index];
+ return 0;
+}
+
+int MultiBodyTree::InitCache::buildIndexSets() {
+ // NOTE: This function assumes that proper indices were provided
+ // User2InternalIndex from utils can be used to facilitate this.
+
+ m_parent_index.resize(numBodies());
+ for (idArrayIdx j = 0; j < m_joints.size(); j++) {
+ const JointData& joint = m_joints[j];
+ m_parent_index[joint.m_child] = joint.m_parent;
+ }
+
+ return 0;
+}
+}
diff --git a/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp b/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp
new file mode 100644
index 0000000000..0d2aa4a071
--- /dev/null
+++ b/thirdparty/bullet/src/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp
@@ -0,0 +1,109 @@
+#ifndef MULTIBODYTREEINITCACHE_HPP_
+#define MULTIBODYTREEINITCACHE_HPP_
+
+#include "../IDConfig.hpp"
+#include "../IDMath.hpp"
+#include "../MultiBodyTree.hpp"
+
+namespace btInverseDynamics {
+/// Mass properties of a rigid body
+struct InertiaData {
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+
+ /// mass
+ idScalar m_mass;
+ /// vector from body-fixed frame to center of mass,
+ /// in body-fixed frame, multiplied by the mass
+ vec3 m_body_pos_body_com;
+ /// moment of inertia w.r.t. the origin of the body-fixed
+ /// frame, represented in that frame
+ mat33 m_body_I_body;
+};
+
+/// Joint properties
+struct JointData {
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+
+ /// type of joint
+ JointType m_type;
+ /// index of parent body
+ int m_parent;
+ /// index of child body
+ int m_child;
+ /// vector from parent's body-fixed frame to child's body-fixed
+ /// frame for q=0, written in the parent's body fixed frame
+ vec3 m_parent_pos_parent_child_ref;
+ /// Transform matrix converting vectors written in the parent's frame
+ /// into vectors written in the child's frame for q=0
+ /// ie, child_vector = child_T_parent_ref * parent_vector;
+ mat33 m_child_T_parent_ref;
+ /// Axis of motion for 1 degree-of-freedom joints,
+ /// written in the child's frame
+ /// For revolute joints, the q-value is positive for a positive
+ /// rotation about this axis.
+ /// For prismatic joints, the q-value is positive for a positive
+ /// translation is this direction.
+ vec3 m_child_axis_of_motion;
+};
+
+/// Data structure to store data passed by the user.
+/// This is used in MultiBodyTree::finalize to build internal data structures.
+class MultiBodyTree::InitCache {
+public:
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+ /// constructor
+ InitCache();
+ ///\copydoc MultiBodyTree::addBody
+ int addBody(const int body_index, const int parent_index, const JointType joint_type,
+ const vec3 &parent_r_parent_body_ref, const mat33 &body_T_parent_ref,
+ const vec3 &body_axis_of_motion, idScalar mass, const vec3 &body_r_body_com,
+ const mat33 &body_I_body, const int user_int, void *user_ptr);
+ /// build index arrays
+ /// @return 0 on success, -1 on failure
+ int buildIndexSets();
+ /// @return number of degrees of freedom
+ int numDoFs() const { return m_num_dofs; }
+ /// @return number of bodies
+ int numBodies() const { return m_inertias.size(); }
+ /// get inertia data for index
+ /// @param index of the body
+ /// @param inertia pointer for return data
+ /// @return 0 on success, -1 on failure
+ int getInertiaData(const int index, InertiaData *inertia) const;
+ /// get joint data for index
+ /// @param index of the body
+ /// @param joint pointer for return data
+ /// @return 0 on success, -1 on failure
+ int getJointData(const int index, JointData *joint) const;
+ /// get parent index array (paren_index[i] is the index of the parent of i)
+ /// @param parent_index pointer for return data
+ void getParentIndexArray(idArray<int>::type *parent_index) { *parent_index = m_parent_index; }
+ /// get user integer
+ /// @param index body index
+ /// @param user_int user integer
+ /// @return 0 on success, -1 on failure
+ int getUserInt(const int index, int *user_int) const;
+ /// get user pointer
+ /// @param index body index
+ /// @param user_int user pointer
+ /// @return 0 on success, -1 on failure
+ int getUserPtr(const int index, void **user_ptr) const;
+
+private:
+ // vector of bodies
+ idArray<InertiaData>::type m_inertias;
+ // vector of joints
+ idArray<JointData>::type m_joints;
+ // number of mechanical degrees of freedom
+ int m_num_dofs;
+ // parent index array
+ idArray<int>::type m_parent_index;
+ // user integers
+ idArray<int>::type m_user_int;
+ // user pointers
+ idArray<void *>::type m_user_ptr;
+ // index of root body (or -1 if not set)
+ int m_root_index;
+};
+}
+#endif // MULTIBODYTREEINITCACHE_HPP_