diff options
Diffstat (limited to 'thirdparty/bullet/src/BulletInverseDynamics/IDMath.hpp')
-rw-r--r-- | thirdparty/bullet/src/BulletInverseDynamics/IDMath.hpp | 99 |
1 files changed, 0 insertions, 99 deletions
diff --git a/thirdparty/bullet/src/BulletInverseDynamics/IDMath.hpp b/thirdparty/bullet/src/BulletInverseDynamics/IDMath.hpp deleted file mode 100644 index b355474d44..0000000000 --- a/thirdparty/bullet/src/BulletInverseDynamics/IDMath.hpp +++ /dev/null @@ -1,99 +0,0 @@ -/// @file Math utility functions used in inverse dynamics library. -/// Defined here as they may not be provided by the math library. - -#ifndef IDMATH_HPP_ -#define IDMATH_HPP_ -#include "IDConfig.hpp" - -namespace btInverseDynamics { -/// set all elements to zero -void setZero(vec3& v); -/// set all elements to zero -void setZero(vecx& v); -/// set all elements to zero -void setZero(mat33& m); -/// create a skew symmetric matrix from a vector (useful for cross product abstraction, e.g. v x a = V * a) -void skew(vec3& v, mat33* result); -/// return maximum absolute value -idScalar maxAbs(const vecx& v); -#ifndef ID_LINEAR_MATH_USE_EIGEN -/// return maximum absolute value -idScalar maxAbs(const vec3& v); -#endif //ID_LINEAR_MATH_USE_EIGEN - -#if (defined BT_ID_HAVE_MAT3X) -idScalar maxAbsMat3x(const mat3x& m); -void setZero(mat3x&m); -// define math functions on mat3x here to avoid allocations in operators. -void mul(const mat33&a, const mat3x&b, mat3x* result); -void add(const mat3x&a, const mat3x&b, mat3x* result); -void sub(const mat3x&a, const mat3x&b, mat3x* result); -#endif - -/// get offset vector & transform matrix from DH parameters -/// TODO: add documentation -void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3* r, mat33* T); - -/// Check if a 3x3 matrix is positive definite -/// @param m a 3x3 matrix -/// @return true if m>0, false otherwise -bool isPositiveDefinite(const mat33& m); - -/// Check if a 3x3 matrix is positive semi definite -/// @param m a 3x3 matrix -/// @return true if m>=0, false otherwise -bool isPositiveSemiDefinite(const mat33& m); -/// Check if a 3x3 matrix is positive semi definite within numeric limits -/// @param m a 3x3 matrix -/// @return true if m>=-eps, false otherwise -bool isPositiveSemiDefiniteFuzzy(const mat33& m); - -/// Determinant of 3x3 matrix -/// NOTE: implemented here for portability, as determinant operation -/// will be implemented differently for various matrix/vector libraries -/// @param m a 3x3 matrix -/// @return det(m) -idScalar determinant(const mat33& m); - -/// Test if a 3x3 matrix satisfies some properties of inertia matrices -/// @param I a 3x3 matrix -/// @param index body index (for error messages) -/// @param has_fixed_joint: if true, positive semi-definite matrices are accepted -/// @return true if I satisfies inertia matrix properties, false otherwise. -bool isValidInertiaMatrix(const mat33& I, int index, bool has_fixed_joint); - -/// Check if a 3x3 matrix is a valid transform (rotation) matrix -/// @param m a 3x3 matrix -/// @return true if m is a rotation matrix, false otherwise -bool isValidTransformMatrix(const mat33& m); -/// Transform matrix from parent to child frame, -/// when the child frame is rotated about @param axis by @angle -/// (mathematically positive) -/// @param axis the axis of rotation -/// @param angle rotation angle -/// @param T pointer to transform matrix -void bodyTParentFromAxisAngle(const vec3& axis, const idScalar& angle, mat33* T); - -/// Check if this is a unit vector -/// @param vector -/// @return true if |vector|=1 within numeric limits -bool isUnitVector(const vec3& vector); - -/// @input a vector in R^3 -/// @returns corresponding spin tensor -mat33 tildeOperator(const vec3& v); -/// @param alpha angle in radians -/// @returns transform matrix for ratation with @param alpha about x-axis -mat33 transformX(const idScalar& alpha); -/// @param beta angle in radians -/// @returns transform matrix for ratation with @param beta about y-axis -mat33 transformY(const idScalar& beta); -/// @param gamma angle in radians -/// @returns transform matrix for ratation with @param gamma about z-axis -mat33 transformZ(const idScalar& gamma); -///calculate rpy angles (x-y-z Euler angles) from a given rotation matrix -/// @param rot rotation matrix -/// @returns x-y-z Euler angles -vec3 rpyFromMatrix(const mat33&rot); -} -#endif // IDMATH_HPP_ |